• Non ci sono risultati.

18 The Mucopolysaccharidoses J. Edward Wraith, Joe T.R. Clarke

N/A
N/A
Protected

Academic year: 2021

Condividi "18 The Mucopolysaccharidoses J. Edward Wraith, Joe T.R. Clarke"

Copied!
9
0
0

Testo completo

(1)

J. Edward Wraith, Joe T.R. Clarke

18.1 Introduction

The disorders described in this chapter are associated with a progressive ac- cumulation of glycosaminoglycans (GAG) within the cells of various organs, ultimately compromising their function. The major sites of disease differ de- pending on the specific enzyme deficiency, and therefore the clinical presenta- tion and approach to therapy is different for the various disease subtypes.

Patients with the severe form of mucopolysaccharidosis (MPS I; Hurler dis- ease, MPS IH), MPS II (Hunter disease), and MPS VI (Maroteaux-Lamy disease) generally present with facial dysmorphism and persistent respiratory disease in the early years of life. Many patients will have undergone surgical procedures for recurrent otitis media and hernia repair before the diagnosis is established.

Infants with MPS III (Sanfilippo A, B, C, or D disease) present with learning difficulties and then develop a profound behavioral disturbance. The behavior disorder is characteristic and often leads to the diagnosis. Somatic features are mild in these patients. Children with MPS IVA (Morquio disease, type A) have normal cognitive functions, but are affected by severe spondoepiphyseal dysplasia, which in most patients leads to extreme short stature, deformity of the chest, marked shortening and instability of the neck, and joint laxity. MPS IVB (Morquio disease, type B) is much more variable in its effects. It has some features of the skeletal dysplasia of MPS IVA; however, most patients also have learning difficulties. MPS VII (Sly disease) often presents as nonimmune hy- drops fetalis. Those patients who survive or who present later resemble patients with MPS IH with respect to clinical phenotype and supportive management.

So far only one patient with MPS IX (Natowicz disease) has been reported.

The phenotype of patients with more attenuated forms of MPS, e. g., MPS IH/S or MPS IS (Hurler-Scheie or Scheie disease, respectively) is much more difficult to predict, and treatment needs in this group of patients may be very variable. The MPS disorders in general present as a continuum of clinical involvement, and even patients with the most attenuated forms of Scheie syn- drome may have severe disabilities, requiring major medical and surgical in- terventions.

Because of the multisystem involvement in these patients, treatment is mul- tidisciplinary and encompasses both the “curative” and palliative elements.

(2)

196 The Mucopolysaccharidoses

Those patients with severe central nervous system involvement (MPS III, San- filippo disease) or severe bone dysplasia (MPS IVA, Morquio disease) present particular challenges to management, as current therapies are poor in correct- ing the effects of the genetic lesion in brain and bone, respectively. Table 18.1 summarizes the types of problems experienced by patients with MPS disorders and strategies for their management.

Table 18.1. Supportive or nonspecific symptomatic treatment of MPS

System Problem Intervention

Eyes Corneal clouding Avoid direct sunlight; corneal transplantation Glaucoma Topicalβ-blockers; trabecular surgery

Retinal dystrophy None

Ears Recurrent otitis media Antibiotic therapy; ENT surgerya Sensorineural deafness Hearing aids

Dental Caries, dental abscess Oral hygiene; dental extractions Respiratory Upper-airway obstruction ENT surgerya

Obstructive sleep apnoea Oxygen therapy; CPAP Restrictive lung disease Oxygen therapy; CPAP

Cardiac Cardiomyopathy Antifailure medication

Valve lesions Antifailure medication; valve replacement Coronary artery disease None

Gastrointestinal Hepatosplenomegaly None

Umbilical and inguinal hernia Surgical repair

Swallowing problems Pureed diet, small, frequent meals; gastrostomy

Diarrhea antimotility medication

Drooling Hyoscine; surgical rerouting of salivary ducts Central nervous

system

Hydrocephalus Ventriculo-atrial or ventriculo-peritoneal shunt surgery

Atlantoaxial instability resulting from odontoid dysplasia

Surgical decompression and fusion of cervical spine Cervical compression myelopathy Surgical decompression and fusion

