• Non ci sono risultati.

DNA damage response: the emerging role of c-Abl as a regulatory switch?

N/A
N/A
Protected

Academic year: 2021

Condividi "DNA damage response: the emerging role of c-Abl as a regulatory switch?"

Copied!
8
0
0

Testo completo

(1)

Review

DNA

damage

response:

The

emerging

role

of

c-Abl

as

a

regulatory

switch?

Emiliano

Maiani

a

,

Marc

Diederich

b

,

Stefania

Gonfloni

a,

*

aDepartmentofBiology,UniversityofRome‘‘TorVergata’’,ViadellaRicercaScientifica,I-00133Rome,Italy

bLaboratoiredeBiologieMole´culaireetCellulaireduCancer,FondationdeRechercheCanceretSang,HoˆpitalKirchberg,9rueEdwardSteichen,L-2540Luxembourg,Luxembourg

Contents

1. Theemergingcentralroleofc-AblinmodulatingthecellresponsetoDNAdamage... 1270

1.1. Surfingatthebreakpoint ... 1270

2. DNAdamageresponse:sensing,repairingorsignalingtodeath... 1271

2.1. DNAdamagenetwork... 1272

3. Ubiquitin-signalinginDDR... 1272

3.1. Makeubiquitinsignalsreversible–dynamicsthroughDUBs ... 1272

3.2. DefyingdeathafterDNAdamage:doesubiquitin-signalingsetthreshold? ... 1273

3.3. Workinghypothesis... 1273 4. Outlook... 1274 Acknowledgements... 1274 References... 1274 ARTICLE INFO Articlehistory: Received20May2011 Accepted1July2011 Availableonline7July2011 Keywords: DNAdamage c-Abl Histonemodifications DNArepair Germcells Chemotherapy ABSTRACT

A complex regulatorynetwork of signalingpathways safeguards genomeintegrity followingDNA damage.Whendoublestrandbreaksoccurseveralenzymesandmediatorsarerecruitedtothesitesof lesiontoreleaseanetworkofDNArepairprocessesreferredtoasDNAdamageresponse(DDR).c-Abl interactsinthenucleuswithseveralproteinsimplicatedindistinctaspectsofDNArepair.Thissuggests thatc-Ablmaybeinvolvedintheregulationofdoublestrandbreakrepair.Theinvolvementofc-Ablin DNArepairmechanismscameintothespotlightinfemalegermcellsundergenotoxicstress.Recent findingshaveimplicatedc-Ablinacisplatin-inducedsignalingpathwayelicitingdeathofimmature oocytes.Pharmacologicalinhibitionofc-AblbyImatinib(STI571)protectstheovarianreservefromthe toxiceffectofcisplatin.Thisimpliesthattheextentofc-Ablcatalyticoutcomesmaytipthebalance betweensurvival(likelythroughDNArepair)andactivationofadeathresponse.Manyobservations indicate thattimelyubiquitin-modifications andsignal decodingareimplicated inregulatingDNA repair.Here,wediscusssomeconnectionsbetweenphosphorylation-andubiquitin-mediatedsignaling atthedamagedsites.Wespeculateaboutmultipleinteractionsthatmayoccurbetweenc-Abl(and ‘sensor’ kinases) withubiquitin-related proteins involved in DDR. Additional workis required to understandthecomplexityofthephysiologicaloutcomesofc-AblinDDR.However,afine-tuningof nuclearoutcomes,throughpharmacologicalinhibitionofc-Abl,mayprovidenovelparadigmsforDDR and,potentially,therapeuticstrategiesforcancertreatment.

ß2011ElsevierInc.Allrightsreserved.

Abbreviations:53BP1,Tumorsuppressorp53-bindingprotein1;ATM,Ataxiatelangiectasiamutated;ATR,AtaxiatelangiectasiaandRad3-relatedprotein;BARD, BRCA1-associatedRINGdomainprotein1;BER,Baseexcisionrepair;BRCA1,Breastcancertype1susceptibilityprotein;BRCC36,BRCA1–BRCA2containingcomplexsubunit36;CtIP, CtBP-interactingprotein;DDB1,DNAdamage-bindingprotein1;DDB2,DNAdamage-bindingprotein2;DNAPK,DNA-dependentproteinkinase;DSBR,Double-strandbreak repair;ERCC6,Excisionrepaircross-complementing6;HERC2,HECTdomainandRCC1-likedomain-containingprotein2;MDM2,Doubleminute2protein;MMR,Mismatch repair;MRN,Mre11/Nbs1/Rad50complex;MSH5,DNAMismatchrepairprotein5;NER,Nucleotideexcisionrepair;PIAS,ProteininhibitorofactivatedSTAT;RAP80, Receptor-associatedprotein80;RNF8,RINGfingerprotein8;RNF20,RINGfingerprotein20;RNF40,RINGfingerprotein40;RNF168,RINGfingerprotein168;TopBP1,DNA topoisomerase2-bindingprotein1;UBC13,Ubiquitin-conjugatingenzymeE213;USP1,Ubiquitin-specific-processingprotease1;WRN,WernersyndromeATP-dependent helicase;YAP1,Yes-associatedprotein.

*Correspondingauthor.Tel.:+390672594319;fax:+39062023500. E-mailaddress:stefania.gonfloni@uniroma2.it(S.Gonfloni).

ContentslistsavailableatScienceDirect

Biochemical

Pharmacology

j our na l ho me p a ge : w ww . e l se v i e r . com / l oc a te / b i och e mph a rm

0006-2952/$–seefrontmatterß2011ElsevierInc.Allrightsreserved. doi:10.1016/j.bcp.2011.07.001

(2)

1. Theemergingcentralroleofc-Ablinmodulatingthecell

responsetoDNAdamage

ThecellularresponsetoDNAdamage(DDR)reliesonanetwork ofmultipleinterconnectedsignalingpathwaysactinginconcertto

minimizethe dangerous effects of DNA double strands breaks

(DSBs).Thephosphatidylinositol3-kinases(PI3K)-relatedkinases ataxia-telangiectasiamutated(ATM),ATMandRad3-related(ATR) andDNA-activatedproteinkinase(DNAPK)areactivatedearlyby distinctDNAlesionsandstartacascadeofeventssignaledbythe rapidphosphorylationofseveralproteinsimplicatedinprocesses suchasDNArepair,cellcyclearrestandapoptosis[1–3].Although thePI3KrelatedenzymesareconsideredmajorplayersintheDNA damagecellresponse,afourthunrelatedkinase,c-Abl,hasmore recentlybeenassociatedtovariousaspectsoftheDDR[4].c-Ablis anon-receptortyrosinekinasethathasthepotentialtobindto several proteins [5]. It has been implicated in several cellular pathways,includingthoseoriginatingfromgrowthfactor stimu-lation,celladhesion,oxidativestressandDNAdamage[6–9];its activity is tightly regulated and it can be promptly activated followingionizingradiationandothertypesofgenotoxicinsults

[10,11]. c-Abl accumulation leads to cell cycle arrest and to programmedcell death in cultured cells. Several c-Abl targets

(YAP1,TP73, TP63,MDM2)areindeedimportantmodulatorsof

DNAdamage-inducedapoptosis.Atthesametime,manypartners

andsubstratesofc-Abl areknown mediatorsofDNArepair [5]

(amongthem,DDB1, DDB2, ERCC6,RAD9A, RAD51,RAD52 and

WRN,ATM,ATR,DNAPK,BRCA1,TopBP1,andMSH5,seeFig.1),

suggestingthatc-Ablmaybeimplicatedintheregulationand/or assemblyofDNArepaircomplexes.Inspiteofitsemergingcentral

role in DNA repair, the mechanistic details are still poorly

understood and the physiological functions, if any, of many of theinteractionsthathavebeenreportedremainselusive[12,13]. Wanget al.haverecentlyreportedthatc-Ablisinvolvedinthe

activation of ATM and ATR kinases following doxorubicin

treatment. c-Abl deficient primary MEFs, following genotoxic

stress,failedtoactivatebothATMandATRandtheirdownstream effectors[14].Theseobservationssuggestthatc-Ablmayhavea significantrole intheactivationofthekeyupstreammolecular

events governing the initiation and propagation of DDR [12].

