• Non ci sono risultati.

Precision Measurement of the Proton Flux with AMS Experiment

N/A
N/A
Protected

Academic year: 2021

Condividi "Precision Measurement of the Proton Flux with AMS Experiment"

Copied!
31
0
0

Testo completo

(1)

Precision Measurement of the Proton Flux with AMS Experiment

AMS Days at CERN

Geneva, April 16

th

2015

(2)

2   V.  Choutko  Proton  Flux    AMS  Days  CERN    

Introduc>on  

   

Protons are the most abundant charged particles in cosmic rays.

Knowledge of the precise behavior of the proton spectrum is important in understanding the origin, acceleration, and

propagation of cosmic rays.

Recent important measurements of the proton flux in cosmic rays have reported different variations of the flux with energy.

In particular, the ATIC–2, CREAM, and PAMELA experiments showed deviations of the proton flux from a single power law.

Here we report on the precise measurement of the proton flux in primary cosmic rays in the rigidity range from 1 GV to 1.8 TV

based on 300 million events collected by the AMS.

(3)

TRD TOF

Tracker

TOF RICH

ECAL L1

L2

L7-L8 L3-L4

L9

L5-L6

ToF    (4  Layers)  

Velocity  and  Direc>on     Δβ/β

2

(Z=1) ≈ 4%

TRD,  Tracker,  RICH  ,TOF,  ECAL    

Charge  Magnitude  Along  Par>cle    Trajectory    

                                   ΔZ (Z=1) ≈ 0.05-0.2  

Tracker  (9  Layers)    +    Magnet  

Rigidity  and  Charge  Sign    

Bending  Coordinate  Resolu>on  (Z=1)  ≈ 10  µm   MDR  (Z=1)   ≈ 2 TV      

3   V.  Choutko  Proton  Flux    AMS  Days  CERN    

AMS    Cosmic  Ray  Protons    Measurement  

   

(4)

     

4   V.  Choutko  Proton  Flux    AMS  Days  CERN    

Charge

0.5 1 1.5 2 2.5

Events

10

5

10

6

10

7

10

8

10

9

P Data

10

9

11.4 ×

He Nuclei

AMS  Data  Sample      

 

(5)

Proton  Selec>on          

 

(I)   Downgoing  Par>cle       β > 0.3

(II)   Rigidity  (R)    Above  Geomagne>c  Cutoff  (R C   )                    

R  >  1.2R

C

 [IGRF  Magne>c  Field]  

(III)  Charge  |Z|~1    along  Par>cle  Trajectory:                                                                              

                 For  instance,  for  Inner  Tracker  0.7  <|Z|  <1.5  

(IV)   Full  Tracker  Level  arm  (L1  to  L9),  Z>0    

(V)    χ 2 /NDF  of  the  Par>cle  Trajectory  Fit  <  10  

                 Efficiency  98-­‐99  %,        Removes  Bulk  of  Events  with  Large                        Scaiering  and  Wrongly  Measured  Rigidity  

( VI)    Reconstructed  Mass  >  0.5  GeV/c 2    

                    Removes  low  rigidity    π ’ s                                                                                  

 

 

 

       

5   V.  Choutko  Proton  Flux    AMS  Days  CERN    

(6)

Residual  Background          

(I)   Protons  from  He  and  other  Nuclei  interacted  on    

very  top  of  AMS:  

0.5%  @  1GV    and  negligible  (<0.1%)  above  10  GV  

 

(ΙΙ)  π’s  from  protons  interacted  on  top  of  AMS:  

Less  than  0.1%  in  all  rigidity  range      

 

(III)      Positrons  and  Electrons:  

Less  than  0.1%  in  all  rigidity  range  

       

6   V.  Choutko  Proton  Flux    AMS  Days  CERN    

(7)

  Flux  Measurement  

Assuming flux over geomagnetic cutoff is isotropic

the differential in rigidity flux can be defined as

Rigidity 1-1800 GV

Effective Acceptance from MC, Verified with Data

Time ~63,000,000 sec , R>30 GV

Φ i (R) =

N i

T i A i ε i ΔR i

Trigger Efficiency from Data Bin width

7   V.  Choutko  Proton  Flux    AMS  Days  CERN    

Events Corrected for Bin to Bin Migration due to Tracker Rigidity Resolution

i=1,72

(8)

Proton flux: (i) systematic errors on trigger efficiency

Trigger  efficiency  [4/4  TOF  +  VETO  ]  was  measured  using  1%  prescaled       event  sample  obtained  with    unbiased      3  out  of  4  ToF  coincidence  

trigger.  The  error  is  dominated  by  the  sta>s>cs  available  from  the   unbiased  trigger.  

