• Non ci sono risultati.

Solution structure and model membrane interactions of temporins-SH, antimicrobial peptides from amphibian skin

N/A
N/A
Protected

Academic year: 2021

Condividi "Solution structure and model membrane interactions of temporins-SH, antimicrobial peptides from amphibian skin"

Copied!
27
0
0

Testo completo

(1)

89 6. BIBLIOGRAFIA

 Abbassi F, Galanth C, Amiche M, Saito K, Piesse C, Zargarian L, Hani K, Nicolas P, Lequin O, Ladram A. Solution structure and model membrane interactions of temporins-SH, antimicrobial peptides from amphibian skin. A NMR spectroscopy and differential scanning calorimetry study. Biochemistry.

2008; 47:10513-10525.

 Abraham WR. Controlling biofilms of gram-positive pathogenic bacteria. Curr Med Chem. 2006; 13:1509-1524.

 Agarwal A, Singh KP, Jain A. Medical significance and management of staphylococcal biofilm. FEMS Immunol Med Microbiol. 2010; 58:147-160.

 Al Laham N, Rohde H, Sander G, Fischer A, Hussain M, Heilmann C, Mack D, Proctor R, Peters G, Becker K, von Eiff C. Augmented expression of polysaccharide intercellular adhesin in a defined Staphylococcus epidermidis mutant with the small-colony-variant phenotype. J Bacteriol. 2007; 189:4494- 4501.

 Alem MA, Oteef MD, Flowers TH, Douglas LJ. Production of tyrosol by Candida albicans biofilms and its role in quorum sensing and biofilm development. Eukaryot Cell. 2006; 5:1770-1779.

 Allison DG, Sutherland IW, Neu TR. in Biofilm Communities: Order from Chaos? BioLine, Cardiff, 1998; 381–387.

 Altman H, Steinberg D, Porat Y, Mor A, Fridman D, Friedman M, Bachrach G.

In vitro assessment of antimicrobial peptides as potential agents against several oral bacteria. J. Antimicrob. Chemother. 2006. 58: 198-201.

 Altamura S, Kiss J, Blattmann C, Gilles W, Muckenthaler MU. SELDI-TOF MS detection of urinary hepcidin. Biochimie. 2009; 91:1335-1338.

 Amiche M, Seon AA, Pierre TN, Nicolas P. The dermaseptin precursors: a protein family with a common preproregion and a variable C-terminal antimicrobial domain. FEBS Lett. 1999; 456:352-356.

 Antonelli G, Clementi M, Pozzi G, Rossolini GM. Principi di microbiologia medica. Casa Editrice Ambrosiana. 2012

 Arciola CR, Campoccia D, Gamberini S, Cervellati M, Donati E, Montanaro L.

Detection of slime production by means of an optimised Congo red agar plate

(2)

90

test based on a colourimetric scale in Staphylococcus epidermidis clinical isolates genotyped for ica locus. Biomaterials. 2002; 23:4233-4239.

 Arrecubieta C, Lee MH, Macey A, Foster TJ, Lowy FD. SdrF, a Staphylococcus epidermidis surface protein, binds type I collagen. J Biol Chem. 2007;

282:18767-18776.

 Arslan SY, Leung KP, Wu CD. The effect of lactoferrin on oral bacterial attachment. Oral. Microbiol. Immunol., 2009; 24: 411-416.

 Bader MW, Sanowar S, Daley ME, Schneider AR, Cho U, Xu W, Klevit RE, Le Moual H, Miller SI. Recognition of antimicrobial peptides by a bacterial sensor kinase. Cell. 2005; 122:461-472.

 Banner MA, Cunniffe JG, Macintosh RL, Foster TJ, Rohde H, Mack D, Hoyes E, Derrick J, Upton M, Handley PS. Localized tufts of fibrils on Staphylococcus epidermidis NCTC 11047 are comprised of the accumulation-associated protein.

J Bacteriol. 2007; 189:2793-2804.

 Bateman A, Holden MT, Yeats C. The G5 domain: a potential N- acetylglucosamine recognition domain involved in biofilm formation.

Bioinformatics. 2005; 21:1301-1303.

 Batoni G, Maisetta G, Brancatisano FL, Esin S, Campa M. Use of antimicrobial peptides against microbial biofilms: advantages and limits. Curr Med Chem.

2011; 18:256-279.

 Bautista L, Gaya P, Medina M, Nuñez M. A quantitative study of enterotoxin production by sheep milk staphylococci. Appl Environ Microbiol. 1988; 54:566- 569.

 Bayles KW. The biological role of death and lysis in biofilm development. Nat Rev Microbiol. 2007; 5:721-726.

 Begun J, Gaiani JM, Rohde H, Mack D, Calderwood SB, Ausubel FM, Sifri CD.

Staphylococcal biofilm exopolysaccharide protects against Caenorhabditis elegans immune defenses. PLoS Pathog. 2007; 3:e57.

 Belley A, Neesham-Grenon E, McKay G, Arhin FF, Harris R, Beveridge T, Parr TRJr, Moeck G. Oritavancin kills stationary-phase and biofilm Staphylococcus aureus cells in vitro. Antimicrob. Agents Chemother. 2009. 53: 918-925.

 Beloin C, Ghigo JM. Finding gene-expression patterns in bacterial biofilms.

Trends Microbiol. 2005; 13:16-19.

(3)

91

 Benincasa M, Scocchi M, Pacor S, Tossi A, Nobili D, Basaglia G, Busetti M, Gennaro R. Fungicidal activity of five cathelicidin peptides against clinically isolated yeasts. J Antimicrob Chemother. 2006; 58:950-959.

 Bjarnsholt T, Moser C, Østrup Jensen P, Høiby N. Biofilm infections. Springer Science+Business Media. 2011

 Böckelmann U, Janke A, Kuhn R, Neu TR, Wecke J, Lawrence JR, Szewzyk U.

Bacterial extracellular DNA forming a defined network-like structure. FEMS Microbiol Lett. 2006; 262:31-38.

 Bradbury AF, Smyth DG. Peptide amidation. Trends Biochem Sci. 1991;

16:112-115.

 Brooks JL and Jefferson KK. Staphylococcal biofilms: quest for the magic bullet. Advances in Applied Microbiology. 2012. 81:63-87

 Brouillette E, Hyodo M, Hayakawa Y, Karaolis DK, Malouin F.3',5'-cyclic diguanylic acid reduces the virulence of biofilm-forming Staphylococcus aureus strains in a mouse model of mastitis infection. Antimicrob Agents Chemother. 2005; 49:3109-3113.

 Burton MF, Steel PG. The chemistry and biology of LL-37. Nat. Prod. Rep.

2009. 26: 1572-1584.

 Cabras T, Patamia M, Melino S, Inzitari R, Messana I, Castagnola M, Petruzzelli R. Pro-oxidant activity of histatin 5 related Cu(II)-model peptide probed by mass spectrometry. Biochem Biophys Res Commun.2007; 358:277-284.

 Cappelli G, Ballestri M, Perrone S, Ciuffreda A, Inguaggiato P, Albertazzi A.

Biofilms invade nephrology: effects in hemodialysis. Blood Purif. 2000; 18:224- 230.

 Carotenuto A, Malfi S, Saviello MR, Campiglia P, Gomez-Monterrey I, Mangoni ML, Gaddi LM, Novellino E, Grieco P. A different molecular mechanism underlying antimicrobial and hemolytic actions of temporins A and L. J Med Chem. 2008; 51:2354-2362.

 CDC. National Nosocomial Infections Surveillance (NNIS) system report, data summary from January 1992 through June 2004, issued October Am. J. Infect.

Control. 2004; 32:470–485.

(4)

92

 Chaignon P, Sadovskaya I, Ragunah C, Ramasubbu N, Kaplan JB, Jabbouri S.

Susceptibility of staphylococcal biofilms to enzymatic treatments depends on their chemical composition. Applied Microbiology and Boiotechnology. 2007;

75:125-132.