Additional insights on the central role played by c-Abl in

modulating theinterplaybetweenDNA repair andinduction of

apoptosis came from the study of female germ cells under

genotoxic stress [15]. Intraperitoneal injection of cisplatin in newbornfemalemiceleadstodepletionofthefolliclereserveand tolong-terminfertility.Recentfindingshaveimplicatedc-Ablina cisplatin-inducedsignalingpathwayelicitingdeathofimmature oocytes [16]. A p53-related protein, TAp63, is a critical down-streameffectorofthis pathway.Inhibitionofc-Abl byImatinib (STI571) protects the ovarian reserve from the toxic effect of cisplatin.Thisimpliesthattheextentofc-Ablcatalyticoutcomes maytipthebalancebetweensurvival(likelythroughDNArepair) andactivationof adeath response.Ourcurrent modelsuggests thatc-Ablmayfunctionasahubassistingtheprogressionofrepair

but eventually promoting cell death when DNA breaks prove

irreparable[13].Althoughwehaveshownthatco-treatmentwith Imatinibhasa protectiveeffecton theovarianreserve[17],we

need toclarify themechanisms underlyingsuchan effect. The

kineticsofc-AblactivationfollowingDNAdamagerepresentsan

importantimmediate issuetobeaddressed.Additionalworkis

requiredtounderstandthecomplexityofthephysiologicalroleof c-AblinDDR,anditsinvolvementinthemodulationofthemany posttranslationalmechanisms,includingubiquitination, underly-ingtheDDR.

1.1. Surfingatthebreakpoint

ChromatinisacomplexscaffoldformedbychromosomalDNA

wrapped around the histone core. This scaffold is not static.

Chromatin modifications are essential for modulation of many

cellular processes including transcription, replication and DNA repair.Twoclasses ofenzymescanmodifychromatinstructure. Oneclassconsistsoflargemulti-proteincomplexesthatuseATP hydrolysistoalterthenucleosomepositionorcompositionwithin chromatin[18].Thesecondclassmediatescovalentmodifications of histone tails. Posttranslational modifications of histones are implicated in the DNA damage response [19,20]. In particular, histonemodificationinducedbymembersoftheubiquitinenzyme familyis oneofthemaindefensivestrategies adoptedby DNA-injured cells[21].Ubiquitin-conjugationseemstomodulatethe

Fig.1.Abl-interactingproteinsintheDNAdamageresponse.Inredellipseproteinsinvolvedinapoptosis,inbluethoseinvolvedinDNAdamagesignalingandDNArepair. Greenellipsecontainsproteinsinvolvedincellcyclearrest.Proteinsdirectlyinvolvedinubiquitin-signalingofDDRareinviolet.Alltheseproteinshavealsobeenreportedas AblsubstrateswiththeexceptionofTREX1,CABLE2,BRCA1,andDDB2.

(3)

assembly of themany components of thegenomesurveillance

system. Several ubiquitin-signaling paths influence various

aspectsofgenome-integritymaintenanceandboth

monoubiqui-tylationandpolyubiquitylationareemergingasversatile strate-giestomodulateprotein–proteininteractionnetworks[22–28].A modelofacomplex‘ubiquitinlandscape’atthedamagedsitesis

emerging, albeit incomplete and poorly understood [29,30].

Particularly noteworthy is the extensive crosstalk between

ubiquitin-modificationsandphosphorylation-mediatedpathways

in DDR. A complex web of molecular interactions determines

whetherandhowtorepairthedamageorratherlettheinjuredcell die [31–34]. Here, we discuss some connections between

phosphorylation- and ubiquitin-dependent signaling at the

damage sites. We speculate about multiple interactions that

mayoccurbetween c-Abl(and‘sensor’kinases)with ubiquitin-relatedproteinsinvolvedinDDR.

2. DNAdamageresponse:sensing,repairingorsignalingto

death

Intricatemechanismsaresetinmotionforcounteractingthe potentiallydangerouseffectsofDNAlesions.Thesemechanisms

arechallengedinchemotherapyregimensfor cancertreatment.

Crosslinkingagentsare amongthemostwidely usedand most

effectiveanticancerdrugs.Theyformcovalentadductsoncellular DNAeitheronthesamestrand(intrastrand)orbetweenthetwo complementarystrands(interstrand).Howaretheyrepaired?The mainplayersarenucleotideexcisionrepair(NER),baseexcision

repair (BER), mismatch repair (MMR) and double strandbreak

(DSB) repair. Interstrand crosslinks may induce double strand

breaksasan intermediatestepduring repair.So, cells mayuse severalDNArepairpathwaysinaconcertedway.Itisbeyondthe scopeofthisreviewtodiscusstheserepairmechanismsindetail. Interestedreadersaredirectedtoseveralreviewsonthissubject

[35–40].Here,wewillfocusonDSBssinceveryrecentstudieshave indicatedthattransientabrogationofc-AblactivitymodulatesDSB

repair pathway mediated by either homologous recombination

repair(HRR)ornonhomologous end-joining(NHEJ)mechanisms

[41,42].In addition,in germcells, DSBs occur normallyduring

meiosistopromotehomologousrecombinationandbydoingso

geneticdiversity[43]. Micedeficientinc-Abl exhibitdefectsin spermatogenesis[44].Thissuggeststhatc-Ablhasarolein the maintenanceofgenomeintegritybydealingwithDSBsinmeiotic cells.

Threedistinctproteincomplexesactassensors,transducersand effectorsofDDRinducedbyDSBs.Manycomponentsofthesethree

layers interact with each other and converge toward different

outcomesdependingontheseverityofthedamageandonthecell

type. The activation of checkpoints slows down cell cycle

progressionuntillesionsareresolved.IfunrepairedDSBspersist,

cells undergo either apoptosis or senescence to prevent the

accumulation of potentially tumorigenic mutations [45–47].

FemalegermcellsareextremelysensitivetoDNAinsultscompared with somatic cells [48]. In line with this, ovarian failure and infertilityareoftenoff-targetconsequencesofchemotherapeutic treatment.OocytesfromfolliclereservearearrestedinmeiosisI; DNAdamage iseitherquickly repairedortriggersa robustcell degeneration. Intriguingly, abrogation of c-Abl activity has a protectiveeffecton theovarian reserveundergenotoxic stress. Despitethediversityregardingthecelltype,theefficiencyofrepair andsignalingofthebreaksis enhancedbytheconcentrationof factorsintheproximityofthelesion.Atthedamagedsite,theDDR canbepresentedasasequentialassemblyofproteincomplexes (Fig.2).

