• Non ci sono risultati.

Elementi di Psicometria con Laboratorio di SPSS 1 29-Analisi della potenza statistica vers. 1.0 (12 dicembre 2014) Germano Rossi

N/A
N/A
Protected

Academic year: 2021

Condividi "Elementi di Psicometria con Laboratorio di SPSS 1 29-Analisi della potenza statistica vers. 1.0 (12 dicembre 2014) Germano Rossi"

Copied!
16
0
0

Testo completo

(1)

Elementi di Psicometria con Laboratorio di SPSS 1

29-Analisi della potenza statistica vers. 1.0 (12 dicembre 2014)

Germano Rossi1

[email protected]

1Dipartimento di Psicologia, Università di Milano-Bicocca

2014-2015

(2)

Introduzione

Ogni volta che si inizia a fare una ricerca ci si trova ad affrontare diversi problemi

uno di questi è l’ampiezza del campione

Devo raccogliere almeno 100 soggetti? o ne bastano 30?

La ragione di questa domanda è duplice

Più piccolo è il campione, meno tempo (e fatica) è necessario per raccogliere i dati

Più grande è il campione, più probabilità abbiamo di ottenere risultati significativi

A questa domanda ci sono diverse risposte comuni (si ricordi che la statistica ipotizza un campione casuale)

1 Almeno 30 per ogni gruppo formato dalle variabili indipendenti

2 Un campione il più grande possibile

3 Non si sa esattamente quanto dev’essere grande

(3)

Grandezza di un campione

La prima risposta fa riferimento alla teoria campionaria, per cui con campioni di 30 o più osservazioni, la distribuzione

campionaria tende a distribuirsi normalmente anche se la variabile non è normale

La seconda risposta dipende dall’idea che se il campione è molto grande sia più facile trovare un risultato significativo

L’ultima risposta non è accettabile, salvo:

1 quando non si conosce assolutamente nulla sull’argomento di ricerca

2 si hanno molte variabili indipendenti e molte dipendenti

3 si è interessati più ad una ricerca esplorativa che ad una ricerca inferenziale vera e propria

(4)

Grandezza di un campione

La grandezza del campione dovrebbe quella che permette di rispondere alle ipotesi di ricerca, considerando che:

il risultato dipende dalla dimensione dell’effetto che si studia (un effetto “grande” verrà rilevato anche con poche osservazioni, mentre uno “piccolo” necessita di più casi)

dal rischio di sbagliare la nostra decisione (cioè dall’errore di I e di II tipo che utilizziamo); un α elevato produrrà più rifiuti di H0e uno più piccolo più rifiuti di H1

(5)

Relazioni fra errori e ipotesi

Realtà

H0- Vera H0 - Falsa H1- Falsa H1 - Vera Risultato

ricerca

Accetto H0; rifiuto H1 Corretta Errore II tipo

1 − α β

Rifiuto H0; accetto H1 Errore I tipo Corretta

α 1 − β

Se α è la probabilità di rifiutare H0quando è vera, 1 − α sarà la probabilità di accettare H0quando è vera

Analogamente se β è la probabilità di accettare H0quando è falsa, 1 − βsarà la probabilità di rifiutare H0quando è falsa

1 − βè chiamatapotenza di un teste corrisponde alla probabilità di rilevare una relazione veramente esistente nella realtà

(6)

Analisi della potenza

Lapotenza statistica di un test è la sua capacità di rifiutare un ipotesi nulla falsa, perché noi, in genere, verifichiamo un’ipotesi nulla rispetto ad una “gamma” di ipotesi alternative (ad es.

H1: µ1 6= µ2)

Come ricercatori, facciamo molti sforzi per organizzare e fare una ricerca che ci dia conoscenze “sicure” e “affidabili”. Ma i nostri sforzi sono vani se non riusciamo a trovare i risultati che ci aspettiamo, o meglio, se non riusciamo a falsificare con maggior sicurezza la nostra ipotesi.

Per molti anni, i ricercatori si sono focalizzati sul rischio di rifiutare H0quando è vera (atteggiamento conservatore)

Di recente ha acquisito importanza anche l’errore opposto.

Riassumiamo un momento le procedure di verifica d’ipotesi

(7)

Verifica d’ipotesi

All’inizio di una ricerca, partiamo generalmente da un’ipotesi che è espressa a parole. Ad es. “A causa delle nuove tecnologie di comunicazione veloce (e-mail, sms, chat, cellulari) gli studenti passano meno tempo a stabilire relazioni personali dirette fra di loro”.

Siccome qualcuno ha raccolto dati sul tempo trascorso in relazioni personali negli anni precedenti (M=6 ore alla settimana; s=2), posso raccogliere un nuovo campione da confrontare con il precedente

Possiamo trasformare la nostra ipotesi verbale in ipotesi statistica:

H0: µ = 6.0 H1 : µ < 6.0

(8)

Verifica d’ipotesi

Ricordiamo che noi verifichiamo l’ipotesi nulla confrontandola con un’ipotesi alternativa.

L’ipotesi nulla è ciò che è noto o che si assume in base alla teoria o alle ricerche precedenti.

Nel nostro esempio, la ricerca precedente, ci ha detto che gli studenti universitari hanno speso circa 6 ore al giorno della settimana in contatti faccia-a-faccia (più o meno 2 ore).

Così, la nostra ipotesi è che µ = 6.0.

L’errore α ci protegge dal prendere una decisione errata basata su un campione “particolarmente anomalo” estratto dalla

popolazione corretta

La potenza di un test (1 − β) ci dice la probabilità di aver accettato correttamente l’ipotesi alternativa

(9)

Concetti chiave della potenza

Ricordiamo che lapotenza statistica di un test è la sua capacità di rifiutare un ipotesi nulla falsa e che è legata al test statistico usato.