 Chamberlain NR, Brueggemann SA. Characterisation and expression of fatty acid modifying enzyme produced by Staphylococcus epidermidis. J Med Microbiol. 1997; 46:693-697.

 Chambers HF, Hartman BJ, Tomasz A. Increased amounts of a novel penicillin- binding protein in a strain of methicillin-resistant Staphylococcus aureus exposed to nafcillin. J Clin Invest. 1985; 76:325-331.

 Chesnokova LS, Slepenkov SV, Witt SN. The insect antimicrobial peptide, L- pyrrhocoricin, binds to and stimulates the ATPase activity of both wild-type and lidless DnaK. FEBS Lett. 2004; 565:65-69.

 Chokr A, Leterme D, Watier D, Jabbouri S. Neither the presence of ica locus, nor in vitro-biofilm formation ability is a crucial parameter for some Staphylococcus epidermidis strains to maintain an infection in a guinea pig tissue cage model. Microb Pathog. 2007; 42:94-97.

 Christner M, Franke GC, Schommer NN, Wendt U, Wegert K, Pehle P, Kroll G, Schulze C, Buck F, Mack D, Aepfelbacher M, Rohde H. The giant extracellular matrix-binding protein of Staphylococcus epidermidis mediates biofilm accumulation and attachment to fibronectin. Mol Microbiol. 2010; 75:187-207.

 Chu VH, Miro JM, Hoen B, Cabell CH, Pappas PA, Jones P, Stryjewski ME, Anguera I, Braun S, Muñoz P, Commerford P, Tornos P, Francis J, Oyonarte M, Selton-Suty C, Morris AJ, Habib G, Almirante B, Sexton DJ, Corey GR, Fowler VG Jr; International Collaboration on Endocarditis-Prospective Cohort Study Group. Coagulase-negative staphylococcal prosthetic valve endocarditis--a contemporary update based on the International Collaboration on Endocarditis:

prospective cohort study. Heart. 2009; 95:570-576.

 Cirioni O, Giacometti A, Ghiselli R, Bergnach C, Orlando F, Mocchegiani F, Silvestri C, Licci A, Skerlavaj B, Zanetti M, Saba V, Scalise G. Pre-treatment of central venous catheters with the cathelicidin BMAP-28 enhances the efficacy of antistaphylococcal agents in the treatment of experimental catheter-related infection. Peptides. 2006a; 27:2104-2110.

(5)

93

 Cirioni O, Giacometti A, Ghiselli R, Kamysz W, Orlando F, Mocchegiani F, Silvestri C, Licci A, Chiodi L, Lukasiak J, Saba V, Scalise G. Citropin 1.1- treated central venous catheters improve the efficacy of hydrophobic antibiotics in the treatment of experimental staphylococcal catheter-related infection.

Peptides. 2006; 27:1210-1216.

 Clark DP, Durell S, Maloy WL, Zasloff M. Ranalexin. A novel antimicrobial peptide from bullfrog (Rana catesbeiana) skin, structurally related to the bacterial antibiotic, polymyxin. J Biol Chem. 1994; 269:10849-10855.

 Conlon JM, Kolodziejek J, Nowotny N. Antimicrobial peptides from ranid frogs:

taxonomic and phylogenetic markers and a potential source of new therapeutic agents. Biochim Biophys Acta. 2004; 1696:1-14.

 Conlon KM, Humphreys H, O'Gara JP. icaR encodes a transcriptional repressor involved in environmental regulation of ica operon expression and biofilm formation in Staphylococcus epidermidis. J Bacteriol. 2002; 184:4400-4408.

 Conrad A, Suutari MK, Keinänen MM, Cadoret A, Faure P, Mansuy-Huault L, Block JC. Fatty acids of lipid fractions in extracellular polymeric substances of activated sludge flocs. Lipids. 2003; 38:1093-1105.

 Conrady DG, Brescia CC, Horii K, Weiss AA, Hassett DJ, Herr AB. A zinc- dependent adhesion module is responsible for intercellular adhesion in staphylococcal biofilms. Proc Natl Acad Sci U S A. 2008; 105:19456-19461.

 Costerton JW, Geesey GG, Cheng KJ. How bacteria stick. Sci Am. 1978;

238:86-95.

 Costerton JW, Lewandowski Z, Caldwell DE, Korber DR, Lappin-Scott HM.

Microbial biofilms. Annu Rev Microbiol. 1995; 49:711-745.

 Costerton JW, Stewart PS, Greenberg EP. Bacterial biofilms: a common cause of persistent infections. Science. 1999; 284:1318-1322.

 Czárán T, F HR. Janus-headed communication promotes bacterial cooperation and cheating: is quorum sensing useful against infections? Virulence.

2010;1:402-403.

 Danese PN, Pratt LA, Kolter R. Exopolysaccharide production is required for development of Escherichia coli K-12 biofilm architecture. J Bacteriol. 2000;

182:3593-3596.

(6)

94

 Darby C, Hsu JW, Ghori N, Falkow S. Caenorhabditis elegans: plague bacteria biofilm blocks food intake. Nature. 2002; 417:243-244.

 Dashper SG, O'Brien-Simpson NM, Cross KJ, Paolini RA, Hoffmann B, Catmull DV, Malkoski M, Reynolds EC. Divalent metal cations increase the activity of the antimicrobial Peptide kappacin. Antimicrob. Agents Chemother., 2005; 49: 2322-2328.

 Davey ME, O'toole GA. Microbial biofilms: from ecology to molecular genetics.

Microbiol Mol Biol Rev. 2000; 64:847-867.

 Davies D. Understanding biofilm resistance to antibacterial agents. Nat Rev Drug Discov. 2003; 2:114-122.

 Davies DG, Parsek MR, Pearson JP, Iglewski BH, Costerton JW, Greenberg EP.

The involvement of cell-to-cell signals in the development of a bacterial biofilm.

Science. 1998; 280:295-298.

 De Domenico I, Diane MW, Kaplan J. Hepcidin regulation: ironing out the details. J Clin Invest. 2007; 117:1755-1758.

 De Domenico I, Nemeth E, Nelson JM, Phillips JD, Ajioka RA, Kay MS, Kushner JP, Ganz T, Ward DM, Kaplan J. The epcidin-binding site on ferroportin is evolutionarily conserved. Cell Metab. 2008; 8:146-156.

 Diekema DJ, Pfaller MA, Schmitz FJ, Smayevsky J, Bell J, Jones RN, Beach M;

SENTRY Partcipants Group. Survey of infections due to Staphylococcus species: frequency of occurrence and antimicrobial susceptibility of isolates collected in the United States, Canada, Latin America, Europe, and the Western Pacific region for the SENTRY Antimicrobial Surveillance Program, 1997- 1999. Clin Infect Dis. 2001; 32:114-132.

 Di Poto A, Sbarra MS, Provenza G, Visai L, Speziale P. The effect of photodynamic treatment combined with antibiotic action or host defence mechanisms on Staphylococcus aureus biofilms. Biomaterials. 2009; 30:3158- 3166.

 Dominic RM, Shenoy S, Baliga S. Candida biofilms in medical devices:

evolving trends. Kathmandu Univ Med J (KUMJ). 2007; 5:431-436.

 Donlan RM, Costerton JW. Biofilms: survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev. 2002; 15:167-193.

(7)

95

 Donlan RM. Biofilms and device-associated infections. Emerg Infect Dis. 2001;

7:277-281.

 Donlan RM. Biofilms: microbial life on surfaces. Emerg Infect Dis. 2002; 8:881- 890.

 Drobni M, Li T, Krüger C, Loimaranta V, Kilian M, Hammarström L, Jörnvall H, Bergman T, Strömberg N. Hostderived pentapeptide affecting adhesion, proliferation, and local pH in biofilm communities composed of Streptococcus and Actinomyces species. Infect. Immun., 2006; 74: 6293-6299.