DNA repair initiated by sensorsof breaks, – including MRN complex,ATM–reliesontheactivityofdifferentE3-ligasesnamely

RNF8,HERC2andRNF168.AmongthemanytargetsofATM,the

histone H2A variant H2AX is phosphorylated on Ser-139. This

modificationseemstobearecruitmentsignalforproteinswith dedicatedphospho-S/TrecognitiondomainssuchastheFHA[49]

orBRCTdomain[50].TheRING-typeubiquitinligaseRNF8[34,51– 54]ubiquitinatesH2AXandalsoseemstoshifttherecruitment modefrombeingphosphorylation-basedtobeingubiquitin-based. In spite of that, many reports indicate that phosphorylation of H2AXisnotessentialforDNArepair[55,56],suggestingthatother moleculescanorchestratetheassemblyofDNArepaircomplexes.

Noteworthy, DNA damaging complexes rely on protein

modularity associated to posttranslational modifications of

bindingpartners.Posttranslationalmodificationsarealso revers-ible,implyingasaconsequence,thedynamicnatureofanykindof

protein–protein interactions depending on such modifications.

Fig. 2. DSBs are recognized by Mre11–Rad50–Nbs1 (MRN) complex, which promotestheactivationofATM.H2AXphosphorylationbyATMprovidesadocking siteforMDC1.TheubiquitinligaseRNF8(recruitedthroughitsFHAdomain)in tandemwithUBC13ubiquitylatedH2AandgH2AX.Signalingofthebreaksisthen enhancedbytherecruitmentofE3ligaseenzymeRNF168(throughitsMIUdomain) thatactsbyextendingK-63ubiquitinchains.ThedeubiquitinatingenzymeOTUB1 suppressesRNF168-dependentubiquitinationbydirectinhibitionoftheE2ligase UBC13.RAP80associatestoubiquitinbyitsUIMdomainandrecruitstheBRCA1-A complex,throughtheinteractionwiththescaffold proteinAbraxas.TheBRCA complex containsthe ubiquitin protease BRCC36 that removes ubiquitin on histonesH2AandH2AX,antagonizingtheRNF8/RNF168-dependentubiquitination.

(4)

Largecomplexesaresobuiltthroughspecificrecognitionbetween

posttranslationalmodificationsanddecodingdomains.However,

following DDR progression, posttranslational modifications of

proteins,intimatelyinvolvedinDNArepair,canalsobeeditedby specificenzymesthusarrestingtherepairprocessandtriggering analternativepathwayleadingtocelldeath.Therefore, phospha-tases(PPI) and deubiquitylases (DUB)offer additionallevels of

complexity required for the fine-tuning of DDR pathways in

injuredcells.

2.1. DNAdamagenetwork

Inthebiologicalcontextmostproteinandgenenetworksdonot havethetopologicalpropertiesofrandomnetworksbutarerather

characterized by a high clustering coefficient and by a degree

distributionthatisscale-free[57].Ifwerestrictouranalysistothe DDRinteractions,mostoftheproteins(nodes)haveonlyfewedges (connections)whereasfewproteins(hubs),suchasATM,orp53

[58]haveavastnumberofconnections.However,theassemblyof large complexesin thevicinity of thelesionsfollows a strictly

hierarchical process [59] based on domain modularity and

localizedconcentrationoffactors.

Recently, the ‘phosphorylation landscape’ of DDR has been

expandedthroughtheidentificationofnovelputativesubstratesof ATMaswellasofsomeATMindependentsubstrates[60].These

observations underline the vast complexity of the cellular

responsesin theDDR pathwaysnecessarytomaintaingenomic

integrityandcellularhomeostasis.Rapidkineticsformostofthe phosphorylationeventssuggeststheexistenceofsimilartemporal patternsalsoforthedephosphorylationresponse[60].Shilohand colleagueshaverecentlyexploredsuchkineticsthroughanalysisof systemlevelnetworksofperturbedcells[60].Cellswereexamined afterradiomimetictreatmentatdistincttimepoints.Theanalysis ofisolatedphosphopeptides,throughlabel-freequantitativeLC– massspectrometry,wascarriedouttofollowdynamicsofdouble

strandbreaks(DSBs)-inducedphosphoproteome.Theyfoundthat

the dynamics of the DDR-induced changes are complex and

includeboth phosphorylationand dephosphorylationprocesses.

Theseevents, involvingmany interconnected proteins (or

com-plexes),indicatearobustandcomprehensivecellularresponseto

DNAdamage.Oneimportantobservationregardingthe

involve-mentofphosphatasesisthattheyareservingasshutoffsignalsof

DDR-signaling.Moreover,theauthorsfoundthat40% ofdouble

strand breaks (DSBs)-induced phosphorylation was not

ATM-dependentbutispotentiallyinducedbyseveralotherkinases.This suggeststhat,althoughATMsignalingisassociatedtoDSBs,onlya fractionofDSBsrepairisATM-dependent[61].Interestingly,the datafromShilohandcoworkersindicatethatthecontrolofDDR eventsisbasedonthesustainedactivityofATMoveranextended time.Thismechanismprobablyservestocounteracttheopposing effectsmediatedbyphosphatases.ProlongedATMactivitymaybe involvedinensuringitsretentionatthedamagedsitewhereATM actsasafuelforthesignalingcascade.

Ubiquitylation is alsoanimmediate modificationunderlying

theDDRprotein–proteinnetworks.Itsinterplaywith

phosphory-lation is crucial in damage repair and DNA signaling. Histone

decoration by ubiquitin-chains has been recently appreciated,

fuelled,inpart,bythediscoveryofenzymesresponsibleforthese modifications[28].Largecomplexesallowrecognitionandsetting

inmotion of mechanismsto mark(throughubiquitin-tags) the

sitesoflesionforanappropriateresponse[51–54].

3. Ubiquitin-signalinginDDR

Protein modification by a single ubiquitin moiety can have

severaldiverseoutcomes,rangingfromthecontrolofendocytosis

and intracellular trafficking to the regulation of chromatin

structure transcription and DNA damage processing [24,62].

However, the complexity of ubiquitin signaling is achieved

throughitsabilitytoformchains.Polymericchainscanbebuilt on all of ubiquitin’s seven Lys residues. Different linkages of ubiquitinmoietyorchainsadoptingdistinctgeometriesensurethe functionalcomplexityofsignaling(i.e.Lys-48chainsarelinkedto theproteasomedegradation,while,linearandLys-63chainsseem tomediatedifferentfunctions).Bothchainscanmodulateseveral

pathways related to genome stability [63]. Ubiquitin-chains

provide recognition sites for complexes assembly and are

necessary for signal propagation. Several types of

ubiquitin-bindingdomains(UBDs)havebeenrecentlycharacterized[64–66]. Notably,recognitioncanbedirectormodulatedthroughbinding withotherdomainsnecessarytogainspecificitytowardparticular

geometries of ubiquitin polymers. To date several

ubiquitin-modifications and signaldecoding are implicated in regulating

DNArepair[67].

