• Non ci sono risultati.

CAPITOLO 4 FABBRICAZIONE DI SQUID

N/A
N/A
Protected

Academic year: 2021

Condividi "CAPITOLO 4 FABBRICAZIONE DI SQUID"

Copied!
18
0
0

Testo completo

(1)

Capitolo 4 Fabbricazione di SQUID

CAPITOLO 4

FABBRICAZIONE DI SQUID

Come si è visto nei capitoli precedenti, è possibile realizzare qubit e operazioni logiche utilizzando SQUID.

Il sistema integrato che presentiamo è costituito da SQUID accoppiati tra loro: il doppio SQUID andrà a costituire il qubit, mentre il dc-SQUID sarà usato come discriminatore per leggere gli stati di flusso del qubit stesso. In questo capitolo viene descritto il processo di fabbricazione che ho eseguito per realizzare questi dispositivi. Il materiale usato è Niobio (Nb) per gli elettrodi e ossido di Alluminio (AlOx) per le barriere tunnel. Alcuni dispositivi sono stati commissionati alla società HYPRES.Inc. su nostro disegno, altri sono stati fabbricati interamente presso l’Istituto di Fotonica e Nanotecnologie, C.N.R., dove è presente un laboratorio di microfabbricazione in una camera pulita di classe 1000 (cioè in essa vi sono meno di 1000 particelle di polvere con diametro superiore ad 1

µ

m in un piede cubo).

Nel laboratorio, sono presenti vari impianti per deposizione di film di vario materiale, per la rimozione del film e per la diagnostica. E’ disponibile la litografia ottica ed anche elettronica, grazie ad un e-beam microfabricator.

(2)

Capitolo 4 Fabbricazione di SQUID

Figura 4.1 Camera pulita.

Figura 4.2 Impianti di litografia: a) elettronica b) ottica.

b) a)

(3)

Capitolo 4 Fabbricazione di SQUID

Figura 4.3 Impianti di deposizione: a) sputtering; b) evaporatore.

Figura 4.4 Strumenti per la diagnostica: a)SEM; b) microscopi ottici. a) b) b) a) b) a)

(4)

Capitolo 4 Fabbricazione di SQUID

Il processo di fabbricazione di un chip può essere riassunto dal seguente diagramma di flusso (fig. 4.6).

Figura 4.6 Diagramma di flusso del precesso di fabbricazione.

Nel nostro caso, il substrato utilizzato è una fetta di silicio non ossidato di 2 pollici di diametro; il trasferimento del disegno della struttura da realizzare (pattern) si basa su litografia ottica. Il nostro processo di fabbricazione si compone di 3 fasi. La deposizione di film avviene per sputtering o evaporazione termica; il pattern invece è definito per lift-off.

I dispositivi sono realizzati su chip di dimensione 6.25 x 6.25mm. substrato

Trasferimento del pattern sul

substrato LITOGRAFIA Deposizione film sottili Rimozione materiale Ispezione e misura Taglio dei chip Saldatura ad ultrasuoni test 3 volte

(5)

Capitolo 4 Giunzioni Josephson

4.1 Giunzioni Josephson

Passiamo ora ad affrontare le tematiche relative alla fabbricazione dei dispositivi che andranno a realizzare il qubit, iniziando con l’esaminare i parametri costruttivi del costituente fondamentale dei nostri dispositivi: la giunzione Josephson. Infatti, tutti questi dispositivi sono costituiti da anelli interrotti da giunzioni Josephson. Come già visto nel paragrafo 2.2 una giunzione Josephson è costituita da due elettrodi metallici superconduttori separati da uno strato isolante.

Figura 4.7 Schema di una giunzione Josephson.

A seconda delle applicazioni, le giunzioni sono realizzate con materiali diversi e in varie dimensioni che vanno da poche decine di nm a 1-10µm di lato. I parametri fondamentali, quali la densità di corrente critica J0, il lato e la capacità specifica C , sono determinati sp

in fase costruttiva e influenzano il comportamento della giunzione stessa.