Seizures Anticonvulsant medication

Severe behavior problems Behavior management, medication

Sleep disturbance Medication

Mental retardation Appropriate educational support and interventions Peripheral

nervous system

Peripheral nerve entrapment, e. g., carpal tunnel syndrome

Surgical decompression

Skeleton Degenerative hip dysplasia Analgesics; orthopedic surgical correction Kyphosis or kyphoscoliosis Bracing or orthopedic surgical correction Joint contractures Physiotherapy and orthoses

Genu valgum deformities Osteotomies

aIncluding various combinations of tonsillectomy, adenoidectomy, myringotomy, the insertion of ventilation tubes, and tracheostomy

ENT ears, nose, and throat; CPAP continuous positive airways pressure

Attempts at “curative therapy” have previously centered on the use of hematopoetic stem cell transplant (HSCT), using either bone marrow or um- bilical cord blood cells. Although all MPS disorders have been treated by HSCT,

(3)

evidence for efficacy is strong in only MPS IH (Hurler disease) (Peters et al.

1996, 1998; Fleming et al. 1998) or MPS VI (Krivit et al. 1984; Lee et al. 2000).

The procedure is ineffective in MPS III (Sanfilippo disease) (Sivakumar and Wraith 1999), in MPS II (McKinnis et al. 1996), and in MPS IV (Morquio dis- ease); too few patients with MPS VII (Sly syndrome) have received transplants to make a reasonable assessment. The only patient with MPS IX to be described did not undergo HSCT.

The introduction of recombinant human enzyme replacement therapy (ERT) is likely to make a major impact in the area of treatment in the years to come.

Laronidase (Aldurazyme) is available for the treatment of MPS I (Kakkis et al.

2001; Wraith 2004; Brooks 2002), and other enzyme strategies are in advanced stages of clinical evaluation, with phase III launched presently for both MPS II (Muenzer et al. 2002) and MPS VI.

Despite these advances in specific therapy, supportive and palliative care are all that can be offered for most patients with various MPS disorders. Man- agement should encompass a holistic approach, with symptom control and enhanced quality of life the main goal of treatment. Many different specialties, both within and allied to clinical medicine, as well as lay members of voluntary organizations, have roles to play. Adequate respite care is important for those families who have children with profound behavioral disturbance.

18.2 Nomenclature

No. Disorder Eponym Enzyme deficiency Gene

symbol

OMIM No.

18.1 MPS IH Hurler α-l-Iduronidase IDUA 252800

MPS IH/S Hurler-Scheie α-l-Iduronidase IDUA 252800

MPS IS Scheie α-l-Iduronidase IDUA 252800

18.2 MPS II Hunter Iduronate-2-sulfatase IDS 309900

18.3 MPS IIIA Sanfilippo A Heparin N-sulfatase (sulfamidase) SGSH 252900

18.4 MPS IIIB Sanfilippo B α-N-Acetylglucosaminidase NAGU 252920

18.5 MPS IIIC Sanfilippo C Acetyl-CoA:α-glucosaminide N-acetyltransferase

MPS3C 252930 18.6 MPS IIID Sanfilippo D N-Acetylglucosamine-6-sulfatase GNS 252940 18.7 MPS IVA Morquio A N-Acetylgalactosamine-6-sulfatase GALNS 253000

18.8 MPS IVB Morquio B β-Galactosidase GLB1 253010

18.9 MPS VI Maroteaux-Lamy N-Acetylgalactosamine-4-sulfatase (arylsulfatase B)

ARSB 253200

18.10 MPS VII Sly β-Glucuronidase GUSB 253220

18.11 MPS IXa Natowicz Hyaluronidase HYAL1 601492

aOnly one good description of a patient with hyaluronidase deficiency (MPS IX, Natowicz syndrome) has been reported MPS, mucopolysaccharidosis

(4)

198 The Mucopolysaccharidoses

18.3 Treatment

I General Considerations

The MPS are all complex multisystem diseases. Irrespective of the type, manage- ment of of all of them requires supportive care and multidisciplinary treatment of a variety of systemic complications. Regular evaluation at a major center with special interest and expertise in the management of the diseases is important in the coordination of interdisciplinary input and to coordinate multispecialty treatment strategies. Because of the progressive nature of the diseases, indi- viduals with MPS need to be evaluated regularly in order to identify potential problems early at a time when intervention would decrease morbidity, prevent premature mortality, and enhance the quality of life of affected patients. Every patient with MPS is unique; therefore, treatment options need to be individually based.