3.1. Makeubiquitinsignalsreversible–dynamicsthroughDUBs

Ubiquitin-decoration is achieved through the sequential

cascade of activating (E1), conjugating (E2) and ligating (E3) enzymes;sucheventscanoccurthroughtheconjugationofsingle ubiquitinorpolyubiquitinchains(homotypicchains,or heterolo-gous,forked or mixed). The vast variety of ubiquitin-signals is recognizedanddecodedbydedicatedubiquitin-bindingdomains. Inaddition,tightcontrolismaintainedbytheactionofDUBsand bytheexistenceofcrosstalkbetweentheubiquitin-networkand other posttranslational modifications. In short, high levels of

specificity are achieved through (1) specific E2–E3 pairs, (2)

recognitionofcertainubiquitinbranchesmediatedbyindividual

UBD and eventually, (3) by a presumed relationship between

functional outcomes and distinct ubiquitin species [68]. Fine-tuningofubiquitin-pathwaysreliesonproteincomplexes,timely regulatedin space,mediatedbyscaffoldproteinsorchaperones

[69,70].TargetingofE2–E3pairsinresponsetospecificstressesis mediatedbyposttranslationalmodifications,recognitionthrough

surrounding domains and adaptors [68]. Ubiquitin-conjugation

canmediatenucleartranslocation;itcanalsoimpactonprotein activity,inducingconformationalchangeswithapositive[71]or

negative effect [72]. In some circumstances, phosphorylation

directlyregulatesE3ligaseactivity[73,74]orindirectly,controls

the timing of ubiquitin-attachment and removal by affecting

nucleartranslocationofdeubiquitylatingenzymes(DUB)[75]. Howtheversatilityofubiquitin-complexesatthesiteoflesion isaccomplished?SixclassesofUBDsareinvolvedintheresponse

toDNAdamage(UBA,UIM,MIU,UEV,UBM,andUBZ[67].Their

recognition occurs through binding of a hydrophobic motif on

ubiquitinandofspecificregionsonthesubstrate.Suchcomplexes

canbe modulatedby specificproteases(DUBs).DUB activityis

inducedthroughbindingwithsubstrate;a furtherregulationis

achieved throughposttranslational modifications

(phosphoryla-tion, ubiquitin or ubiquitin-like modifications) and/or specific

binding to accessory molecules that impinges on substrate

recognition and/or subcellular localization [25,68]. USP1

auto-deubiquitination isa remarkable example ofDUB regulationin

DNArepair[76].

DUBscanbedistinguishedintofivedistinctclassesdepending

on their domain structure [25]. Their importance in cellular

processesishighlightedbyrecentreports[77,78].DUBsoperate throughcleavageofubiquitinmoietyorubiquitin-linkedchains fromasubstrate.TheDUBsactivationimpingeson(1)recyclingof

free ubiquitin for cell homeostasis maintenance, (2) rescuing

proteinsfromdegradation,and(3) editingthelengthortype of

(5)

crucial for the fine-tuning of ubiquitin-conjugation directly affecting enzymatic activation or proteosomal targeting [79]. Largecomplexes,formedthroughubiquitinreceptors(UBDs)orby conjugationwithsmallubiquitin-likemodifier(SUMO),intandem withDUBsarebothrequiredforsignalingatdamagedsites.

MuchofthecurrentunderstandingofDDRisbasedonthestudy ofATMandATRkinases.Oneoftheearliesteventsisrecruitment andactivationoftheATMatthedamagedDNAsitesthroughthe

Mre11–Rad50–Nbs1 (MRN) sensor complex. This event clearly

illustrates the crosstalk between the ubiquitin-network and

posttranslational modifications of DDR. Within minutes after a

DSBgeneration,ATMphosphorylateshistoneH2AXtobecome

g

-H2AX.

g

-H2AXunleashesacascadeofchromatinmodulationand

DNArepaireventsthroughtherecruitmentofMDC1(mediatorof DNAdamagecheckpoint1)[80].Thisisfollowedbyaccumulation

of two closely related RNF ubiquitin ligases, RNF8–RFN168

[26,52,54,81,82]intandemwiththeHECT-domainproteinHERC2

[83].FurtherrecruitmentofSUMO-ligasePIAS1andPIAS4[84,85]

thentriggers(andamplifies)bindingofubiquitinandSUMOonto

histones near the DNA lesions, allowing local recruitment of

importantrepairfactors,including53BP1andanotherubiquitin ligase,BRCA1[1].

Moyaletal.haverecentlyreporteda directpositiveeffectof ATMonmonoubiquitylationofH2Batdamagedsites.Theyobserve thattheE3ubiquitinligase,aheterodimericcomplexofthe

RING-finger–RFN20/RFN40 is phosphorylated by ATM. This event is

requiredforH2B monoubiquitylation,fortimelyrecruitmentof componentsinvolvedinthetwomajorDSBrepairpathways(NHEJ

and HR) so facilitating DNA repair via both mechanisms [74].

Interestingly RNF20 is also involved in the recruitment of

chromatin-remodeling factor SNF2h independently from H2AX

[86]. Depletion of RNF20 impairs resection of DNA ends and

recruitmentofRAD51andBCRA1.CellslackingRNF20orSNF2hor

expressing H2BK120R mutant exhibit pronounced defects in

homologous recombination repair (HRR) and an enhanced

sensitivity to radiation. Interestingly, thefunction of RNF20in HRRcanbepartiallybypassedthroughforcedchromatin

relaxa-tion.This suggests that RNF20-mediatedH2B ubiquitination at

DSBsplaysacriticalroleinHHRthroughchromatinremodeling

[86].

Chromatin modulationis a crucial event of the DNA repair

cascade.NonsensemutationsintheRNF168geneimpairretention

of 53BP1 and BRCA1 at sites of DSB repair [87]. This finding

supportstheroleoftheRNF8–RNF168–HERC2–BRCA1chromatin

ubiquitin-ligasecomplexes[26,85]forgenomeintegrity.Despite considerableefforts, theprecisefunction of BRCA1 in theDNA

damageresponseremains unclear.In addition,BRCA1seemsto

promote homologous recombination. BRCA1 has an

ubiquitin-ligase activity, it ubiquitylates CtIP a protein involved in DSB

resection [88].The 53BP1 protein promotesother pathwaysof

repairbyblockingresection,whereasthe53BP1sumoylationby

PIASproteins[83,84]maypromoteitsdisplacementfromDSBs,

releasingthebarriertoresection.

Inshort,non-degradativeubiquitylationplaysacentralrolein

theDNAdamageresponse.RNF8andRNF168,intandemwiththe

E2ubiquitinconjugatingenzymeUBC13catalyzetheformationof Lys-63linkedchainsattheDSBs sitestopromotetheirfaithful repair.Bycontrast,OTUB1,anovariantumorproteaseactingasa

DUB,counteractsRNF8/RNF168-dependentubiquitin-chains

for-mationatdamagedsites[89].Interestingly,OTUB1isnotinvolved inthecleavageofpolyubiquitinchainsbutdirectlytargetsUBC13

[77]. For this aspect, OTUB1 is an atypical DUB, that prevents ubiquitinligation,ratherthandetachingofboundubiquitin,andin thiswayinhibitsDNA repair.Inaddition,OTUB1istargetedby

phosphorylation, thus providing another level of control to

modulateitsaffinityforUBC13.Nakadaetal.foundthatinhibition

of OTUB1 expression restores the process of homologous

recombination in cells in which ATM kinase is inhibited [90].

Thus, OTUB1 depletion can in principle mitigate DNA-repair

defects.

Several DUBs have been reported to affect the ‘ubiquitin

landscape’ presentat DNAbreaks[68]. UCH37/UCHL1interacts

with chromatin-remodeling complex involved in nucleosome

sliding (INO80, inositol-requiring 80) [91]. Other DUB, such as

BRCC6(BRCA1–BRCA2containingcomplexsubunit36),mayacton

the RNF8–UBC13 ubiquitin ligase complex deubiquitylating

g

H2AX[92].Inaddition,DUBsinvolvedinDNAdamagesignaling areUSP1thattargetsPCNA(proliferatingcellnuclearantigen)[76],

FANCD2 and FANCI (the Fanconi anemiaproteins) [93,94], and

USP3andUSP16thatdirectlydeubiquitylatehistoneH2A[95,96]. 3.2. DefyingdeathafterDNAdamage:doesubiquitin-signalingset threshold?