La densità di corrente critica viene stabilita variando la pressione di ossigeno usata in fase di ossidazione del materiale che realizza la barriera tunnel. Nel nostro caso, il materiale scelto è l’ Alluminio perchè aderisce molto bene sul Niobio (Nb) riempiendo le vacanze lasciate da quest’ultimo in fase di crescita; l’ossidazione poi, produce uno strato uniforme di ossido che rende la giunzione di buona qualità. Attualmente, presso il nostro laboratorio, J0 =100 /A cm2. La corrente critica I0 è data dal prodotto J S in 0

cui S è l’area efficace della giunzione. Le proprietà di tunnel dipendono esponenzialmente dallo spessore th di ossido.

(6)

Capitolo 4 Giunzioni Josephson La capacità specifica (per unità di area) Csp 0 r

th

ε ε

= invece dipende linearmente dallo spessore dell’ossido th e dalla sua costante dialettrica relativa εr. Nel nostro caso lo

spessore dell’ossido, circa 10nm, dà una capacità specifica di 50 fF/µm2 .

Giunzioni di 3 µm di lato hanno una capacità C= 0.4 pF (giunzioni Josephson) mentre quelle con 0.1 µm di lato hanno una capacità C=0.5 fF (giunzioni mesoscopiche). Le dimensioni della giunzione deterninano anche le energie caratteristiche.

Per fabbricare giunzione Josephson, a seconda delle dimensioni da realizzare, si utilizzano due differenti processi tecnologici e due diversi tipi di elettrodi o di Alluminio (Al) o Niobio (Nb).

Giunzioni in Al/AlOx/Al, con lato inferiore a 100nm, sono ottenute per litografia elettronica e successiva “shadow mask evaporation”; invece le giunzione utizzate per questo lavoro di tesi, hanno lato maggiore di 1µm e si realizzano per litografia ottica e deposizione di film sottili di Nb/AlOx/Nb per sputtering. Con questa tecnica è possibile

produrre giunzioni robuste e di alta qualità, le cui caratteristiche (I0, C, R) non variano

nel tempo.

4.2 Realizzazione di giunzioni di Nb/AlO

x

/Nb

L’aspetto più delicato nella realizzazione del chip consiste nella fabbricazione delle giunzioni perché si lavora al limite della risoluzione possibile con litografia ottica. La giunzione viene fabbricata utilizzando tre passi fabbricativi (T.Imamura ,1991):

1. TRILAYER

Inizialmente si deposita su tutto il wafer, usando uno sputtering magnetron (fig. 4.3 a)), un trilayer costituito da un primo strato di Nb dello spessore di 100nm che andrà a realizzare l’elettrodo di base, poi uno strato sottilissimo di Al, circa 10nm, che viene ossidato in atmosfera di ossigeno per 30minuti. Lo strato AlOx risultante è spesso solo

(7)

Capitolo 4 Il chip corrente critica J0. Si procede poi, con la deposizione dell’ultimo strato di Nb (80nm)

che realizzerà l’elettrodo superiore. Il risultato di tale operazione, eseguita in successione, è mostrato in figura 4.8.

Figura 4.8 Deposizione del trilayer.

2. DEFINIZIONE DELLE GIUNZIONI

La barriera è estesa a tutto il wafer. Per avere una giunzione si deve creare una strozzatura, ossia delimitare l’area della giunzione stessa. Questa operazione si realizza ricoprendo il campione con un polimero sensibile alla radiazione ultravioletta (U.V.), chiamato resist, sul quale, tramite una litografia ottica, è possibile trasferire il pattern voluto da una maschera al substrato (fig.4.2 b)).

Figura 4.9 Deinizione della giunzione Josephson.

Poi in un bagno di acetone (lift-off) si rimuove il resist e il materiale in eccesso; solo il materiale direttamente depositato sul substrato rimane attaccato. Un buon lift-off e’ legato al profilo del resist che deve avere le pareti inclinate verso l’interno (undercut). Per ottenere la pendenza giusta, la solubilità deve aumentare con la profondità del resist e un resist ad inversione di profilo realizza questa necessità (D.L.Meir, 1991).

Al/AlOx (barriera) Nb

(8)

Capitolo 4 Il chip La foto SEM (Microscopio a Scansione Elettronica (fig.4.4 a)) mostra esempi di trilayer ricoperto da resist ottico ad inversione di profilo (tronco di piramide) per diversi tempi di esposizione alla radiazione U.V..

Figura 4.10Foto SEM che mostra esempi di trilayer ricoperto da resist ottico ad inversione di profilo.