 

LowerTOF (layers 3 and 4)

UpperTOF (layers 1 and 2)

8  

This  systema>c  error  is  negligible  (less  than  0.1%)  below  100GV     and  reaches  1.5%  at  1.8TV.  

VETO

V.  Choutko  Proton  Flux    AMS  Days  CERN    

(9)

     

9   V.  Choutko  Proton  Flux    AMS  Days  CERN    

Rigidity[GV]

1 10 10

2

10

3

Tr ig g er E ff ic ie n cy

0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1

Data

MC Geant 4.9.6

Trigger  Efficiency  Measured  from    

Unbiased  Trigger  

(10)

Proton  flux:  (ii)  systema>c  errors  on  the  acceptance   and  event  selec>on  

The  effec>ve  acceptance  obtained  with   Geant4.9.6  simula>on  was  corrected  for   small  differences  between  the  data  and  the   Monte  Carlo  samples  related  to  the  event   reconstruc>on  and  selec>on.  The  typical   systema>c  error  on  the  flux  is  0.8%  at   200GV.  

The  detector  is  mostly  made  of  carbon  and   aluminum.  The  corresponding  inelas>c  cross   sec>ons  of  p  +  C  and  p  +  Al  are  known  to  

within  10%  at  1GV  and  4%  at  300GV,  and  7%  

at  1.8TV  from  model  es>ma>ons.    

10   V.  Choutko  Proton  Flux    AMS  Days  CERN    

(11)

     

11   V.  Choutko  Proton  Flux    AMS  Days  CERN    

Acceptance  Error  due  to  Interac>ons    

Knowledge of p+C(Al) inelastic σ is important to assess error on acceptance due to proton interactions. p+C(Al)    inelas>c  σ    is  known  4  to  10  %  accuracy.

Rigidity [GV]

1 10 102 103

p+C inelastic cross section [mb]

200 220 240 260 280

GEANT 4-09-06

GEANT 4-09-06 Uncertainty NA61 (2012)

Denisov (1973) Bellettini (1965)

σqe

Carroll (1979) + Bowen (1958) Letaw (1983)

(12)

     

12   V.  Choutko  Proton  Flux    AMS  Days  CERN    

Using scaled by ±10% cross sections MC samples allowed to evaluate acceptance error.

The corresponding systematic error is 1% at 1GV, 0.6% from 10 to 300GV, and 0.8% at 1.8TV.

Rigidity [GV]

1 10 102 103

p+Al inelastic cross section [mb]

380 400 420 440 460 480 500 520

540 GEANT 4-09-06

GEANT 4-09-06 Uncertainty Denisov (1973)

Bellettini (1965) Carroll (1979) Letaw (1983) MiniBoone (2009)

Acceptance  Error  due  to    Interac>ons  

 

(13)

               Proton  Flux:  (iii)  systema>c  errors  on   background  contamina>on  

The  background  contribu>ons   from  protons  which  originated   in  the  interac>ons  of  nuclei  at   the  top  of  AMS,  no>ceable  

only  below  2GV,  are  

subtracted  from  the  flux  and   the  uncertain>es  are  

accounted  for  in  the   systema>c  errors.  

nuclei

proton

V.  Choutko  Proton  Flux    AMS  Days  CERN    

(14)

Proton  flux:  (iv)  systema>c  errors  on  geomagne>c   cutoff  

The  cutoff  was  calculated  by  backtracing  par>cles  from  the  top  of  AMS  out  to     50  Earth’s  radii.    A  safety  factor  of  1.2  is  then  applied.  It  was  varied  from  1.0  to   1.4  and  the  resul>ng  proton  fluxes  showed  a  systema>c  uncertainty  of  2%  at   1GV  and  negligible  above  2GV.    