The experimental results compiled above suggest that the

interplaybetween pairactivitiesof phosphorylationor

dephos-phorylation (and also ubiquitination or deubiquitination) is

requiredforthefine-tuningofDDR.Itmaybepartofthereason bywhichtheDDRdecayinatimelymanner,afterdamagerepair, allowsasafetypathforthecells.Theimmediaterecruitmentof factorstoDSBs,andthelocalizedconcentrationofproteinsmight be particularlyimportantfor signalingamplification and toset thresholdlevelsofDNAdamage.

DDRdependsontherecruitmentofthesensors/transducersto thedamagedsite.Theiractivationleadscellstoadecisionpoint

betweensurvivalanddeath.Whicharethemechanisms

underly-ing such a decision? Survival of DNA-injured cells depends on

removal of the damage. A logical hypothesis is that the

amplificationofthesignalingcascadehasthefeasibilitytodrive cellstowarddeathasadefaultpathifnotattenuated.

Whyanattenuatedactivationofc-Ablendsinasurvivalpathin femalegermcells?c-Ablpresumablyaffectsdownstreamcascades

through phosphorylation of several proteins or substrates of

enzymesactivated/regulatedbyc-Abl.Pharmacologicalinhibition

of c-Abl could impact on distinct levels of such signaling. A

reasonable hypothesis is that c-Abl activation may impinge

directly or indirectly on ubiquitin-signaling of DDR. According tothis, arecent reportprovides evidencethatAbl regulatefoci

formation of protein like 53BP1, TopBP1, RAD51 and BRCA1

followingDNAdamage[14]. 3.3. Workinghypothesis

RecentfindingsfromWanget al.indicatethatc-Ablmaybe

necessary for the full activation of ATM and ATR and their

respectivedownstreamsignalingpathways.Accordingtothis,

c-Abl phosphorylates ATM, thus amplifying ATM activation and

signaling.PhosphorylationeventsmediatedbyATMare,inturn, necessary forrecruitmentofubiquitin-related enzymessuchas

RNF8, RNF20–RNF40 and BMI1 (polycomb group proteins) in

proximityofDNAbreaks.Inparticular,BMI1isinvolvedinDNA

damage-inducedmonoubiquitinationofH2A.BMl1interactswith

RING1B(RNF2)toformaheterodimerrequiredforPRC1mediated histoneubiquitination,thuscontributingtoefficientHRmediated DNArepair[97].LossofBMI1sensitizescellstoionizingradiation tothesameextentaslossofRNF8.IntheabsenceofBMI1,the

recruitment to damaged sites of 53BP1, RAP80 and BRCA1 is

stronglyimpaired[98].

Inaddition,c-Abldirectlymayimpinge(through phosphoryla-tionoritsbinding)onseveralproteinsand/orenzymesinvolvedin ubiquitin-signalingofDDR.Inlinewiththis,c-Ablinteractswith BRCA1a tumorsuppressor crucialforcell-cyclearrestand DNA

(6)

repair. BRCA1, in complex with another RING-domain BARD1 exhibitsubiquitin-ligaseactivity.Fewtargetsforthisactivityhave

beencharacterized invivo. The BRCA1/BARD1 can ubiquitylate

histones(H2AandH2B)inthecontextofnucleosome[99].This suggeststhatBRCA1mayalsoaffectdirectlynucleosomestructure anddynamicsthroughitsubiquitylationactivity.Inaddition,c-Abl directlyphosphorylatesubiquitin-relatedproteinssuchasDDB1

[100](involvedincomplexwithDDB2inDNArepairthroughNER

mechanism),WRNahelicasecontaininganUBDdomaininvolved

inDNArepair[101],andfinallytheE3RINGligaseMDM2[102]

(Fig.3).

MDM2(alongwithMDMX)isapartofamulti-component

E3-complexthattargetsp53forproteasomaldegradation[103,104]. Recently,Mayoandcolleaguesfoundthatmulti-site

phosphoryla-tion of MDM2 by c-Abl is important for the MDM2–MDMX

complexformation[105].Oneofthetyrosineresiduesimportant

forcomplexformationisproximaltotheRINGdomainofMDM2.

Thissuggestsapossibleroleforthismodificationinmodulating RINGdomaininteractions.Interestingly,RINGdomain dimeriza-tionappearstobeageneralrequirementfortheassemblyofan activeligasecomplex[106].Thus,c-Ablphosphorylationprovides

a mechanism to regulate ubiquitination by modulating the

oligomerizationofE3MDM2–MDMXcomplexes.

4. Outlook

Severalcomplexcellularresponsescanbeunderstoodonlyby thinkingintermsofadensewebofinteractionsand feedbacks. Manyofthemostpressingissues,relatedtoDDRincells,cannot longerbesolvedsimplybybreakingsystemintoparts.Takingfew

major hubs out of the DNA damage network will simply

disassemble it in rather isolated protein–protein connections. Timelyseriesofubiquitin-modificationsandsignaldecodingare implicatedin regulatingDNA repair. Thecurrent model is that histoneubiquitylationservesasabeaconfortherecruitmentof effectorproteins. Futurestudies willlikely uncover newmotifs thatrecognizesingleorcombinatorialmodificationsonchromatin. SpecificE2–E3 pairs seemto berequired for distinct ubiquitin

chains,howeverresearchisneededtoclarifytheimportanceof ubiquitinbranchinginaphysiologicalcontextandtoidentifyand characterizemorepotentialDUBs.Weneedtoclarifyhowdifferent ubiquitin-marksaregeneratedanddecodedbyUBDsinthecells. Weneedtoknowhowmodifyingenzymesaretargetedtotheirsite ofactionandwhichenvironmentalormetabolicfactorsaffecttheir activity.

Here,wespeculateaboutsomeconnectionsoccurringbetween

phosphorylation- andubiquitin-mediated signalingatthe

dam-agedsites.Multipleinteractionsseemtooccurbetweenc-Abl(and ‘sensor’kinases)withubiquitin-relatedproteinsinvolvedinDDR.

The kinetics of c-Abl activation is certainly an important

immediateissuetobeaddressed.NovelparadigmsforDDRmay

arise from a better understanding of the crosstalk between

phosphorylationsignalsmediatedbyc-Ablandubiquitin-related changesonchromatin.

Acknowledgements

WethankGianniCesareniforcriticalreadingofthemanuscript.

We thankGiorgioMazzeo forhis support;CristinaFloreanand

Cindy Grandjenette for suggestions. We acknowledge support

fromAIRC(ItalianAssociationforCancerResearch)toS.G.Research inM.D.’slabissupportedbythe‘‘RechercheCanceretSang’’,the ‘‘RecherchesScientifiquesLuxembourgassociation,the‘‘EenHaerz firkriibskrankKanner’’association,theActionLions‘‘Vaincrele Cancer’’associationandbyTe´le´vieLuxembourg.

References

[1]JacksonSP,BartekJ.TheDNA-damageresponseinhumanbiologyanddisease. Nature2009;461:1071–8.

[2]LavinMF,KozlovS.ATMactivationandDNAdamageresponse.CellCycle 2007;6:931–42.

[3]HarperJW,ElledgeSJ.TheDNAdamageresponse:tenyearsafter.MolCell 2007;28:739–45.