La base del resist defisce l’area della giunzione. Come evince dalla foto, la dimensione effettiva della base è di circa 2.6µm, mentre il suo valore nominale era 5µm. L’area si è ridotta del 50%, di conseguenza si deve alzare il tempo di esposizione per avere pareti meno ripide e aumentare così l’area efficace.

Con la maschera di resist, si rimuove per etching la parte esposta dell’elettrodo superiore e si deposita, per evaporazione termica, uno strato di ossido di Silicio (SiOx);

la giunzione risulta così isolata con un processo self-allineato (fig 4.3 b)).

Figura 4.11 a) Rimozione per eching dell’elettrodo superiore (tranne nella zona dove è definita la giunzione. b) Deposizione di ossido di Silicio per isolare la giunzione con un processo self-allineato.

a) b) SiOx

(9)

Capitolo 4 Il chip Si toglie il resist eseguendo il lift-off, la giunzione rimane definita e isolata come mostrato dalla figura 4.12.

Figura 4.12.Rimozione per lift-off del materiale in eccesso, la giunzione rimane definita e isolata. b) Foto SEM della giunzione vista dall’alto.

3. CONTATTATURA

Con la deposizione dell’ultimo strato di Nb si realizzano le connessioni fra le giunzioni e i fili esterni; uno sputter-each preliminare rimuove l’ossido formatosi, garantendo un contatto superconduttore fra l’elettrodo superiore della giunzione e lo strato dei contatti.

Figura 4.13 Connessioni fra le giunzioni e i fili esterni.

a) b)

(10)

Capitolo 4 Il chip

4.3 Il chip

Il nostro sistema integrato mostrato in figura 4.14, si compone essenzialmente di: • qubit realizzato con un doppio SQUID

• lettore basato su un dc-SQUID discriminatore o giunzione di lettura • bobine per accoppiare flusso dall’esterno e trasferirlo da qubit a lettore.

Figura 4.14 Foto al SEM del sistema integrato formato da un doppio SQUID qubit, letto da un dc-SQUID isteretico o da un dc-dc-SQUID amplificatore.

Tutti gli SQUID sono disegnati usando la configurazione gradiometrica mostrata in figura 4.15: un singolo anello è sostituito da due anelli identici di induttanza L0 in

parallelo alla giunzione.

In questo modo, un campo uniforme come quello prodotto da campi magnetici esterni produce correnti di schermo circolanti in direzione opposta in ciascun anello che si cancellano nello SQUID. Quindi, diminuendo l’area effettiva del loop per segnali uniformi, nel nostro caso di circa un fattore cento, si riduce conseguentemente l’interazione con l’ambiente che introduce rumore aggiuntivo al sistema. Tutto ciò funziona soltanto se gli anelli sono perfettemente simmetrici.

(11)

Capitolo 4 Il chip

Figura 4.15 Rf-SQUID; a) Configurazione gradiometrica di un rf SQUID. b) Configurazione gradiometrica di un doppio SQUID: il gradiometro del dc interno è ortogonale al gradiometro del dispositivo.

Questa simmetria dipende fortemente dalle dimensioni del dispositivo: più piccole sono le sue dimensioni fisiche, più difficile è controllare la sua geometria durante il processo litografico. Utilizzando una sorgente U.V. il cui potere risolutivo (capacità di distinguere due punti come separati) a 365 nm è di 0.7µm, il lato d interno dell’anello non può essere inferiore alla decina di µm.

L’induttanza L dipende linearmente da d, dimensione interna dell’anello, e logaritmicamente dal rapporto x tra la larghezza della striscia del filo e d secondo la relazione: 0 0.1 2 d 2 1.15lnx L x µ π +   = +  

dove µ è la permeabilità del vuoto. Nel limite di x  la formula si riduce a 1

0

1.25

(12)