14  

We  have  also  verified  that  using  the  most  recent  IGRF  model  and  the  IGRF  model   with  external  non-­‐symmetric  magne>c  fields  does  not  introduce  observable  

changes  in  the  flux  values  nor  in  the  systema>c  errors.  

V.  Choutko  Proton  Flux    AMS  Days  CERN    

(15)

Proton  flux:  (v)  systema>c  errors  on  unfolding  

Among  many  unfolding  procedures,  we  selected  two.  The  small  differences   between  the  two  procedures  (<  0.5%)  are  accounted  as  a  systema>c  error.      

  We  have  checked  the  sensi>vity  of  the  results  to  the  binning  by:  

  1.  increasing  the  bin  width  by  factors  of  2  and  4  

2.  reducing  the  bin  width  by  factors  of  2  and  4.    

  The  resul>ng  uncertainty  is  well  within  the  assigned  systema>c  errors.  

(16)

Proton  flux:  (vi)  systema>c  errors  on  the  rigidity   resolu>on  func>on  

The  rigidity  resolu>on  func>on  was  verified   with  data  from  both  the  ISS  and  the  400  GeV   proton  beam.  For  this  the  residuals  between   the  hit  coordinates  measured  in  tracker  

layers  L1  and  L9  and  those  obtained  from  the   track  fit  from  only  the  inner  tracker  L2  to  L8   were  compared  between  data  and  

simula>on.    

   

In  order  to  addi>onally  validate  the  alignment   of  the  external  layers  the  difference  between   the  rigidity  measured  using  the  informa>on   from  L1  to  L8  and  from  L2  to  L9  was  

compared  between  data  and  the  simula>on.  

 

L1

L5 L6 L3

L4

L7 L8

L9

L2

MAG N ET

16   V.  Choutko  Proton  Flux    AMS  Days  CERN    

(17)

-1 ] [ GV 4001

Rigidity1 -

-0.02 -0.01 0 0.01 0.02

Events

10 102

103

104

105

106

a)

400 GeV/c TestBeam Data

400 GeV/c Simulation

The resolution function for 400 GeV/c protons measured in the test beam compared with Monte Carlo simulated events.

The  corresponding  unfolding  errors  were  obtained  by  varying  the  width  of  the   Gaussian  core  of  the  resolu>on  func>on  by  5%  and  the  amplitude  of  the  non-­‐

Gaussian  tails  by   ∼ 20%      and  found  to  be  1%  below  200GV  and  3%  at  1.8TV.  

Proton  flux:  (vi)  systema>c  errors  on  the  rigidity   resolu>on  func>on    (cont’d)

V.  Choutko  Proton  Flux    AMS  Days  CERN    

(18)

Proton  flux:  (vii)  systema>c  errors  on  the  absolute   rigidity  scale    (1/Δ)    

1)  Residual  tracker  misalignment:    

From  the  400GeV/c  test  beam  data  it  was  measured  to  be  less  then  1/(300TV).  For   the  ISS  data  this  error  was  es>mated  by  comparing  the  E/R  ra>o  for  electron  and   positron  events,  where  E  is  the  energy  measured  with  the  ECAL  and  R  is  the  rigidity   measured  with  the  tracker.  It  was  found  to  be  1/(26TV),  limited  by  the  current  high   energy  positron  sta>s>cs  and  corresponds  to  flux  error  2.5%  @1  TV.  

   

18   Rigidity

Energy

0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4

Bin Events

10 102

E>30 GeV e+

E>30 GeV, Scaled e-

e-

E +

e+

E

e-

(E/R)

+ - (E/R)e

= 1

e-

E +

e+

E

e-

(E/R)

+ - (E/R)e

= 1

e-

E +

e+

E

e-

(E/R)

+ - (E/R)e

= 1

e-

E +

e+

E

e-

(E/R)

+ - (E/R)e

= 1

1/Δ∼0  and    σ(1/Δ)=1/26  TV

-­‐1

Normalized

V.  Choutko  Proton  Flux    AMS  Days  CERN    

(19)

Proton  flux:  (vii)  systema>c  errors  on  the  absolute   rigidity  scale  

2)  Magne>c  field:    

Mapping  measurement  (0.25%)  and  temperature  correc>ons  (0.1%).    