[4]ShaulY,Ben-YehoyadaM.Roleofc-AblintheDNAdamagestressresponse. CellRes2005;15:33–5.

[5]ColicelliJ.ABLtyrosinekinases:evolutionoffunction,regulation,and speci-ficity.SciSignal2010;3:re6.

Fig.3.Modelforintegratedsignalingfunctionsofc-Abl.Ablmayregulatedoublestrandbreaksrepairand/orcelldeathtodamage.TheextentofAblcatalyticoutcomesseems toshiftthebalancebetweenlifeanddeath.Areasonablehypothesisisthatc-Ablpresumablyaffectsdownstreampathwaysthroughphosphorylationofseveralproteinsand/ orenzymesinvolvedinubiquitin-signalingofDDR.Solidline:directinteraction;dashedline:indirecteffect;ubiquitin-relatedproteinsarecoloredinviolet;modulatorsof DNAdamage-inducedapoptosisarecoloredingreen;DNArepairandDNAsignalingproteinsarecoloredinblue.

(7)

[6]GuJJ,RyuJR,PendergastAM.AbltyrosinekinasesinT-cellsignaling.Immunol Rev2009;228:170–83.

[7]SirventA,BenistantC,RocheS.Cytoplasmicsignalingbythec-Abltyrosine kinaseinnormalandcancercells.BiolCell2008;100:617–31.

[8]ZhuJ,WangJY.Deathby Abl:amatter oflocation.Curr TopDevBiol 2004;59:165–92.

[9]PendergastAM. TheAbl family kinases: mechanisms of regulationand signaling.AdvCancerRes2002;85:51–100.

[10]LiuZG,BaskaranR,Lea-ChouET,WoodLD,ChenY,KarinM,etal.Three distinctsignalingresponsesbymurinefibroblaststogenotoxicstress.Nature 1996;384:273–6.

[11]KharbandaS,RenR,PandeyP,ShafmanTD,FellerSM,WeichselbaumRR,etal. Activationofthe c-Abl tyrosinekinase in thestress responseto DNA-damagingagents.Nature1995;376:785–8.

[12]MeltserV,Ben-YehoyadaM,Shaul Y. c-Abltyrosine kinaseintheDNA damageresponse:celldeathandmore.CellDeathDiffer2011;18:2–4. [13]GonfloniS.DNAdamagestressresponseingermcells:roleofc-Abland

clinicalimplications.Oncogene2010;29:6193–202.

[14]WangX,ZengL,WangJ,ChauJF,LaiKP,JiaD,etal.Apositiveroleforc-Ablin ATM and ATR activation in DNA damage response. Cell Death Differ 2011;18:5–15.

[15]GonfloniS.Modulatingc-Ablnuclearactivityasastrategytopreservefemale fertility.CellCycle2010;9:217–8.

[16]GonfloniS,DiTellaL,CaldarolaS,CannataSM,KlingerFG,DiBartolomeoC, etal.Inhibitionofthec-Abl-TAp63pathwayprotectsmouseoocytesfrom chemotherapy-induceddeath.NatMed2009;15:1179–85.

[17]Woodruff TK. Preserving fertility during cancer treatment. Nat Med 2009;15:1124–5.

[18]LusserA,KadonagaJT.ChromatinremodelingbyATP-dependentmolecular machines.Bioessays2003;25:1192–200.

[19]Kouzarides T. Chromatin modifications and their function. Cell 2007;128:693–705.

[20]MarmorsteinR.Proteinmodulesthatmanipulatehistonetailsforchromatin regulation.NatRevMolCellBiol2001;2:422–32.

[21]vanAttikumH,GasserSM.ThehistonecodeatDNAbreaks:aguidetorepair? NatRevMolCellBiol2005;6:757–65.

[22]PanierS,DurocherD.RegulatoryubiquitylationinresponsetoDNAdouble strandbreaks.DNARepair(Amst)2009;8:436–43.

[23]vanAttikumH,GasserSM.Crosstalkbetweenhistonemodificationsduring theDNAdamageresponse.TrendsCellBiol2009;19:207–17.

[24]UlrichHD,WaldenH.UbiquitinsignalinginDNAreplicationandrepair.Nat RevMolCellBiol2010;11:479–89.

[25]AtanassovBS,KoutelouE,DentSY.Theroleofdeubiquitinatingenzymesin chromatinregulation.FEBSLett2010.

[26]Al-HakimA,Escribano-DiazC,LandryMC,O’DonnellL,PanierS,SzilardRK, etal.TheubiquitousroleofubiquitinintheDNAdamageresponse.DNA Repair(Amst)2010;9:1229–40.

[27]DianovGL.RegulationofDNArepairbyubiquitination.Biochemistry (Mos-cow)2011;76:69–79.

[28]RamaekersCH,WoutersBG.RegulatoryfunctionsofubiquitinindiverseDNA damageresponses.CurrMolMed2011;11:152–69.

[29]LukasJ.TheinterfacebetweentheubiquitinfamilyandtheDNAdamage response.EMBORep2010;11:907–9.

[30]ShanbhagNM,Rafalska-MetcalfIU,Balane-BolivarC,JanickiSM,Greenberg RA.ATM-dependentchromatinchangessilencetranscriptionincistoDNA doublestrandbreaks.Cell2010;141:970–81.

[31]RichT, AllenRL, Wyllie AH. Defyingdeath after DNA damage. Nature 2000;407:777–83.

[32]LukasJ,BartekJ.DNArepair:newtalesofanoldtail.Nature2009;458:581–3. [33]BoultonSJ.DNArepair:decisionatthebreakpoint.Nature2010;465:301–2. [34]BennettEJ,HarperJW.DNAdamage:ubiquitinmarksthespot.NatStructMol

Biol2008;15:20–2.

[35]McHughPJ,SpanswickVJ,HartleyJA.RepairofDNAinterstrandcrosslinks: molecularmechanismsandclinicalrelevance.LancetOncol2001;2:483–90. [36]StojicL,BrunR,JiricnyJ.MismatchrepairandDNAdamagesignaling.DNA

Repair(Amst)2004;3:1091–101.

[37]RastogiRP,Richa,KumarA,TyagiMB,SinhaRP.Molecularmechanismsof ultraviolet radiation-induced DNA damage and repair. J Nucleic Acids 2010;592980.

[38]ReedSH.Nucleotideexcisionrepairinchromatin:damageremovalatthe dropofaHAT.DNARepair(Amst),doi:10.1016/j.dnarep.2011.04.029. [39]MladenovE,IliakisG.InductionandrepairofDNAdoublestrandbreaks:the

increasingspectrumofnon-homologousendjoiningpathways.MutatRes 2011;711:61–72.

[40]OzturkS,DemirN.DNArepairmechanismsinmammaliangermcells.Histol Histopathol2011;26:505–17.

[41]MeltserV,Ben-YehoyadaM,ReuvenN,ShaulY.c-Abldownregulatestheslow phaseofdouble-strandbreakrepair.CellDeathDis2010;1:e20.

[42]AmreinL,DavidsonD,ShawiM,PetruccelliLA,MillerJrWH,AloyzR,etal. Dualinhibitionofthehomologousrecombinationalrepairandthe nonho-mologousend-joiningrepairpathways inchroniclymphocyticleukemia therapy.LeukRes2011;35(8).doi:10.1016/j.leukres.2011.01.004. [43]SunH,TrecoD,SchultesNP,SzostakJW.Doublestrandbreaksataninitiation

siteformeioticgeneconversion.Nature1989;338:87–90.

