• Non ci sono risultati.

x + 1dx ≥ 1 Hn

N/A
N/A
Protected

Academic year: 2021

Condividi "x + 1dx ≥ 1 Hn"

Copied!
1
0
0

Testo completo

(1)

Problem 11933

(American Mathematical Monthly, Vol.123, October 2016)

Proposed by J. M. Pacheco and A. Plaza (Spain).

For positive integern, let Hn =Pn

k=11/k. Prove Z 1

0

1 x + 1dx ·

Z 1 0

x + 1

x2+ x + 1dx · · · Z 1

0

xn2+ · · · + x + 1

xn1+ · · · + x + 1dx ≥ 1 Hn.

Solution proposed by Roberto Tauraso, Dipartimento di Matematica, Universit`a di Roma “Tor Vergata”, via della Ricerca Scientifica, 00133 Roma, Italy.

Solution. We first note that Z 1

0

(1 + x + · · · + xn1) dx =

nX1 k=0

1

k + 1 = Hn.

We show the desired inequality by induction on n.

Base case. For n = 1 the product on the left-hand side is empty and therefore it is equal to 1 = 1/H1. Induction step. Let n ≥ 2 then, by the induction hypothesis,

Z 1 0

1 x + 1dx·

Z 1 0

x + 1

x2+ x + 1dx · · · Z 1

0

xn2+ · · · x + 1

xn1+ · · · + x + 1dx ≥ 1 Hn1

Z 1 0

xn2+ · · · + x + 1 xn1+ · · · + x + 1dx

?

≥ 1 Hn. Hence, it suffices to show that

Hn Z 1

0

xn2+ · · · + x + 1

xn1+ · · · + x + 1dx ≥ Hn1, that is,

Z 1

0

(1 + x + · · · + xn1) dx · Z 1

0

xn2+ · · · + x + 1 xn1+ · · · + x + 1dx ≥

Z 1

0

(1 + x + · · · + xn2) dx

which holds by Chebyshev Integral Inequality because f (x) := 1 + x + · · · + xn1 is increasing in [0, 1],

g(x) := xn2+ · · · + x + 1

xn1+ · · · + x + 1 = 1 − 1 f (1/x) is decreasing in [0, 1], and f (x) · g(x) = 1 + x + · · · + xn2.



Riferimenti