Taken  in  quadrature  and  weighted  by  the  measured  flux  rigidity  

dependence,  this  amounts  to  less  than  0.5%  systema>c  error  on  the  flux.  

Zurich,1997 CERN, 2010

B in G au ss

1200 800

400

In 12 years the field has remained the same to <1%

3D field map (120,000 locations) Measured at CERN

in May 2010

V.  Choutko  Proton  Flux    AMS  Days  CERN      

(20)

 Break  Down  of   Systema>c  Errors  @  200GV        

 Source                                                                                                    Error  (%)      Trigger                                                                                                              0.2  

 Acceptance                                                                                              1.1    -­‐   Selec>on                                                                                                        0.85          -­‐  Interac>ons                                                                                                0.6          -­‐  Geomagne>c  Cutoff  [<2  GeV]                                  0  

 Unfolding  &  Rigidity  Resolu>on                        0.95                                                        Rigidity  Scale                                                                                          0.7    

       -­‐  Residual  tracker  misalignment                                0.55            -­‐  Magne>c  field  accuracy                                                        0.45  

       

20   V.  Choutko  Proton  Flux    AMS  Days  CERN    

(21)

Four  Examples  of  Independent  

Verifica>on  of  Systema>c  Errors  on      

•  Acceptance    

•   Time  Stability    

•  Rigidity  Scale    

•   Unfolding    

V.  Choutko  Proton  Flux    AMS  Days  CERN     21  

(22)

   Verifica>on  of  the  Systema>c  Error   Assigned  to  Acceptance  

     

22   V.  Choutko  Proton  Flux    AMS  Days  CERN    

θ

°

6 8 10 12 14 16 18 20

Flux Ratio

0.96 0.97 0.98 0.99 1 1.01 1.02 1.03 1.04

Data

Systematic Uncertainty Range

The variation of the flux ratio above 30 GV [Max GeoMag Cutoff] versus the angle θ to the AMS Z axis.

1.01  

0.99  

(23)

Verifica>on  of  the  Stability  of  Detector   Performance    

   

23   V.  Choutko  Proton  Flux    AMS  Days  CERN    

Date

Flux Ratio

0.97 0.98 0.99 1 1.01 1.02

1.03 b)

Data

Systematic Uncertainty Range

09/11 01/12 05/12 09/12 01/13 05/13 09/13

  The variation of the (monthly) flux ratio above 45GV

[Above Solar modulation Time Dependent Effects] vs time.

1.01  

0.99  

(24)

   Verifica>on  of  the  Systema>c  Error   Assigned  to  the  Rigidity  Scale  

     

24   V.  Choutko  Proton  Flux    AMS  Days  CERN    

Rigidity [GV]

100 200 300 400 500 600 1000

Flux Ratio

0.85 0.9 0.95 1 1.05

1.1

1.15 c)

Data

Systematic Uncertainty Range

The variation of the flux ratio vs the rigidity for different Tracker Layer 1 (L1) entry regions

0.98   1.02  

(25)

Flux obtained using the rigidity measured by only the inner tracker (2-8) is in good agreement with the flux measured using the full lever arm (1-9), specifically at -High rigidities (100 to 300GV) where the unfolding effects and resolution functions of the inner tracker (300 GV MDR) and the full lever arm one (2 TV MDR) are very different.

-Low rigidities (1 to 10GV) where the unfolding effects and the tails in the resolution functions of the inner tracker and full lever arm are also very different due to multiple and nuclear scattering.