In addition to the neurological complications experienced by many, distor- tion and narrowing of the upper airway and deformities of the chest present potential fatal anesthetic risks for most patients with MPS. Even the most triv- ial procedures requiring general anesthesia should be done at centers with anesthetists who are experienced with MPS disorders.

I Specific Therapies

Specific therapy is available for MPS I, and clinical trials are currently in progress to evaluate specific treatment of MPS II and MPS VI. For the other MPS, no specific therapy exists at present.

G Hematopoietic Stem Cell Transplantation

In patients under the age of 2 years who have normal or near-normal devel- opmental scores (DQ >70), HSCT should be considered, using either HLA- matched bone marrow or umbilical cord blood cells as the donor cells. The best results are achieved with HLA-matched sibling donors. Successful engraftment is associated with resolution of hepatosplenomegaly and upper airway obstruc- tion. Corneal clouding usually resolves slowly, but never completely. Intraocular pressures may decrease. Cardiac manifestations attributable to muscle involve- ment are corrected, but valvular abnormalities are resistant to HSCT and often progress. Improvements in joint mobility are routinely experienced, and growth may approach normal rates for children the same age. However, some skeletal abnormalities, especially abnormalities of the spine, do not respond to HSCT, and most severely affected children still require major orthopedic interventions (Peters et al. 1996, 1998).

(5)

G Enzyme Replacement Therapy

ERT has been demonstrated in randomized, double-blind, placebo-controlled studies to produce improvements in joint mobility, pulmonary function, and exercise tolerance in patients with MPS IH/S and MPS IS. However, the extent and sustainability of improvement, whether other clinical features of the dis- ease will also response to therapy, and the optimum dosage of laronidase, are unknown. Laronidase (Aldurazyme), is licensed in the European Union and the US to treat the nonneurological aspects of the disease; there is no evidence that the recombinant protein crosses the blood-brain barrier. Dosages and treat- ment intervals are summarized in Table 18.2). A role as an adjunct to HSCT in patients with MPS IH is currently under investigation. ERT may have the least impact in patients with the most attenuated forms of the disease (Scheie disease). Treatment costs are greater in these patients than in patients with more severe forms of the disease because the dosage of laronidase is based on body weight, and patients with Scheie disease are relatively heavy, compared with patients with Hurler-Scheie or Hurler disease. ERT for both MPS II and MPS VI is currently undergoing clinical trial. Fig. 18.1 shows the approach to the treatment of MPS I.

Table 18.2. Treatment of MPS I by enzyme replacement

Disorder Age Medication Dosage Route & frequency

MPS IH All Laronidase (Aldurazyme) 100 U/kg (0.58 mgs/kg) IV weekly

MPS IH/IS MPS IS

(6)

200 The Mucopolysaccharidoses

Fig. 18.1. Flow chart for the management ofα-l-iduronidase deficiency (MPS IH, -IH/S, -IS). (HSCT hematopoietic stem cell transplant by bone marrow or umbilical cord blood cells, MPS mucopolysaccharidosis, HS heparan, DS dematan sulfate)

18.4 Follow-up and Monitoring

The objectives of monitoring patients with MPS disorders are:

1. To provide on-going support for the patient and family

2. To anticipate complications (Table 18.3), identify them early when they occur, and treat them in order to decrease morbidity

3. To monitor specific therapies, such as HSCT and ERT, to assess their effec- tiveness and, in the case of ERT, to adjust enzyme dosage

(7)