[44]KharbandaS,PandeyP,MorrisPL,WhangY,XuY,SawantS,etal.Functional roleforthec-AbltyrosinekinaseinmeiosisI.Oncogene1998;16:1773–7.

[45]BartkovaJ,HorejsiZ,KoedK,KramerA,TortF,ZiegerK,etal.DNAdamage responseasacandidateanti-cancerbarrierinearlyhumantumorigenesis. Nature2005;434:864–70.

[46]GorgoulisVG,VassiliouLV,KarakaidosP,ZacharatosP,KotsinasA,LiloglouT, etal.ActivationoftheDNAdamagecheckpointandgenomicinstabilityin humanprecancerouslesions.Nature2005;434:907–13.

[47]d’AddadiFagagnaF.Livingonabreak:cellularsenescenceasaDNA-damage response.NatRevCancer2008;8:512–22.

[48]MoritaY,PerezGI,ParisF,MirandaSR,EhleiterD,Haimovitz-FriedmanA, etal.Oocyteapoptosisissuppressedbydisruptionoftheacid sphingomye-linasegeneorbysphingosine-1-phosphatetherapy.NatMed2000;6:1109– 14.

[49]HofmannK,BucherP.TheFHAdomain:aputativenuclearsignalingdomain found inprotein kinases andtranscription factors. Trends BiochemSci 1995;20:347–9.

[50]Bork P,Hofmann K,Bucher P, NeuwaldAF, Altschul SF, KooninEV.A superfamilyofconserveddomainsinDNAdamage-responsive cellcycle checkpointproteins.FASEBJ1997;11:68–76.

[51]WangB,ElledgeSJ.UBC13/RNF8ubiquitinligasescontrolfociformationof theRAP80/ABRAXAS/BRCA1/BRCC36complexinresponsetoDNAdamage. ProcNatlAcadSciUSA2007;104:20759–63.

[52]KolasNK,ChapmanJR,NakadaS,YlankoJ,ChahwanR,SweeneyFD,etal. OrchestrationoftheDNA-damageresponsebytheRNF8ubiquitinligase. Science2007;318:1637–40.

[53]HuenMS,GrantR,MankeI,MinnK,YuX,YaffeMB,etal.RNF8transducesthe DNA-damagesignalviahistoneubiquitylationandcheckpointprotein as-sembly.Cell2007;131:901–14.

[54]MailandN,Bekker-JensenS,FaustrupH,MelanderF,BartekJ,LukasC,etal. RNF8ubiquitylates histonesatDNAdouble-strandbreaksandpromotes assemblyofrepairproteins.Cell2007;131:887–900.

[55]CelesteA,Fernandez-CapetilloO,KruhlakMJ,PilchDR,StaudtDW,LeeA, etal.HistoneH2AXphosphorylationisdispensablefortheinitialrecognition ofDNAbreaks.NatCellBiol2003;5:675–9.

[56]YuanJ,AdamskiR,ChenJ.FocusonhistonevariantH2AX:tobeornottobe. FEBSLett2010;584:3717–24.

[57]BarabasiAL,BonabeauE.Scale-freenetworks.SciAm2003;288:60–9. [58]CollavinL,LunardiA,DelSalG.p53-Familyproteinsandtheirregulators:

hubsandspokesintumorsuppression.CellDeathDiffer2010;17:901–11. [59]SeebacherJ,GavinAC.SnapShot:protein–proteininteractionnetworks.Cell

2011;144(1000):e1.

[60]BensimonA,SchmidtA,ZivY,ElkonR,WangSY,ChenDJ,etal. ATM-dependentand-independentdynamicsofthenuclearphosphoproteome afterDNAdamage.SciSignal2010;3:rs3.

[61]RiballoE,KuhneM,RiefN,DohertyA,SmithGC,RecioMJ,etal.Apathwayof doublestrandbreakrejoiningdependentuponATM,Artemis,andproteins locatingtogamma-H2AXfoci.MolCell2004;16:715–24.

[62]MessickTE,GreenbergRA.TheubiquitinlandscapeatDNAdouble-strand breaks.JCellBiol2009;187:319–26.

[63]ChenZJ,SunLJ.Nonproteolyticfunctionsofubiquitinincellsignaling.Mol Cell2009;33:275–86.

[64]DikicI,WakatsukiS,WaltersKJ.Ubiquitin-bindingdomains–fromstructures tofunctions.NatRevMolCellBiol2009;10:659–71.

[65]HarperJW,SchulmanBA.Structuralcomplexityinubiquitinrecognition.Cell 2006;124:1133–6.

[66]HickeL,SchubertHL,HillCP.Ubiquitin-bindingdomains.NatRevMolCell Biol2005;6:610–21.

[67]HofmannK.Ubiquitin-bindingdomainsandtheirroleintheDNAdamage response.DNARepair(Amst)2009;8:544–56.

[68]GrabbeC, HusnjakK,Dikic I. Thespatialand temporalorganizationof ubiquitinnetworks.NatRevMolCellBiol2011;12:295–307.

[69]AvvakumovN,NouraniA,CoteJ.Histonechaperones:modulatorsof chro-matinmarks.MolCell2011;41:502–14.

[70]RansomM,DenneheyBK,TylerJK.ChaperoninghistonesduringDNA repli-cationandrepair.Cell2010;140:183–95.

[71]RabutG,PeterM.Functionandregulationofproteinneddylation.Protein modifications: beyond the usual suspects’ review series. EMBO Rep 2008;9:969–76.

[72]MeulmeesterE,MelchiorF.Cellbiology:SUMO.Nature2008;452:709–11. [73]GallagherE,GaoM,LiuYC,KarinM.ActivationoftheE3ubiquitinligaseitch

throughaphosphorylation-inducedconformationalchange.ProcNatlAcad SciUSA2006;103:1717–22.

[74]MoyalL,LerenthalY,Gana-WeiszM,MassG,SoS,WangSY,etal. Require-mentofATM-dependentmonoubiquitylationofhistoneH2Bfortimelyrepair ofDNAdoublestrandbreaks.MolCell2011;41:529–42.

[75]PastoriV,SangalliE,CoccettiP,PozziC,NonnisS,TedeschiG,etal.CK2and GSK3phosphorylationonS29controlswild-typeATXN3nuclearuptake. BiochimBiophysActa2010;1802:583–92.

[76]HuangTT,NijmanSM,MirchandaniKD,GalardyPJ,CohnMA,HaasW,etal. RegulationofmonoubiquitinatedPCNAbyDUBautocleavage.NatCellBiol 2006;8:339–47.

[77]BlackfordAN,StewartGS.Whencleavageisnotattractive:non-catalytic inhibitionofubiquitinchainsatDNAdoublestrandbreaksbyOTUB1.DNA Repair(Amst)2010;10:245–9.

[78]SowaME,BennettEJ,GygiSP,HarperJW.Definingthehuman deubiquitinat-ingenzymeinteractionlandscape.Cell2009;138:389–403.

(8)

[80]BartekJ,LukasJ.DNAdamagecheckpoints:frominitiationtorecoveryor adaptation.CurrOpinCellBiol2007;19:238–45.

[81]DoilC,MailandN,Bekker-JensenS,MenardP,LarsenDH,PepperkokR,etal. RNF168bindsandamplifiesubiquitinconjugatesondamagedchromosomes toallowaccumulationofrepairproteins.Cell2009;136:435–46. [82]RamachandranS,ChahwanR,NepalRM,FriederD,PanierS,RoaS,etal.The

RNF8/RNF168ubiquitinligasecascadefacilitatesclassswitchrecombination. ProcNatlAcadSciUSA2010;107:809–14.