1

2 3-4 5-6 7-8

9

1.01

0.99

  Verifica>on  of  the  Systema>c  Error  of  

 Unfolding,  Acceptance    and  Rigidity  Resolu>on  

1.00 1.02

0.98

(26)

     

26   V.  Choutko  Proton  Flux    AMS  Days  CERN    

Rigidity [GV]

1 10 102 103

Error [%]

1 2 3 4 5 6 7

AV_Error Stat AV_Error Trig AV_Error Acc AV_Error Unf AV_Error Scale AV_Error Full

Sta>s>cal   Trigger   Acceptance  

Unfolding   Rigidity  Scale  

Total  

2 1.5

4

1.3

 Flux  Errors  Breakdown  

(27)

     

27   V.  Choutko  Proton  Flux    AMS  Days  CERN    

Rigidity [GV]

1 10 10

2

10

3

] 1.7 GV -1 sec -1 sr -2 [m 2.7 R ~ × Flux 0

2 4 6 8 10 12 14

10

3

×

AMS-02

a)

Proton  Flux  

300 Million Events

(28)

     

28   V.  Choutko  Proton  Flux    AMS  Days  CERN    

) [GeV]

Kinetic Energy (E

K

1 10 10

2

10

3

10

4

] 1.7 GeV -1 sec -1 sr -2 [m 2.7 K E × Flux

0

2 4 6 8 10 12 14

103

×

AMS-02 ATIC-2 BESS-Polar CREAM PAMELA

b)

Proton  Flux  Comparison  with  Earlier  

Measurements  

(29)

Proton  Flux  Fit  with  the  Model    

     

29   V.  Choutko  Proton  Flux    AMS  Days  CERN    

]

1.7

GV

-1

sec

-1

sr

-2

[m

2.7

R~ × Flux 8

9 10 11 12 13 14

10

3

×

AMS-02

Fit to Eq. (3)

Eq. (3) with Δ

γ

=0

Rigidity [GV]

10 10

2

10

3

\\\  

Fit to Model χ2  /NDF=25/26   Fit to Model with Δγ=0

(sys)

-0.003 +0.004

(fit)

-0.002 +0.002

= -2.849 γ

(sys)

-0.030 +0.046

(fit)

-0.021 +0.032

= 0.133 γ

(sys) [GV]

-28

(fit)+66 -44

= 336+68

R0

(30)

  Model  Independent  Spectral  Index   Rigidity  Dependence    

 

     

30   V.  Choutko  Proton  Flux    AMS  Days  CERN    

Rigidity [GV]

10 102 103

Spectral Index

-2.9 -2.85 -2.8 -2.75 -2.7 -2.65 -2.6 -2.55

-2.5 b)

10

3

×

The spectral index varies with rigidity. In particular, the spectral index is progressively hardening with rigidity above ∼ 100 GV.

Spectral Index = d[log(Φ)]/d[log(R)]

(31)

Conclusion    

 

•  Precision  measurement  of  proton  flux    with  

AMS  is  done  from  1  GV  to  1.8  TV  based  on  300   million  events  

•  The  detailed  varia>on  of  the  flux  spectral  

index  is  presented    

•   The  spectral  index  is  progressively  hardening  

at  high  rigidi>es    

 

V.  Choutko  Proton  Flux    AMS  Days  CERN     31  

Riferimenti

Documenti correlati

Following this procedure, the resulting docked structures were ranked by their conformational energy and were analyzed considering the non-bonded interaction

Conosciuto dai latini come Avempace, Ibn Bāğğa nacque a Saragozza, verso la fine dell' XI secolo, si stima come data di nascita gli anni che vanno tra il 1085 ed il 1090.

Tabella 10 – Per i caprioli con studio radiografico si pongono in correlazione patologie, numero di studi radiografici eseguiti, numero di settori radiografati

The cleaved protein then re-locates to mitochondria and promotes membrane permeabilization, presumably by interaction with mitochondrial lipids and other Bcl-2 proteins

Jonathan Franklin, scrittore e giornalista del quotidiano The Guardian, l'ha raggiunto in El Salvador, suo paese d'origine, per raccontarne l'incredibile avventura nel libro 438

For instance, groups K1 to K6 belong to the red branch, but most contain mixtures of LINERs, AGNs and star forming

In this paper we present two ICs fabricated in InP DHBT technology and devoted to 43 Gbit/s and over transmission systems: reshaping DFF for the transmitter and decision circuit