Capitolo 4 Il chip

™ Qubit

↔ Doppio SQUID

Si è visto, nel paragrafo 3.1, come un doppio SQUID rappresenti il sistema macroscopico con cui si vuole realizzare il qubit. Se il sistema è a contatto con l’ambiente esterno, è soggetto a dissipazione e fluttazioni casuali, quindi la coerenza viene persa progressivamente. Nella progettazione, si è cercato di ridurre il più possibile l’accoppiamento con qualsiasi rumore ambientale per non compromettere lo stato del qubit nelle sua evoluzione coerente. Nel chip, la giunzione dell’ rf-SQUID è sostituita con un dc-SQUID per poter variare la corrente critica del dispositivo e aver un aggiustamento fine dell'altezza della barriera. In letturatura non esistono altri qubit con questa caratteristica: tutti gli altri necessitano di impulsi a µ-onde per effettuare manipolazioni (Y.Yu, 2002 - D.Vion, 2002). Il doppio-SQUID, così ottenuto, si comporta come un rf-SQUID soltanto se l’ induttanza l del dc interno, di 10pH, è molto bassa rispetto all’induttanza L dell’anello grande ( l<< ). Per questo motivo il lato L interno dell’anello grande viene scelto di100 mµ in modo che il doppio SQUID abbia un’induttanza di 85pH. Le giunzioni del dc interno hanno lato pari a 3µm per dare una corrente critica massima di circa 20µA. Con questi valori si può modificare l’induttanza ridotta βL in un intervallo di valori compresi tra 1 e 5.

Un altro vincolo stringente è la calibrazione del flusso di polarizzazione Φx sul doppio

SQUID: allontanandosi di pochi milliΦ0 dalla condizione di doppia buca simmetrica

( 0

2

x Φ

Φ = ), il potenziale mostra una notevole asimmetria come evince dalla

simulazione in fig.4.16 calcolata per uno scostamento di qualche mΦ0.

Figura 4.16 Simulazione del potenziale al variare di qualche mΦ0 nel flusso Φx di sbilanciamento.

-1 -0.5 0 0.5 1 φ 0 2 4 6 8 10 U Hφ L φ

(13)

Capitolo 4 Il chip Quindi è necessario controllare Φx con grande accuratezza. Questa operazione è resa più

facile dalla grande dimensione del dispositivo che permette di accoppiare due bobine superconduttrici aventi mutua induttanza con il qubit variabile da 100fH a 10pH. Le bobine sono posizionate simmetricamente lungo l’asse del dispositivo e il loro numero permette un aggiustamento fine del flusso esterno.

Figura 4.17 Foto SEM di un doppio SQUID; il corrispondente schema 3-dim ( con una sola bobina di accoppiamento, è mostrato a destra.

Per evitare che il flusso concatenato con il doppio SQUID si accoppi al dc interno e viceversa, l’anello principale del doppio SQUID è un gradiometro ortogonali al gradiometro del dc interno come mostrato in figura 4.15.

™ Lettore

↔ dc-SQUID isteretico

Questo dispositivo è fondamentale per la lettura del qubit. Il dc-SQUID è un gradiometro planare avente lato interno d di 10 µm. Le due giunzioni che interrompono l’anello sono quadrate e hanno il lato di 3µm. La capacità è di ciascuna giunzione è pari 0.45pF e la corrente critica è di circa 10µA. La bobina, che accoppia flusso magnetico dall’esterno, modulando così corrente critica, circonda uno dei due anelli quadrati che

(14)

Capitolo 4 Il chip realizzano il gradiometro bilanciato, poggiandosi sulla parte superiore del corpo del dc-SQUID (fig.4.18). Questa bobina ha mutua induzione di circa 5 pH mentre l'induttanza del dispositivo è intorno ai 10 pH. Il dc-SQUID isteretico è accoppiato magneticamente all’ doppio SQUID tramite un trasformatore di flusso superconduttore. Il dispositivo, acceso con un impulso di corrente più basso della sua corrente critica, verrà utilizzato come discriminatore per leggere in quale tato di flusso si trova il doppio SQUID qubit (ved.3.3.).

Figura 4.18 Foto SEM di un dc-SQUID lettore. La geometria del dispositivo è illustrata nel disegno a destra.

Sono stati inotre realizzati dei dc-SQUID in cui la bobina che accoppia flusso magnetico dall’esterno è stata sostituita con la bobina a spirale visibile in figura 4.19.

La bobina circonda entrambi gli anelli aumentando così la mutua induzione da 5pH a 180pH. Infatti, in questo dc più accoppiato, sono necessari circa 11µA per avere un quanto di flusso contro i 330µA del dispositivo precedente.

Figura 4.19 Foto SEM di un dc-SQUID in cui la bobina tradizionale è stata sostituita con una bobina a spirale per avere un maggior accoppiamento.