 Dubin G, Chmiel D, Mak P, Rakwalska M, Rzychon M, Dubin A. Molecular cloning and biochemical characterisation of proteases from Staphylococcus epidermidis. Biol Chem. 2001; 382:1575-1582.

 Duguid IG, Evans E, Brown MR, Gilbert P. Effect of biofilm culture upon the susceptibility of Staphylococcus epidermidis to tobramycin. J Antimicrob Chemother. 1992a; 30:803-810.

 Duguid IG, Evans E, Brown MR, Gilbert P. Growth-rate-independent killing by ciprofloxacin of biofilm-derived Staphylococcus epidermidis; evidence for cell- cycle dependency. J Antimicrob Chemother. 1992b; 30:791-802.

 Eckert R, Qi F, Yarbrough DK, He J, Anderson MH, Shi W. Adding selectivity to antimicrobial peptides: rational design of a multidomain peptide against Pseudomonas spp. Antimicrob. Agents Chemother. 2006a. 50: 1480-1488.

 Eckert R, He J, Yarbrough DK, Qi F, Anderson MH, Shi W. Targeted killing of Streptococcus mutans by a pheromoneguided "smart" antimicrobial peptide.

Antimicrob. Agents Chemother. 2006b. 50: 3651-3657.

 Farrell AM, Foster TJ, Holland KT. Molecular analysis and expression of the lipase of Staphylococcus epidermidis. J Gen Microbiol. 1993; 139:267-277

 Faurschou M, Borregaard N. Neutrophil granules and secretory vesicles in inflammation. Microbes Infect. 2003; 5:1317-1327.

 Fey PD, Olson ME. Current concepts in biofilm formation of Staphylococcus epidermidis. Future Microbiol. 2010; 5:917-933.

(8)

96

 Fitzpatrick F, Humphreys H, Smyth E, Kennedy CA, O'Gara JP. Environmental regulation of biofilm formation in intensive care unit isolates of Staphylococcus epidermidis. J. Hosp. Infect. 2002; 52:212-218.

 Flemming HC, Neu TR, Wozniak DJ. The EPS matrix: the "house of biofilm cells". J Bacteriol. 2007; 189:7945-7947.

 Flemming K, Klingenberg C, Cavanagh JP, Sletteng M, Stensen W, Svendsen JS, Flaegstad T. High in vitro antimicrobial activity of synthetic antimicrobial peptidomimetics against staphylococcal biofilms. J. Antimicrob. Chemother.

2009. 63: 136- 145

 Flemming HC, Wingender J. The biofilm matrix. Nat Rev Microbiol. 2010;

8:623-633.

 Fluckiger U, Ulrich M, Steinhuber A, Döring G, Mack D, Landmann R, Goerke C, Wolz C. Biofilm formation, icaADBC transcription, and polysaccharide intercellular adhesin synthesis by staphylococci in a device-related infection model. Infect Immun. 2005; 73:1811-1819.

 Francois P, Tu Quoc PH, Bisognano C, Kelley WL, Lew DP, Schrenzel J, Cramton SE, Götz F, Vaudaux P. Lack of biofilm contribution to bacterial colonisation in an experimental model of foreign body infection by Staphylococcus aureus and Staphylococcus epidermidis. FEMS Immunol Med Microbiol. 2003; 35:135-140.

 Franklin MJ, Ohman DE. Identification of algF in the alginate biosynthetic gene cluster of Pseudomonas aeruginosa which is required for alginate acetylation. J Bacteriol. 1993; 175:5057-5065.

 Freeman D J, Falkiner F R, Keane CT. New method for detecting slime production by coagulase negative staphylococci. Clin Pathol. 1989; 42:872-874.

 Frimodt-Møller N. How predictive is PK/PD for antibacterial agents? Int J Antimicrob Agents. 2002;19: 333-339.

 Frølund B, Palmgren R, Keiding K, Nielsen PH. Extraction of extracellular polymers from activated sludge using a cation exchange resin. Water Res. 1996;

30: 1749–1758.

 Galdbart JO, Allignet J, Tung HS, Rydèn C, El Solh N. Screening for Staphylococcus epidermidis markers discriminating between skin-flora strains

(9)

97

and those responsible for infections of joint prostheses. J Infect Dis. 2000;

182:351-355.

 Ganz T, Olbina G, Girelli D, Nemeth E, Westerman M. Immunoassay for human serum hepcidin. Blood. 2008; 112:4292-4297.

 Gerke C, Kraft A, Süssmuth R, Schweitzer O, Götz F. Characterization of the N- acetylglucosaminyltransferase activity involved in the biosynthesis of the Staphylococcus epidermidis polysaccharide intercellular adhesin. J Biol Chem.

1998; 273:18586-18593.

 Ghiselli R, Giacometti A, Cirioni O, Mocchegiani F, Silvestri C, Orlando F, Kamysz W, Licci A, Nadolski P, Della Vittoria A, Łukasiak J, Scalise G, Saba V. Pretreatment with the protegrin IB-367 affects Gram-positive biofilm and enhances the therapeutic efficacy of linezolid in animal models of central venous catheter infection. JPEN J Parenter Enteral Nutr. 2007; 31:463-468.

 Gill SR, Fouts DE, Archer GL, Mongodin EF, Deboy RT, Ravel J, Paulsen IT, Kolonay JF, Brinkac L, Beanan M, Dodson RJ, Daugherty SC, Madupu R, Angiuoli SV, Durkin AS, Haft DH, Vamathevan J, Khouri H, Utterback T, Lee C, Dimitrov G, Jiang L, Qin H, Weidman J, Tran K, Kang K, Hance IR, Nelson KE, Fraser CM. Insights on evolution of virulence and resistance from the complete genome analysis of an early methicillin-resistant Staphylococcus aureus strain and a biofilm-producing methicillin-resistant Staphylococcus epidermidis strain. J Bacteriol. 2005; 187:2426-2438.

 Gjermansen M, Ragas P, Sternberg C, Molin S, Tolker-Nielsen T.

Characterization of starvation-induced dispersion in Pseudomonas putida biofilms. Environ Microbiol. 2005; 7:894-906.

 Goraya J, Wang Y, Li Z, O'Flaherty M, Knoop FC, Platz JE, Conlon JM.

Peptides with antimicrobial activity from four different families isolated from the skins of the North American frogs Rana luteiventris, Rana berlandieri and Rana pipiens. Eur J Biochem. 2000; 267:894-900.

 Gotz F. Staphylococcus and biofilm. Mol Microbiol. 2002; 43:1367-1378.

 Gross M, Cramton SE, Götz F, Peschel A. Key role of teichoic acid net charge in Staphylococcus aureus colonization of artificial surfaces. Infect Immun. 2001;

69:3423-3426.

(10)

98

 Gu J, Li H, Li M, Vuong C, Otto M, Wen Y, Gao Q. Bacterial insertion sequence IS256 as a potential molecular marker to discriminate invasive strains from commensal strains of Staphylococcus epidermidis. J Hosp Infect. 2005; 61:

342-348

 Guo B, Zhao X, Shi Y, Zhu D, Zhang Y. Pathogenic implication of a fibrinogen- binding protein of Staphylococcus epidermidis in a rat model of intravascular- catheter-associated infection. Infect Immun. 2007; 75:2991-2995.

 Hall-Stoodley L, Stoodley P. Evolving concepts in biofilm infections. Cell Microbiol. 2009; 11:1034-1043.

 HamadiF, LatracheH, El GhmariA, El LoualiM, MabrroukiM, KouiderN.

Effect of pH and ionic strength on hydrophobicity and electron donor and acceptor characteristics of Escherichia coli and Staphylococcus aureus. Annals of Microbiology. 2004; 54:213-225.

 Hanberger H, Garcia-Rodriguez JA, Gobernado M, Goossens H, Nilsson LE, Struelens MJ. Antibiotic susceptibility among aerobic gram-negative bacilli in intensive care units in 5 European countries. French and Portuguese ICU Study Groups. JAMA. 1999; 281:67-71.