Ci sono 3 variabili che legate alla potenza di un test:

1 Il livello di significatività cioè α: più è severo (vicino a 0), più è difficile rifiutare l’ipotesi nulla (anche quando è falsa). All’aumentare di α aumenta la potenza del test. Tuttavia non possiamo usare α molto grandi; un buon criterio (non troppo basso, né troppo alto) è α = 0.05 (per ricerche esplorative possiamo usare anche .10)

2 L’ampiezza del campione cioè N ; quando un campione è grande, è meno probabile fare errori di campionamento e trovare dati che portino a stime inaffidabili dei parametri della popolazione. L’errore standard è sempre basato su N . Quindi all’aumentare di N , aumenta la potenza

(10)

Concetti chiave della potenza

3 La dimensione dell’effetto nella popolazione cioè d o r; ovvero quanto grande è il risultato che abbiamo ottenuto; possiamo considerare d o r come una misura di quanto è falsa l’ipotesi nulla; tanto più d o r è grande, tanto più H0 è falsa, tanto più aumenta la potenza

4 Possiamo considerare la potenza statistica (cioè 1 − β) come un quarto elemento

Essendo legati fra loro matematicamente; si può calcolare il valore del quarto conoscendo il valore degli altri tre

(11)

Concetti chiave della potenza

Riassumendo:

La potenza (1 − β) aumenta diminuisce quando α aumenta diminuisce quando N aumenta diminuisce quando d o r aumenta diminuisce La formula che lega i quattro indici è abbastanza complessa per cui sono state predisposte delle tavole

ed esistono dei software appositi (ad es. G*Power, http://www.gpower.hhu.de/en.htmlche free)

(12)

Uso dell’analisi di potenza

L’analisi di potenza viene usata, generalmente, per due obiettivi

1 a posterioriper determinare lapotenza di un test: dal momento che la ricerca viene effettuata su un certo campione (di ampiezza N) e usando un certo livello α, e dai risultati ottenuti possiamo calcolare d, ne consegue la possibilità di stimare la potenza di un test, cioè la probabilità di aver fatto la scelta giusta;

2 a prioriper determinare lanumerosità del campione: se vogliamo fare una ricerca che abbia una determinata potenza, una volta stabilito un determinato α e ipotizzato un determinato d, quale dev’essere l’ampiezza del campione?

(13)

Calcolare la potenza di un test

Abbiamo raccolto un certo campione su cui abbiamo misurato la religiosità estrinseca personale (slide 18 del Cap.13)

Abbiamo stabilito un livello α = .05 Calcoliamo d (slide 14 cap.25)

g = 9.46 − 10.89 q(160−1)3.522+(179−1)2.982

160+179−2

= −.4405

Chiamiamo G*Power, scegliamo Test family = t-tests, Statistical test = Means: Difference between two independent means (two groups), Type of power analysis

= post hoc: Compute achieved power

Inseriamo Effect size d = .44, α err prob = .05, Sample size group 1 = 160, Sample size group 2 = 179

Clicchiamo Calculate

(14)

Videata GPower

La potenza è 0.98

(15)

Numerosità del campione

Ipotizziamo di voler fare una ricerca su un campione patologico (ad es. pazienti di un servizio mentale confrontati con un campione di controllo di uguale numerosità)

Possiamo fare una ricerca veloce (in termini di tempo) su un piccolo campione

oppure una ricerca che duri più tempo per poter raccogliere un campione più grande

certamente non vogliamo fare una ricerca che non abbia abbastanza “potenza” e che possa essere criticata

Decidiamo quindi una potenza minima che vogliamo raggiungere (ad esempio .50), und che ci aspettiamo (ad esempio, d=.50) e calcoliamoquantodev’essere ampio il campione da raccogliere.

(16)

Videata GPower

Chiamiamo G*Power, scegliamo Test family = t-tests, Statistical test = Means: Difference between two independent means (two groups), Type of power analysis = A priori: ...

Inseriamo Effect size d = .50, α err prob = .05, Power = .50, Allocation ratio N2/N1 = 1

Clicchiamo Calculate: ci servono due campioni di 32 casi ciascuno

Riferimenti

Documenti correlati

(stampa le misure di variabilità come parte delle diverse statistiche per capire l’andamento e la distribuzione di una variabile).. Misure

curtosi (o kurtosis): quanto la curva dei nostri dati è più piatta o più acuta di quella della

In questa categoria ricadono i grafici che utilizzano una variabile quantitativa e una variabile qualitativa, nonché tabelle che incrociano una qualitativa e una

Per ora vedremo la correlazione lineare prodotto-momento di Bravais-Pearson più conosciuta come correlazione di Pearson e a cui ci si riferisce per antonomasia quando si parla

Un modo generalmente usato per avere la rappresentatività è quella della selezione casuale dei casi statistica dalla popolazione Questi campioni sono chiamati campioni casuali

Se la correlazione trovata nel nostro campione di partenza è compresa nel 95% attorno alla media di 0, allora la nostra correlazione sarà non significativa ovvero casualmente

In pratica, ogni volta abbiamo 1) ipotizzato di conoscere una popolazione 2) estratto K campioni di ampiezza N 3) calcolato la statistica e 4) la deviazione standard delle

Tutte le volte che capits di confrontare fra loro due variabili misurate sullo stesso campione (ad es. situazioni prima/dopo) abbiamo un campione dipendente, in quanto la