Table18.3.SummaryofcomplicationsofMPSdisorders SystemProblemMPS IHMPS IH/ISMPS ISMPS IIMPS IIIMPS IVMPS VIMPS VIIaMPS IXb EyesCornealclouding++++++++++++++++++++? Glaucoma++++++++?? Retinaldystrophy+++++++?? EarsRecurrentotitismedia++++++++++++++++++++++? Sensorineuraldeafness+++++++++?? DentalCaries,dentalabscess++++++++++++?? RespiratoryUpperairwayobstruction++++++++++++++++?? Obstructivesleepapnoea+++++++++++++++?? Restrictivelungdisease++++++++++++? CardiacCardiomyopathy++c++++++++?? Valvelesions++++++++++++++++?? Coronaryarterydisease++++++++++?? GastrointestinalHepatoplenomegaly+++++++++++? Umbilicalandinguinalher- nias++++++++++++++? Swallowingproblems+++++++++++++?? Diarrhea+++++++++?? Drooling+++++++++?? CNSHydrocephalus++++++++?? Atlanto-axialinstability++++++++? Cervicalmyelopathy++++d++++d+++++++?? Seizures+++++++++? Behaviorproblems++++++++++? Sleepdisturbancee+++++++++?? Mentalretardation++++++++++++++++? Peripheral nerveCarpaltunnelsyndrome++++++++++++++++?? SkeletonDegenerativehipdysplasia++++++++++++++++++++++++++++ Kyphosisorkypho-scoliosis++++++++++++++++ Jointcontractures+++++++++++++f+++++++ Genuvalgumdeformities+++++++? aMPSVIIisrareandclinicallyheterogeneous.Itmaypresentasnonimmunefetalhydrops bOnlyonegooddescriptionofapatientwithhyaluronidasedeficiency(MPSIX,Natowiczsyndrome)hasbeenreported cMaybethepresentingproblemprogressingrapidlytodeathinearlyinfancy dAlatecomplicationinalmostallpatientswithseveredisease eNotcausedbyupper-airwayobstruction fJointlaxityandtheresultinginstability,ratherthanjointcontractures,isamajorprobleminMPSIV

(8)

202 The Mucopolysaccharidoses

A general schedule of assessment and reassessment is shown in Table 18.4.

What is shown represents a minimum follow-up schedule; adjustments are always necessary in individual cases, as unanticipated problems arise.

Table 18.4. Recommended follow-up and monitoring of MPS disorders

Initial Every 6 months Every 12 months Every 2 years General

Medical history and physical examinationa

Neurological

Developmental assessment

MRI of brain

MRI of spine

Ophthalmologic

Visual acuity

Retinal examination

Corneal examinationb

Auditory

ENT consultation

Audiometry

Cardiac

Chest radiograph (for heart size)

ECG

Echocardiogram

Respiratory

Pulmonary function testsc

Sleep study

Gastrointestinal

Spleen & liver volumesd

Musculoskeletal

Skeletal radiographse

Laboratory studies

Leukocyteα-l-iduronidasef

Urinary GAG levelg

Urine analysis

aIncluding measurement of height, weight, head circumference, and blood pressure

bIncluding measurement of intraocular pressures

cForced vital capacity (FVC) and1-s forced expiratory volume (FEV1)

dBest measured by MRI or CT scan

eAP and lateral views of the skull, PA view of the chest, lateral views of the spine (including the cervical spine), AP view of the hips and pelvis, single AP view of both hands together. In the case of MPS IV, include lateral views of the neck in flexion and extension to assess stability of the atlanto-axial joint, and a single AP view of the upper cervical spine through the open mouth to assess the integrity of the odontoid process. These studies are primarily for the asssessment of disease in children; the menu and schedule for radiographic studies in adults would be more limited, emphasizing the assessment of osteoarthritis

f In patients who have undergone hematopoietic stem cell transplantation (HSCT), leukocyteα-l-iduronidase assays and VNTR analyses on DNA extracted from peripheral blood should be done monthly from the time of transplantation, then every 6 months, to assess engraftment

gFor assessment of the response to enzyme replacement therapy or HSCT

(9)

References

1. Brooks DA (2002) Alpha-l-iduronidase and enzyme replacement therapy for mu- copolysaccharidosis I. Expert Opin Biol Ther 2:967–976