 Hancock RE, Lehrer R. Cationic peptides: a new source of antibiotics. Trends Biotechnol. 1998; 16:82-88.

 Hancock RE. Peptide antibiotics. Lancet. 1997; 349:418-422.

 Hancock RE. Resistance mechanisms in Pseudomonas aeruginosa and other nonfermentative gram-negative bacteria. Clin Infect Dis. 1998; 27: S93-99.

 Handke LD, Slater SR, Conlon KM, O'Donnell ST, Olson ME, Bryant KA, Rupp ME, O'Gara JP, Fey PD. SigmaB and SarA independently regulate polysaccharide intercellular adhesin production in Staphylococcus epidermidis.

Can J Microbiol. 2007; 53:82-91.

 Hartford O, O'Brien L, Schofield K, Wells J, Foster TJ. The Fbe (SdrG) protein of Staphylococcus epidermidis HB promotes bacterial adherence to fibrinogen.

Microbiology. 2001; 147:2545-2552.

 Heilmann C, Gerke C, Perdreau-Remington F, Götz F. Characterization of Tn917 insertion mutants of Staphylococcus epidermidis affected in biofilm formation. Infect Immun. 1996a; 64:277-282.

(11)

99

 Heilmann C, Hussain M, Peters G, Götz F. Evidence for autolysin-mediated primary attachment of Staphylococcus epidermidis to a polystyrene surface. Mol Microbiol. 1997; 24:1013-1024.

 Heilmann C, Schweitzer O, Gerke C, Vanittanakom N, Mack D, Götz F.

Molecular basis of intercellular adhesion in the biofilm-forming Staphylococcus epidermidis. Mol Microbiol. 1996b; 20:1083-1091.

 Heilmann C, Thumm G, Chhatwal GS, Hartleib J, Uekötter A, Peters G.

Identification and characterization of a novel autolysin (Aae) with adhesive properties from Staphylococcus epidermidis. Microbiology. 2003; 149:2769- 2778.

 Heine H, Ulmer AJ. Recognition of bacterial products by toll-like receptors.

Chem Immunol Allergy. 2005; 86:99-119.

 Hell E, Giske CG, Nelson A, Römling U, Marchini G. Human cathelicidin peptide LL37 inhibits both attachment capability and biofilm formation of Staphylococcus epidermidis. Lett Appl Microbiol. 2010; 50:211-215.

 Helmerhorst EJ, Venuleo C, Beri A, Oppenheim FG. Candida glabrata is unusual with respect to its resistance to cationic antifungal proteins. Yeast. 2005;

22:705-714.

 Helmerhorst EJ, Venuleo C, Sanglard D, Oppenheim FG. Roles of cellular respiration, CgCDR1, and CgCDR2 in Candida glabrata resistance to histatin 5.

Antimicrob Agents Chemother. 2006; 50:1100-1103.

 Hochbaum AI, Kolodkin-Gal I, Foulston L, Kolter R, Aizenberg J, Losick R.

Inhibitory Effects of D-Amino Acids on Staphylococcus aureus Biofilm Development. J. Bacteriology. 2011; 193:5616–5622.

 Hou S, Zhou C, Liu Z, Young AW, Shi Z, Ren D, Kallenbach NR.

Antimicrobial dendrimer active against Escherichia coli biofilms. Bioorg. Med.

Chem. Lett. 2009; 19:5478-5481.

 Hou S, Liu Z, Young AW, Mark SL, Kallenbach NR, Ren D. Effects of Trp- and Arg-containing antimicrobial-peptide structure on inhibition of Escherichia coli planktonic growth and biofilm formation. Appl. Environ. Microbiol. 2010;

76:1967-1974.

 Hsu E. Mutation, selection, and memory in B lymphocytes of exothermic vertebrates. Immunol Rev. 1998; 162:25-36.

(12)

100

 Hunter HN, Fulton DB, Ganz T, Vogel HJ. The solution structure of human hepcidin, a peptide hormone with antimicrobial activity that is involved in iron uptake and hereditary hemochromatosis. J Biol Chem. 2002; 277:37597-37603.

 Hussain M, Herrmann M, von Eiff C, Perdreau-Remington F, Peters G. A 140- kilodalton extracellular protein is essential for the accumulation of Staphylococcus epidermidis strains on surfaces. Infect Immun. 1997; 65:519- 524.

 Irie Y, Parsek MR. Quorum sensing and microbial biofilms. Curr Top Microbiol Immunol. 2008; 322:67-84.

 Iwase T, Uehara Y, Shinji H, Tajima A, Seo H, Takada K, Agata T, Mizunoe Y.

Staphylococcus epidermidis Esp inhibits Staphylococcus aureus biofilm formation and nasal colonization. Nature. 2010; 465:346-349.

 Izano EA, Amarante MA, Kher WB, Kaplan JB. Differential roles of ply-N- acetylglucosamine surface polysaccharide and extracellular DNA in Staphylococcus aureus and Staphylococcus epidermidis biofilms. Applied and Environmental Microbiology. 2008; 74:470-476

 Janssens JC, De Keersmaecker SC, De Vos DE, Vanderleyden J. Small molecole for interference with cell-cell-communication systems in Gram-negative bacteria. Curr Med Chem. 2008; 15:2144-2156.

 Jenssen H, Hamill P, Hancock RE. Peptide antimicrobial agents. Clin Microbiol Rev. 2006; 19:491-511.

 Jones RN. Microbiological features of vancomycin in the 21st century:

minimum inhibitory concentration creep, bactericidal/static activity, and applied breakpoints to predict clinical outcomes or detect resistant strains. Clin Infect Dis. 2006; 42:S13-24.

 Kaper JB, Nataro JP, Mobley HL. Pathogenic Escherichia coli. Nat. Rev.

Microbiol. 2004; 2:123-140.

 Kaplan JB, Ragunath C, Ramasubbu N, Fine DH. Detachment of Actinobacillus actinomycetemcomitans biofilm cells by an endogenous beta-hexosaminidase activity. J Bacteriol. 2003; 185:4693-4698.

 Kaplan JB, Velliyagounder K, Ragunath C, Rohde H, Mack D, Knobloch JK, Ramasubbu N. Genes involved in the synthesis and degradation of matrix

(13)

101

polysaccharide in Actinobacillus actinomycetemcomitans and Actinobacillus pleuropneumoniae biofilms. J Bacteriol. 2004; 186:8213-8220.

 Karaolis DK, Rashid MH, Chythanya R, Luo W, Hyodo M, Hayakawa Y. c-di- GMP (3'-5'-cyclic diguanylic acid) inhibits Staphylococcus aureus cell-cell interactions and biofilm formation. Antimicrob Agents Chemother. 2005; 49:1029-1038.

 Kartikasari AE, Roelofs R, Schaeps RM, Kemna EH, Peters WH, Swinkels DW, Tjalsma H. Secretion of bioactive hepcidin-25 by liver cells correlates with its gene transcription and points towards synergism between iron and inflammation signaling pathways. Biochim Biophys Acta. 2008; 1784:2029-2037.

 Kemna EH, Tjalsma H, Willems HL, Swinkels DW. Hepcidin: from discovery to differential diagnosis. Haematologica. 2008; 93:90-97.

 Keren I, Shah D, Spoering A, Kaldalu N, Lewis K. Specialized persister cells and the mechanism of multidrug tolerance in Escherichia coli. J Bacteriol. 2004;

186:8172-8180.

 Kharazmi A. Mechanisms involved in the evasion of the host defence by Pseudomonas aeruginosa. Immunol Lett. 1991; 30:201-205.

 Kharidia R, Liang JF. The activity of a small lytic peptide PTP-7 on Staphylococcus aureus biofilms. J Microbiol. 2011; 49:663-668.