(15)

Capitolo 4 Il chip

™ Trasformatore di flusso

Il qubit e il suo lettore sono accoppiati attraverso un trasformatore di flusso superconduttore di induttanza esterna 143pH. Il fattore di accoppiamento krf dc tra i due dispositivi è stato scelto abbastanza piccolo per avere misure debolmente invasive. Così, una variazione di un quanto di flusso Φ0 intrappolato nel doppio SQUID provoca

nel dc di lettura un segnale di 0.01Φ0. Negli ultimi disegni è stato progettato un

trasformatore superconduttore in cui l’accoppiamento può essere cambiato (accoppiamento o assenza di accoppiamento) grazie a un dc-SQUID, usato come l'interruttore, in parallelo con i due collegamenti induttivi (fig.4.20).

Figura 4.20 Trasformatore variabile.

La caratterizzazione di questo dispositivo ha portato alla realizzazione di un articolo pubblicato su Applied Physics Letters 86, 152504 (2005) e allegato in appendice A.

(16)

Capitolo 4 Il chip

™ Qubit + Lettore

↔ Doppio SQUID con giunzione di

lettura

Modificando il disegno originale del doppio SQUID qubit si ottiene il dispositivo in figura 4.21 in cui il sistema di lettura è ottenuto intrrompendo l’anello principale del doppio SQUID con una giunzione avente I0J 2I0

Figura 4.21 Doppio SQUID con giunzione di lettura.

I parametri tipici di un qubit a stati di flusso con lettura diretta sono gli stessi del doppio SQUID, ma la giunzione grande ha un’area di 100µm2 e corrente critica di circa 100µA.

Nel dispositivo di figura 4.22, gli stati del qubit (al centro) possono essere letti indifferentemente sia dalla giunzione di lettura che dai due dc-SQUID isteretici posizionati a destra e sinistra del qubit. Si può così effettuare una comparazione tra i due sistemi di lettura.

(17)

Capitolo4 Dispositivi modulari

4.4 Dispositivi modulari

Per realizzare computazione quantistica sono necessari un numero elevato di qubit che possano trovarsi in una sovrapposizione coerente di due stati distinti.

Allo scopo di facilitare l’integrazione, sono stati sviluppati disegni di dispositivi a struttura modulare. Il modulo base è costituito da un doppio SQUID con lettura diretta accoppiato ad un trasformatore di flusso variabile. Combinando insieme due moduli si ottiene il dispositivo 18 mostrato in figura 4.22.

Figura 4.23 Foto SEM di due qubit accoppiati attraverso un trasformatore di flusso variabile.

In questo dispositivo due qubit possono essere accoppiati in modo controllato per realizzare l’operazione logica C-NOT o altre operazioni più complesse. Unendo insieme quattro moduli, collegati tra loro attraverso un bus, si può realizzare un registro quantistico per immagazzinare informazione (fig.4.23).

(18)

Capitolo4 Dispositivi modulari

Figura 4.23 Foto SEM di quattro qubit accoppiati tra loro attraverso un bus.

Figura

Figura 4.1 Camera pulita.
Figura 4.4 Strumenti per la diagnostica: a)SEM; b) microscopi ottici. a)  b)  b) a)  b) a)
Figura 4.7 Schema di una giunzione Josephson.
Figura 4.11 a) Rimozione per eching dell’elettrodo superiore (tranne nella zona dove è definita la  giunzione
+7

Riferimenti

Documenti correlati

[r]

Brufsky A, Bossermann L, Caradonna R et al (2009) Zoledronic acid effectively prevents aromatase inhibitor-associated bone loss in postmenopausal women with early breast

Facendo riferimento a documenti ancora in parte inesplorati, come i diari dello scrittore, alcuni contributi consentono di tracciare un quadro accurato della vita personale

The values of the indicators of individual funds are recalled, and the respective index numbers are calculated for each fund and for each indicator, following the

the C++ language and LabVIEW environment was described also giving complementary information about the C++ language and LabVIEW environment. Following the implementation of

They concentrate on two focal points in musical (and not only musical) education: the link between the scientific knowledge developed at university level and its

Tuttavia, il prestigio dell’aramaico come lingua degli scambi e dell’amministrazione (nella sua varietà detta convenzionalmente «d’im- pero») e della letteratura (il

Tout au long de mon enquête, j’ai veillé à ce que mes titres de communication et de publication soient le plus neutres possibles afin qu’ils ne puissent pas éveiller