2. Fleming DR, Henslee-Downey PJ, Ciocci G, Romond EH, Marciniak E, Munn RK, Thomp- son JS (1998) The use of partially HLA-mismatched donors for allogeneic transplantation in patients with mucopolysaccharidosis-I. Pediatr Transplant 2:299–304

3. Kakkis ED, Muenzer J, Tiller GE, et al. (2001) Enzyme-replacement therapy in mu- copolysaccharidosis I. N Engl J Med 344:182–188

4. Krivit W, Pierpont ME, Ayaz K, et al. (1984) Bone-marrow transplantation in the Maroteaux-Lamy syndrome (mucopolysaccharidosis type VI). Biochemical and clin- ical status 24 months after transplantation. N Engl J Med 311:1606–1611

5. Lee V, Li CK, Shing MM, Chik KW, Lam CW, Tsang KS, Pong H, Huen KF, Yuen PM (2000) Umbilical cord blood transplantation for Maroteaux-Lamy syndrome (mucopolysaccha- ridosis type VI). Bone Marrow Transplant 26:455–458

6. McKinnis EJ, Sulzbacher S, Rutledge JC, Sanders J, Scott CR (1996) Bone marrow trans- plantation in Hunter syndrome. J Pediatr 129:145–148

7. Muenzer J, Lamsa JC, Garcia A, Dacosta J, Garcia J, Treco DA (2002). Enzyme replacement therapy in mucopolysaccharidosis type II (Hunter syndrome): a preliminary report. Acta Paediatr Suppl 91:98–99

8. Peters C, Balthazor M, Shapiro EG, et al. (1996) Outcome of unrelated donor bone marrow transplantation in 40 children with Hurler syndrome. Blood 87:4894–4902

9. Peters C, Shapiro EG, Anderson J, et al. (1998) Hurler syndrome: II. Outcome of HLA- genotypically identical sibling and HLA-haploidentical related donor bone marrow transplantation in fifty-four children. Storage Disease Collaborative Study Group. Blood 91:2601–2608

10. Sivakumar P, Wraith JE (1999) Bone marrow transplantation in mucopolysaccharidosis type IIIA: a comparison of an early treated patient with his untreated sibling. J Inherit Metab Dis 22:849–850

11. Wraith JE, Clarke LA, Beck M, Kolodny EH, Pastores GM, Muenzer J, Rapoport DM, Berger KI, Swiedler SJ, Kakkis ED, Braakman T, Chadbourne E, Walton-Bowen K, Cox GF (2004) Enzyme replacement therapy for mucopolysaccharidosis I: a random- ized, double-blinded, placebo-controlled, multinational study of recombinant human alpha-l-iduronidase (laronidase). J Pediatr 144:581–588

Riferimenti

Documenti correlati

Prestazione assicurativa: una volta accertato dal punto di vista medico lo stato ed il grado di Invalidità Permanente, la Società liquida al beneficiario un importo pari al

Le prestazioni assicurative relative ai premi versati nella Gestione interna separata sono contrattual- mente garantite dalla Compagnia e si rivalutano annualmente, in base

l’utente primario (amministratore) che abilita se stesso all’uso dell’App può consultare tutti i rapporti censiti nel servizio, ed inoltre, se è stato configurato un

Pertanto le spese potranno essere presentate in forma rimborsuale ‐ garanzia ricoveri ‐ solo successivamente al verificarsi dell’evento principale (ricovero) allegando alla

Sinistro: il verificarsi del rischio per il quale è prestata la copertura (in una copertura per il rischi di infortuni, ad esempio, il sinistro è rappresentato dall’infortunio nel

 Mario Sensini, del Corriere della Sera, riporta come il conto per il salvataggio di MPS è salito a 8,8 miliardi di euro, su richiesta diretta della vigilanza della BCE, inviata

In caso di versamenti successivi di carattere straordinario la Compagnia provvede a comunicare al Contraente per iscritto, entro dieci giorni lavorativi dalla data di

A seguito del pagamento del premio unico la Compagnia provvede a comunicare al Contraente entro dieci giorni lavorativi dalla data di valorizzazione delle quote, l’ammontare del