 Khardori N, Yassien M, Wilson K. Tolerance of Staphylococcus epidermidis grown from indwelling vascular catheters to antimicrobial agents. J Ind Microbiol. 1995; 15:148-151.

 Klingenberg C, Rønnestad A, Anderson AS, Abrahamsen TG, Zorman J, Villaruz A, Flaegstad T, Otto M, Sollid JE. Persistent strains of coagulase- negative staphylococci in a neonatal intensive care unit: virulence factors and invasiveness. Clin Microbiol Infect. 2007; 13:1100-1111.

 Kloos W, Schleifer KH. Bergey’s Manual of Systematic Bacteriology. 1986;

1013-1035

 Kloos WE, Musselwhite MS. Distribution and persistence of Staphylococcus and Micrococcus species and other aerobic bacteria on human skin. Appl Microbiol.

1975; 30:381-385

 Knobloch JK, Bartscht K, Sabottke A, Rohde H, Feucht HH, Mack D. Biofilm formation by Staphylococcus epidermidis depends on functional RsbU, an

(14)

102

activator of the sigB operon: differential activation mechanisms due to ethanol and salt stress. J Bacteriol. 2001; 183:2624-2633.

 Knobloch JK, Horstkotte MA, Rohde H, Kaulfers PM, Mack D. Alcoholic ingredients in skin disinfectants increase biofilm expression of Staphylococcus epidermidis. J Antimicrob Chemother. 2002; 49:683-687.

 Kocianova S, Vuong C, Yao Y, Voyich JM, Fischer ER, DeLeo FR, Otto M.

Key role of poly-gamma-DL-glutamic acid in immune evasion and virulence of Staphylococcus epidermidis. J Clin Invest. 2005; 115:688-694.

 Kogan G, Sadovskaya I, Chaignon P, Chokr A, Jabbouri S. Biofilms of clinical strains of Staphylococcus that do not contain polysaccharide intercellular adhesin. FEMS Microbiol Lett. 2006; 255:11-16.

 Kokai-Kun JF, Chanturiya T, Mond JJ. Lysostaphin eradicates established Staphylococcus aureus biofilms in jugular vein catheterized mice. J Antimicrob Chemother. 2009; 64:94-100.

 Kondori N, Baltzer L, Dolphin GT, Mattsby-Baltzer I. Fungicidal activity of human lactoferrin-derived peptides based on the antimicrobial αβ region. Int J Antimicrob Agents. 2011; 37:51-57.

 Kong KF, Vuong C, Otto M. Staphylococcus quorum sensing in biofilm formation and infection. Int J Med Microbiol. 2006; 296:133-139.

 Körstgens V, Flemming HC, Wingender J, Borchard W. Influence of calcium ions on the mechanical properties of a model biofilm of mucoid Pseudomonas aeruginosa. Water Sci Technol. 2001; 43:49-57.

 Kozitskaya S, Cho SH, Dietrich K, Marre R, Naber K, Ziebuhr W. The bacterial insertion sequence element IS256 occurs preferentially in nosocomial Staphylococcus epidermidis isolates: association with biofilm formation and resistance to aminoglycosides. Infect Immun. 2004; 72:1210-1215.

 Krause A, Neitz S, Mägert HJ, Schulz A, Forssmann WG, Schulz-Knappe P, Adermann K. LEAP-1, a novel highly disulfide-bonded human peptide, exhibits antimicrobial activity. FEBS Lett. 2000; 480:147-150.

 Kristian SA, Birkenstock TA, Sauder U, Mack D, Götz F, Landmann R. Biofilm formation induces C3a release and protects Staphylococcus epidermidis from IgG and complement deposition and from neutrophil-dependent killing. J Infect Dis. 2008; 197:1028-1035.

(15)

103

 Kuhn DM, George T, Chandra J, Mukherjee PK, Ghannoum MA. Antifungal susceptibility of Candida biofilms: unique efficacy of amphotericin B lipid formulations and echinocandins. Antimicrob Agents Chemother. 2002; 46:1773- 1780.

 LaFleur MD, Kumamoto CA, Lewis K. Candida albicans biofilms produce antifungal-tolerant persister cells. Antimicrob Agents Chemother. 2006;

50:3839-3846.

 Lai Y, Villaruz AE, Li M, Cha DJ, Sturdevant DE, Otto M. The human anionic antimicrobial peptide dermcidin induces proteolytic defence mechanisms in staphylococci. Mol Microbiol. 2007; 63:497-506.

 Lee IH, Cho Y, Lehrer RI. Effects of pH and salinity on the antimicrobial properties of clavanins. Infect. Immun. 1997. 65: 2898-2903

 Lehrer RI, Ganz T. Antimicrobial peptides in mammalian and insect host defence. Curr Opin Immunol. 1999; 11:23-27.

 Lewis K. Multidrug tolerance of biofilms and persister cells. Curr Top Microbiol Immunol. 2008; 322:107-131.

 Li M, Cha DJ, Lai Y, Villaruz AE, Sturdevant DE, Otto M. The antimicrobial peptide-sensing system aps of Staphylococcus aureus. Mol Microbiol. 2007a;

66:1136-1147.

 Li M, Lai Y, Villaruz AE, Cha DJ, Sturdevant DE, Otto M. Gram-positive three- component antimicrobial peptide-sensing system. Proc Natl Acad Sci U S A.

2007b; 104:9469-9474.

 Li M, Wang X, Gao Q, Lu Y. Molecular characterization of Staphylococcus epidermidis strains isolated from a teaching hospital in Shanghai, China. J Med Microbiol. 2009; 58:456-461.

 Ma L, Conover M, Lu H, Parsek MR, Bayles K, Wozniak DJ. Assembly and development of the Pseudomonas aeruginosa biofilm matrix. PLoS Pathog.

2009; 5:e1000354.

 Mack D, Fischer W, Krokotsch A, Leopold K, Hartmann R, Egge H, Laufs R.

The intercellular adhesin involved in biofilm accumulation of Staphylococcus epidermidis is a linear beta-1,6-linked glucosaminoglycan: purification and structural analysis. J Bacteriol. 1996; 178:175-183.

(16)

104

 Mack D, Rohde H, Dobinsky S, Riedewald J, Nedelmann M, Knobloch JK, Elsner HA, Feucht HH. Identification of three essential regulatory gene loci governing expression of Staphylococcus epidermidis polysaccharide intercellular adhesin and biofilm formation. Infect Immun. 2000; 68:3799-3807.

 Mah TF, O'Toole GA. Mechanisms of biofilm resistance to antimicrobial agents.

Trends Microbiol. 2001; 9:34-39.

 Maisetta G, Petruzzelli R, Brancatisano FL, Esin S, Vitali A, Campa M, Batoni G. Antimicrobial activity of human hepcidin 20 and 25 against clinically relevant bacterial strains: effect of copper and acidic pH. Peptides. 2010;

31:1995-2002.

 Mangoni ML, Fiocco D, Mignogna G, Barra D, Simmaco M. Functional characterisation of the 1-18 fragment of esculentin-1b, an antimicrobial peptide from Rana esculenta. Peptides. 2003; 24:1771-1777.

 Mangoni ML, Maisetta G, Di Luca M, Gaddi LM, Esin S, Florio W, Brancatisano FL, Barra D, Campa M, Batoni G. Comparative analysis of the bactericidal activities of amphibian peptide analogues against multidrug- resistant nosocomial bacterial strains. Antimicrob Agents Chemother. 2008;

52:85-91.

 Mangoni ML, Miele R, Renda TG, Barra D, Simmaco M. The synthesis of antimicrobial peptides in the skin of Rana esculenta is stimulated by microorganisms. FASEB J. 2001; 15:1431-1432.

 Mangoni ML. Temporins, anti-infective peptides with expanding properties. Cell Mol Life Sci. 2006; 63:1060-1069.

 Marín ME, De la Rosa MC, Cornejo I. Enterotoxigenicity of Staphylococcus strains isolated from Spanish dry-cured hams. Appl Environ Microbiol. 1992;

58:1067-1069.