[83]GalantyY, Belotserkovskaya R, Coates J,Polo S,MillerKM, JacksonSP. MammalianSUMOE3-ligasesPIAS1andPIAS4promoteresponsestoDNA doublestrandbreaks.Nature2009;462:935–9.

[84]MorrisJR,BoutellC,KepplerM,DenshamR,WeekesD,AlamshahA,etal.The SUMOmodificationpathwayisinvolvedintheBRCA1responsetogenotoxic stress.Nature2009;462:886–90.

[85]BartekJ,HodnyZ.SUMObooststheDNAdamageresponsebarrieragainst cancer.CancerCell2010;17:9–11.

[86]NakamuraK,KatoA,KobayashiJ,YanagiharaH,SakamotoS,OliveiraDV,etal. RegulationofhomologousrecombinationbyRNF20-dependentH2B ubiqui-tination.MolCell2011;41:515–28.

[87]DevganSS,SanalO,DoilC,NakamuraK,NahasSA,PettijohnK,etal. Homozy-gousdeficiencyofubiquitin-ligasering-fingerproteinRNF168mimicsthe radiosensitivitysyndromeofataxia-telangiectasia.CellDeathDiffer2011. [88]YuX,FuS,LaiM,BaerR,ChenJ.BRCA1ubiquitinatesits

phosphorylation-dependentbindingpartnerCtIP.GenesDev2006;20:1721–6.

[89]Rose A, Schlieker C. DNA repair: blocking ubiquitin transfer. Nature 2010;466:929–30.

[90]NakadaS,TaiI,PanierS,Al-HakimA,IemuraS,JuangYC,etal.Non-canonical inhibition of DNA damage-dependent ubiquitination by OTUB1. Nature 2010;466:941–6.

[91]YaoT,SongL,JinJ,CaiY,TakahashiH,SwansonSK,etal.Distinctmodesof regulationoftheUch37deubiquitinatingenzymeintheproteasomeandin theIno80chromatin-remodelingcomplex.MolCell2008;31:909–17. [92]ShaoG,LilliDR,Patterson-FortinJ,ColemanKA,MorrisseyDE,GreenbergRA.

TheRAP80–BRCC36de-ubiquitinatingenzymecomplexantagonizesRNF8– UBC13-dependentubiquitinationeventsatDNAdoublestrandbreaks.Proc NatlAcadSciUSA2009;106:3166–71.

[93]NijmanSM,HuangTT,DiracAM,BrummelkampTR,KerkhovenRM,D’Andrea AD,etal.ThedeubiquitinatingenzymeUSP1regulatestheFanconianemia pathway.MolCell2005;17:331–9.

[94]SimsAE,SpiteriE,Sims3rdRJ,AritaAG,LachFP,LandersT,etal.FANCIisa secondmonoubiquitinatedmemberoftheFanconianemiapathway.Nat StructMolBiol2007;14:564–7.

[95]NicassioF,CorradoN,VissersJH,ArecesLB,BerginkS,MarteijnJA,etal. HumanUSP3isachromatinmodifierrequiredforSphaseprogressionand genomestability.CurrBiol2007;17:1972–7.

[96]Joo HY,ZhaiL, YangC, NieS, Erdjument-Bromage H, TempstP, etal. RegulationofcellcycleprogressionandgeneexpressionbyH2A deubiqui-tination.Nature2007;449:1068–72.

[97]GinjalaV,NacerddineK,KulkarniA,OzaJ,HillSJ,YaoM,etal.BMI1is recruitedto DNAbreaks and contributesto DNA damage-inducedH2A ubiquitinationandrepair.MolCellBiol2011;31:1972–82.

[98]Ismail IH,Andrin C, McDonald D, Hendzel MJ.BMI1-mediated histone ubiquitylation promotes DNA double strand break repair. J Cell Biol 2010;191:45–60.

[99]ThakarA,ParvinJD,ZlatanovaJ.BRCA1/BARD1E3ubiquitinligasecanmodify histonesH2AandH2B inthenucleosomeparticle.JBiomolStruct Dyn 2010;27:399–406.

[100]WangH,ZhaiL, XuJ,JooHY,JacksonS,Erdjument-BromageH,etal. Histone H3 and H4 ubiquitylation by the CUL4-DDB-ROC1 ubiquitin ligasefacilitates cellularresponseto DNA damage.Mol Cell2006;22: 383–94.

[101]ChengWH,vonKobbeC,OpreskoPL,FieldsKM,RenJ,KufeD,etal.Werner syndromeprotein phosphorylation by abl tyrosine kinase regulates its activityanddistribution.MolCellBiol2003;23:6385–95.

[102]GoldbergZ,VogtSionovR,BergerM,ZwangY,PeretsR,VanEttenRA,etal. TyrosinephosphorylationofMDM2byc-Abl:implicationsforp53 regula-tion.EMBOJ2002;21:3715–27.

[103]GuJ,KawaiH,NieL,KitaoH,WiederschainD,JochemsenAG,etal.Mutual dependenceofMDM2andMDMXintheirfunctionalinactivationofp53.J BiolChem2002;277:19251–4.

[104]WaningDL,LehmanJA,BatuelloCN,MayoLD. ControllingtheMDM2– MDMX-p53circuit.Pharmaceuticals(Basel)2010;3:1576–93.

[105]WaningDL,LehmanJA,BatuelloCN,MayoLD.c-Ablphosphorylationof MDM2 facilitates MDM2–MDMX complex formation. J Biol Chem 2011;286:216–22.

[106]KentsisA,GordonRE,BordenKL.Controlofbiochemicalreactionsthrough supramolecular RING domain self-assembly. Proc Natl Acad Sci USA 2002;99:15404–9.

Figura

Fig. 1. Abl-interacting proteins in the DNA damage response. In red ellipse proteins involved in apoptosis, in blue those involved in DNA damage signaling and DNA repair.
Fig. 2. DSBs are recognized by Mre11–Rad50–Nbs1 (MRN) complex, which promotes the activation of ATM
Fig. 3. Model for integrated signaling functions of c-Abl. Abl may regulate double strand breaks repair and/or cell death to damage

Riferimenti

Documenti correlati

Per  la  defi nizione  dello  schema  strutturale  è  opportuno  considerare  i  seguenti  fattori:  la  geometria  della  struttura,  l interazione  tra  questa  e 

In the present paper we describe the natural history of 26 pediatric patients affected by s-AIN, whose clinical characteristics were compared with those of a group of 263

The agreement between the data and the SM expecta- tions for the total number of events in the different signal regions is translated into model-independent 90 % and 95 %

76 La connessione viene chiusa e alla pressione del tasto OK da parte del client , viene eseguito il codice corrispondente al subVI file receivermultiplo.vi la cui icona è

This Alternative Fuels are going on development linked to the new Flex Fuel motors, able to run both with Gasoline and Gasoline-Ethanol blends, up to 85% in volume Fuel Ethanol

I liguri da Cadice a Buenos Aires: un capitolo della storia “atlantica”...p.. La diaspora commerciale: un

Platone, Aristotele e gli autori degli scritti medici greci censurano fortemente l’allenamento e lo stile di vita degli atleti professionisti perché, a loro avviso,

In this broad framework, a joint project of the Department of Antiquities of Cyprus and the Missione Archeologica Italiana at Erimi has been initiated with the