 Mazmanian SK, Liu G, Ton-That H, Schneewind O. Staphylococcus aureus sortase, an enzyme that anchors surface proteins to the cell wall. Science. 1999;

285: 760-763.

 McCrea KW, Hartford O, Davis S, Eidhin DN, Lina G, Speziale P, Foster TJ, Höök M. The serine-aspartate repeat (Sdr) protein family in Staphylococcus epidermidis. Microbiology. 2000; 146:1535-1546.

(17)

105

 Melino S, Garlando L, Patamia M, Paci M, Petruzzelli R. A metal-binding site is present in the amino terminal region of the bioactive iron regulator hepcidin-25.

J Pept Res. 2005; 66 Suppl 1:65-71.

 Menousek J, Mishra B, Hanke ML, Heim CE, Kielian T, Wang G. Database screening and in vivo efficacy of antimicrobial peptides against methicillin- resistant Staphylococcus aureus USA300. Int J Antimicrob Agents. 2012;

39:402-406.

 Miragaia M, Thomas JC, Couto I, Enright MC, de Lencastre H. Inferring a population structure for Staphylococcus epidermidis from multilocus sequence typing data. J Bacteriol. 2007; 189:2540-2552.

 Molin S, Tolker-Nielsen T. Gene transfer occurs with enhanced efficiency in biofilms and induces enhanced stabilisation of the biofilm structure. Curr Opin Biotechnol. 2003; 14:255-261.

 Mor A, Hani K, Nicolas P. The vertebrate peptide antibiotics dermaseptins have overlapping structural features but target specific microorganisms. J Biol Chem.

1994; 269:31635-31641.

 Morikawa N, Hagiwara K, Nakajima T. Brevinin-1 and -2, unique antimicrobial peptides from the skin of the frog, Rana brevipoda porsa. Biochem Biophys Res Commun. 1992; 189:184-190.

 Nagant C, Pitts B, Nazmi K, Vandenbranden M, Bolscher JG, Stewart PS, Dehaye JP. Identification of peptides derived from the human antimicrobial peptide LL-37 active against biofilms formed by Pseudomonas aeruginosa using a library of truncated fragments. Antimicrob Agents Chemother. 2012; 56:5698- 5708.

 Navarre WW, Schneewind O. Surface proteins of Gram-positive bacteria and mechanisms of their targeting to the cell wall envelope. Microbiol Mol Biol Rev.

1999; 63:174-229.

 Newsom SW. Ogston's coccus. J Hosp Infect. 2008; 70:369-372.

 Nicolas P, Mor A. Peptides as weapons against microorganisms in the chemical defense system of vertebrates. Annu Rev Microbiol. 1995; 49:277-304.

 Nijnik A, Hancock RE. The roles of cathelicidin LL-37 in immune defences and novel clinical applications. Curr. Opin. Hematol. 2009. 16: 41-47.

(18)

106

 Nilsson M, Frykberg L, Flock JI, Pei L, Lindberg M, Guss B. A fibrinogen- binding protein of Staphylococcus epidermidis. Infect Immun. 1998; 66:2666- 2673.

 O'Gara JP. ica and beyond: biofilm mechanisms and regulation in Staphylococcus epidermidis and Staphylococcus aureus. FEMS Microbiol Lett.

2007; 270:179-188.

 O'Grady NP, Alexander M, Dellinger EP, Gerberding JL, Heard SO, Maki DG, Masur H, McCormick RD, Mermel LA, Pearson ML, Raad II, Randolph A, Weinstein RA. Guidelines for the prevention of intravascular catheter-related infections. Centers for Disease Control and Prevention. MMWR Recomm Rep.

2002; 51:1-29.

 Ohara-Nemoto Y, Ikeda Y, Kobayashi M, Sasaki M, Tajika S, Kimura S.

Characterization and molecular cloning of a glutamyl endopeptidase from Staphylococcus epidermidis. Microb Pathog. 2002; 33:33-41.

 O'Toole G, Kaplan HB, Kolter R. Biofilm formation as microbial development.

Annu Rev Microbiol. 2000; 54:49-79.

 Otto M. Molecular basis of Staphylococcus epidermidis infections. Semin Immunopathol. 2012; 34:201-214.

 Otto M. Staphylococcus epidermidis--the 'accidental' pathogen. Nat Rev Microbiol. 2009; 7:555-567.

 Otvos L Jr, de Olivier Inacio V, Wade JD, Cudic P. Prior antibacterial peptide- mediated inhibition of protein folding in bacteria mutes resi stance enzymes.

Antimicrob Agents Chemother. 2006; 50:3146-3149.

 Overhage J, Campisano A, Bains M, Torfs EC, Rehm BH, Hancock RE. Human host defense peptide LL-37 prevents bacterial biofilm formation. Infect. Immun., 2008; 76:4176-4182.

 Pammi M, Liang R, Hicks JM, Barrish J, Versalovic J. Farnesol decreases biofilms of Staphylococcus epidermidis and exhibits synergy with nafcillin and vancomycin. Pediatr Res. 2011; 70:578-583.

 Park CH, Valore EV, Waring AJ, Ganz T. Hepcidin, a urinary antimicrobial peptide synthesized in the liver. J Biol Chem. 2001; 276:7806-7810.

(19)

107

 Pitts B, Hamilton MA, Zelver N, Stewart PS. A microtiter-plate screening method for biofilm disinfection and removal. J. Microbiol Methods. 2003;

54:269-276.

 Pourmand MR, Clarke SR, Schuman RF, Mond JJ, Foster SJ. Identification of antigenic components of Staphylococcus epidermidis expressed during human infection. Infect Immun. 2006; 74:4644-4654.

 Qin Z, Ou Y, Yang L, Zhu Y, Tolker-Nielsen T, Molin S, Qu D. Role of autolysin-mediated DNA release in biofilm formation of Staphylococcus epidermidis. Microbiology. 2007; 153:2083-2092.

 Raad I, Hanna H, Maki D. Intravascular catheter-related infections: advances in diagnosis, prevention, and management. Lancet Infect Dis. 2007; 7:645-657.

 Raad II, Fang X, Keutgen XM, Jiang Y, Sherertz R, Hachem R. The role of chelators in preventing biofilm formation and catheter-related bloodstream infections. Curr Opin Infect Dis. 2008; 21:385-392.

 Reddy KV, Yedery RD, Aranha C. Antimicrobial peptides: premises and promises. Int J Antimicrob Agents. 2004; 24:536-547.

 Rice KC, Mann EE, Endres JL, Weiss EC, Cassat JE, Smeltzer MS, Bayles KW.

The cidA murein hydrolase regulator contributes to DNA release and biofilm development in Staphylococcus aureus. Proc Natl Acad Sci U S A. 2007;

104:8113-8118.

 Riley CH. Human antimicrobial peptides. Rev. Med. Microbiol. 2001; 12:177.

 Rinaldi AC, Mangoni ML, Rufo A, Luzi C, Barra D, Zhao H, Kinnunen PK, Bozzi A, Di Giulio A, Simmaco M. Temporin L: antimicrobial, haemolytic and cytotoxic activities, and effects on membrane permeabilization in lipid vesicles.

Biochem J. 2002; 368:91-100.

 Rioufol C, Devys C, Meunier G, Perraud M, Goullet D. Quantitative determination of endotoxins released by bacterial biofilms. J Hosp Infect. 1999;

43:203-209.

 Rogers KL, Fey PD, Rupp ME. Coagulase-negative staphylococcal infections.

Infect Dis Clin North Am. 2009; 23:73-98.

 Rohde H, Burandt EC, Siemssen N, Frommelt L, Burdelski C, Wurster S, Scherpe S, Davies AP, Harris LG, Horstkotte MA, Knobloch JK, Ragunath C,

(20)

108

Kaplan JB, Mack D. Polysaccharide intercellular adhesin or protein factors in biofilm accumulation of Staphylococcus epidermidis and Staphylococcus aureus isolated from prosthetic hip and knee joint infections. Biomaterials. 2007;

28:1711-1720.

 Rohde H, Burdelski C, Bartscht K, Hussain M, Buck F, Horstkotte MA, Knobloch JK, Heilmann C, Herrmann M, Mack D. Induction of Staphylococcus epidermidis biofilm formation via proteolytic processing of the accumulation- associated protein by staphylococcal and host proteases. Mol Microbiol. 2005;

55:1883-1895.

 Rohde H, Frankenberger S, Zähringer U, Mack D. Structure, function and contribution of polysaccharide intercellular adhesin (PIA) to Staphylococcus epidermidis biofilm formation and pathogenesis of biomaterial-associated infections. Eur J Cell Biol. 2010; 89:103-111.

 Rohde H, Kalitzky M, Kröger N, Scherpe S, Horstkotte MA, Knobloch JK, Zander AR, Mack D. Detection of virulence-associated genes not useful for discriminating between invasive and commensal Staphylococcus epidermidis strains from a bone marrow transplant unit. J Clin Microbiol. 2004; 42:5614- 5619.

 Rollins-Smith LA, Doersam JK, Longcore JE, Taylor SK, Shamblin JC, Carey C, Zasloff MA. Antimicrobial peptide defenses against pathogens associated with global amphibian declines. Dev Comp Immunol. 2002; 26:63-72.

 Rosenfeld Y, Barra D, Simmaco M, Shai Y, Mangoni ML. A synergism between temporins toward Gram-negative bacteria overcomes resistance imposed by the lipopolysaccharide protective layer. J Biol Chem. 2006; 281:28565-28574.

 Rupp ME, Ulphani JS, Fey PD, Bartscht K, Mack D. Characterization of the importance of polysaccharide intercellular adhesin/hemagglutinin of Staphylococcus epidermidis in the pathogenesis of biomaterial-based infection in a mouse foreign body infection model. Infect Immun. 1999a; 67:2627-2632.

 Rupp ME, Ulphani JS, Fey PD, Mack D. Characterization of Staphylococcus epidermidis polysaccharide intercellular adhesin/hemagglutinin in the pathogenesis of intravascular catheter-associated infection in a rat model. Infect Immun. 1999b; 67:2656-2659.

(21)

109

 Ryder C, Byrd M, Wozniak DJ. Role of polysaccharides in Pseudomonas aeruginosa biofilm development. Curr Opin Microbiol. 2007; 10:644-648.

 Sadovskaya I, Vinogradov E, Flahaut S, Kogan G, Jabbouri S. Extracellular carbohydrate-containing polymers of a model biofilm-producing strain, Staphylococcus epidermidis RP62A. Infect Immun. 2005; 73:3007-3017.

 Sakuragi Y, Kolter R. Quorum-sensing regulation of the biofilm matrix genes (pel) of Pseudomonas aeruginosa. J Bacteriol. 2007; 189:5383-5386.

 Sandiford S, Upton M. Identification, characterization, and recombinant expression of epidermicin NI01, a novel unmodified bacteriocin produced by Staphylococcus epidermidis that displays potent activity against Staphylococci.

Antimicrob Agents Chemother. 2012; 56:1539-1547.

 Scheifele DW, Bjornson GL, Dyer RA, Dimmick JE. Delta-like toxin produced by coagulase-negative staphylococci is associated with neonatal necrotizing enterocolitis. Infect Immun. 1987; 55:2268-2273.

 Schröder JM. Epithelial peptide antibiotics. Biochem Pharmacol. 1999; 57:121- 134.

 Sellman BR, Timofeyeva Y, Nanra J, Scott A, Fulginiti JP, Matsuka YV, Baker SM. Expression of Staphylococcus epidermidis SdrG increases following exposure to an in vivo environment. Infect Immun. 2008; 76:2950-2957.

 Shai Y. Mechanism of the binding, insertion and destabilization of phospholipid bilayer membranes by alpha-helical antimicrobial and cell non-selective membrane-lytic peptides. Biochim Biophys Acta. 1999; 1462:55-70.

 Shanks RM, Sargent JL, Martinez RM, Graber ML, O'Toole GACatheter lock solutions influence staphylococcal biofilm formation on abiotic surfaces.

Nephrol Dial Transplant. 2006; 21:2247-2255.

 Shi J, Camus AC. Hepcidins in amphibians and fishes: Antimicrobial peptides or iron-regulatory hormones? Dev Comp Immunol. 2006; 30:746-755.

 Simmaco M, Mignogna G, Barra D, Bossa F. Antimicrobial peptides from skin secretions of Rana esculenta. Molecular cloning of cDNAs encoding esculentin and brevinins and isolation of new active peptides. J Biol Chem. 1994;

269:11956-11961.

(22)

110

 Simmaco M, Mignogna G, Barra D. Antimicrobial peptides from amphibian skin: what do they tell us? Biopolymers. 1998; 47:435-450.

 Simmaco M, Mignogna G, Canofeni S, Miele R, Mangoni ML, Barra D.

Temporins, antimicrobial peptides from the European red frog Rana temporaria.

Eur J Biochem. 1996; 242:788-792.

 Simons JW, van Kampen MD, Riel S, Götz F, Egmond MR, Verheij HM.

Cloning, purification and characterisation of the lipase from Staphylococcus epidermidis--comparison of the substrate selectivity with those of other microbial lipases. Eur J Biochem. 1998; 253:675-683.

 Singh, PK. Iron sequestration by human lactoferrin stimulates P.aeruginosa surface motility and blocks biofilm formation. Biometals. 2004. 17: 267-270

 Singh R, Paul D, Jain RK. Biofilms: implications in bioremediation. Trends Microbiol. 2006; 14:389-397.

 Singh R, Ray P, Das A, Sharma M. Role of persisters and small-colony variants in antibiotic resistance of planktonic and biofilm-associated Staphylococcus aureus: an in vitro study. J Med Microbiol. 2009; 58:1067-1073.

 Skillman LC, Sutherland IW, Jones MV. The role of exopolysaccharides in dual species biofilm development. J Appl Microbiol. 1998; 85:13S-18S.

 Sood R, Domanov Y, Kinnunen PK. Fluorescent temporin B derivative and its binding to liposomes. J Fluoresc. 2007; 17:223-234.

 Soto SM, Smithson A, Horcajada JP, Martinez JA, Mensa JP, Vila J. Implication of biofilm formation in the persistence of urinary tract infections caused by uropathogenic Escherichia coli. Clin. Microbiol. Infect. 2006. 12:1034-1036.

 Steinberger RE, Holden PA. Extracellular DNA in single- and multiple-species unsaturated biofilms. Appl Environ Microbiol. 2005; 71:5404-5410.

 Stepanovic S, Vukovic D, Dakic I, Savic B, Svabic-Vlahovic M. A modified microtiter-plate test for quantification of staphylococcal biofilm formation. J Microbiol Methods. 2000; 40:175-179.

 Stevens NT, Sadovskaya I, Jabbouri S, Sattar T, O'Gara JP, Humphreys H, Greene CM. Staphylococcus epidermidis polysaccharide intercellular adhesin induces IL-8 expression in human astrocytes via a mechanism involving TLR2.

Cell Microbiol. 2009; 11:421-432.

(23)

111

 Stickler DJ. Bacterial biofilms and the encrustation of uretra catheters.

Biofouling. 1996; 94:293-305.

 Stoodley P, Sauer K, Davies DG, Costerton JW. Biofilms as complex differentiated communities. Annu Rev Microbiol. 2002; 56:187-209.

 Sutherland IW. The biofilm matrix--an immobilized but dynamic microbial environment. Trends Microbiol. 2001; 9:222-227.

 Tam JP, Lu YA, Yang JL. Antimicrobial dendrimeric peptides. Eur. J. Biochem., 2002; 269:923-932.

 Tavanti A, Maisetta G, Del Gaudio G, Petruzzelli R, Sanguinetti M, Batoni G, Senesi S. Fungicidal activity of the human peptide hepcidin 20 alone or in combination with other antifungals against Candida glabrata isolates. Peptides.

2011; 32:2484-2487.

 Teufel P, Götz F. Characterization of an extracellular metalloprotease with elastase activity from Staphylococcus epidermidis. J Bacteriol. 1993; 175:4218- 4224.

 Tielen P, Strathmann M, Jaeger KE, Flemming HC, Wingender J. Alginate acetylation influences initial surface colonization by mucoid Pseudomonas aeruginosa. Microbiol Res. 2005; 160:165-176.

 Tomasz A, Nachman S, Leaf H. Stable classes of phenotypic expression in methicillin-resistant clinical isolates of staphylococci. Antimicrob Agents Chemother. 1991; 35:124-129.

 Tormo MA, Knecht E, Götz F, Lasa I, Penadés JR. Bap-dependent biofilm formation by pathogenic species of Staphylococcus: evidence of horizontal gene transfer? Microbiology. 2005a; 151:2465-2475.

 Tormo MA, Martí M, Valle J, Manna AC, Cheung AL, Lasa I, Penadés JR. SarA is an essential positive regulator of Staphylococcus epidermidis biofilm development. J Bacteriol. 2005b; 187:2348-2356.

 Toté K, Berghe DV, Deschacht M, de Wit K, Maes L, Cos P. Inhibitory efficacy of various antibiotics on matrix and viable mass of Staphylococcus aureus and Pseudomonas aeruginosa biofilms. Int J Antimicrob Agents. 2009; 33:525-531.

 Trautner BW, Darouiche RO. Role of biofilm in catheter associated urinary tract infection. Am. J. Infect. Control. 2004. 32: 177-183.

(24)

112

 Uccelletti D, Zanni E, Marcellini L, Palleschi C, Barra D, Mangoni ML. Anti- Pseudomonas activity of frog skin antimicrobial peptides in a Caenorhabditis elegans infection model: a plausible mode of action in vitro and in vivo.

Antimicrob Agents Chemother 2010; 54:3853-3860.

 Uçkay I, Pittet D, Vaudaux P, Sax H, Lew D, Waldvogel F. Foreign body infections due to Staphylococcus epidermidis. Ann Med. 2009; 41:109-119.

 Uyterhoeven ET, Butler CH, Ko D, Elmore DE. Investigating the nucleic acid interactions and antimicrobial mechanism of buforin II. FEBS Lett. 2008;

582:1715-1718.

 Vacheethasanee K, Temenoff JS, Higashi JM, Gary A, Anderson JM, Bayston R, Marchant RE. Bacterial surface properties of clinically isolated Staphylococcus epidermidis strains determine adhesion on polyethylene. J Biomed Mater Res. 1998; 42:425-432.

 Vincent FC, Tibi AR, Darbord JC. A bacterial biofilm in a hemodialysis system.

Assessment of disinfection and crossing of endotoxin. ASAIO Trans. 1989;

35:310-313.

 Vuong C, Dürr M, Carmody AB, Peschel A, Klebanoff SJ, Otto M. Regulated expression of pathogen-associated molecular pattern molecules in Staphylococcus epidermidis: quorum-sensing determines pro-inflammatory capacity and production of phenol-soluble modulins. Cell Microbiol. 2004a;

6:753-759.

 Vuong C, Gerke C, Somerville GA, Fischer ER, Otto M. Quorum-sensing control of biofilm factors in Staphylococcus epidermidis. J Infect Dis. 2003;

188:706-718.

 Vuong C, Kocianova S, Voyich JM, Yao Y, Fischer ER, DeLeo FR, Otto M. A crucial role for exopolysaccharide modification in bacterial biofilm formation, immune evasion, and virulence. J Biol Chem. 2004b; 279:54881-54886.

 Vuong C, Kocianova S, Yao Y, Carmody AB, Otto M. Increased colonization of indwelling medical devices by quorum-sensing mutants of Staphylococcus epidermidis in vivo. J Infect Dis. 2004c; 190:1498-1505.

 Vuong C, Voyich JM, Fischer ER, Braughton KR, Whitney AR, DeLeo FR, Otto M. Polysaccharide intercellular adhesin (PIA) protects Staphylococcus

(25)

113

epidermidis against major components of the human innate immune system. Cell Microbiol. 2004d; 6:269-275.

 Vyoral D, Petrak J. Hepcidin: a direct link between iron metabolism and immunity. Int J Biochem Cell Biol. 2005; 37:1768-1773.

 Wagner VE, Iglewski BH. P. aeruginosa biofilms in CF infection. Clin. Rev.

Allergy Immunol. 2008; 35: 124-134

 Wang X, Preston JF 3rd, Romeo T. The pgaABCD locus of Escherichia coli promotes the synthesis of a polysaccharide adhesin required for biofilm formation. J Bacteriol. 2004; 186:2724-2734.

 Welch K, Cai Y, Strømme Maria. A Method for Quantitative Determination of Biofilm Viability J. Funct. Biomater. 2012; 3: 418-431.

 Westerhoff HV, Zasloff M, Rosner JL, Hendler RW, De Waal A, Vaz Gomes A, Jongsma PM, Riethorst A, Juretić D. Functional synergism of the magainins PGLa and magainin-2 in Escherichia coli, tumor cells and liposomes. Eur J Biochem. 1995; 228:257-264.

 Wingender J, Jaeger KE, Flemming HC. in Microbial Extracellular Polymeric Substances (eds Wingender, J., Neu, T. & Flemming, H.-C.) 231–251 (Springer, Heidelberg, 1999a).

 Wingender J, Neu T, Flemming HC. in Microbial Extracellular Polymeric Substances (eds Wingender, J., Neu, T. & Flemming, H.-C.) 1–19 (Springer, Heidelberg, 1999b).

 Wingender J, Strathmann M, Rode A, Leis A, Flemming HC. Isolation and biochemical characterization of extracellular polymeric substances from Pseudomonas aeruginosa. Methods Enzymol. 2001; 336:302-314.

 Wingender, J. & Jaeger, K.-E. In Encyclopedia of Environmen tal Microbiology (ed. Bitton, G.) 1207–1223 (Wiley, New York, 2002).

 White A, Handler P, Smith EL. Enzymes I, nature, classification, kinetics, metabolic inhibitors: control of enzymatic activity. In: White A. Ed. Principles of Biochemistry, McGraw-Hill, Tokyo. 1978; 196-230.

 Wozniak DJ, Wyckoff TJ, Starkey M, Keyser R, Azadi P, O'Toole GA, Parsek MR. Alginate is not a significant component of the extracellular polysaccharide matrix of PA14 and PAO1 Pseudomonas aeruginosa biofilms. Proc Natl Acad Sci U S A. 2003;100:7907-7912.

Riferimenti

Documenti correlati

In order to help removing unwanted events in the K S sample due to decays originating from the high intensity K L beam, a 1 ns consistency cut on the time difference between the

In the Raman optical region, we find that, except for the fully brominated case, all GNRs functionalized at the edges with different side groups show a characteristic dispersion of

Although we recognize that Viner (1923) theoretically systematized dumping in the wider framework of international trade, we nevertheless claim that the theoretical

To elucidate the best treatment strategy for gastric cancer in the elderly, this study retrospectively compared clinicopathologic features, management, postoperative survival,

L’obiettivo dello studio è valutare l’attività e l’efficacia di un trattamento sequenziale che preveda la somministrazione di un chemioterapico e uno degli

each mode of transport, the investigation of waste management technologies and their impact on Romania, the assessment of the types of industries and amounts of greenhouse

We propose here a novel approach aimed to provide a novel multifunctional microreactor optimized for operando Scanning TEM (STEM) performed in low voltage in the