• Non ci sono risultati.

32G π +48 π − 16 whereG =P∞ k=0 (−1)k (2k+1)2 is the Catalan’s constant

N/A
N/A
Protected

Academic year: 2021

Condividi "32G π +48 π − 16 whereG =P∞ k=0 (−1)k (2k+1)2 is the Catalan’s constant"

Copied!
1
0
0

Testo completo

(1)

Problem 12094

(American Mathematical Monthly, Vol.126, February 2019) Proposed by P. F. Refolio (Spain).

Prove

X

n=0 2n

n

2

16n(n + 1)3 = 16 log(2) − 32G π +48

π − 16 whereG =P

k=0 (−1)k

(2k+1)2 is the Catalan’s constant.

Solution proposed by Roberto Tauraso, Dipartimento di Matematica, Universit`a di Roma “Tor Vergata”, via della Ricerca Scientifica, 00133 Roma, Italy.

Solution. Let

Cn :=

2n n



n + 1 = 22n+1

π B(n + 1/2, 3/2) = 2 · 4n π

Z 1 0

xnr 1 − x x dx be the nth Catalan number where B(s, t) denotes the Beta function. For x ∈ (0, 1),

X

n=0

Cn(x4)n n + 1 = 1

x Z x

0

X

n=0

Cn

 t 4

n

dt = 2 x

Z x 0

1 −√ 1 − t t dt = 4

x

 1 −√

1 − x + log 1 +√ 1 − x 2



. Therefore, by the above integral representation of Cn, after letting x = cos2(t) we find

S : = X n=0

2n n

2 16n(n + 1)3 =

Z 1 0

r 1 − x x

X n=0

Cn(x4)n n + 1 dx

= 8 π

Z 1 0

√1 − x − 1 + x +√

1 − x log(1+21−x)

x3/2 dx

= 16 π

Z π/2 0



tan2(t) − tan2(t) sin(t) + tan2(t) log 1 + sin(t) 2



dt.

Now we have that Z π/2

0

tan2(t) − tan2(t) sin(t) dt = tan(t)(1 − sin3(t)) − (2 + sin2(t)) cos(t) − tπ/2

0 = 2 −π 2, and

Z π/2 0

(1 + tan2(t)) log 1 + sin(t) 2

 dt =

Z π/2 0

D(tan(t)) log 1 + sin(t) 2

 dt

= 0 − Z π/2

0

sin(t)

1 + sin(t)dt = −



t + 2

1 + tan(t/2)

π/2 0

= 1 −π 2. Moreover, since

log(1 + cos(t)) = log(1 + eit) + log(1 + e−it) − log(2)

=

X

k=1

(−1)k−1eikx

k +

X

k=1

(−1)k−1e−ikx

k − log(2) = 2

X

k=1

(−1)k−1cos(kx)

k − log(2)

it follows that Z π/2

0

log 1 + sin(t) 2

 dt =

Z π/2

0 log(1 + cos(t)) dt −π log(2)

2 = 2

X

k=1

(−1)k−1 k

Z π/2

0 cos(kx) dx − π log(2)

= 2

X

k=1

(−1)k−1sin(kπ/2)

k2 − π log(2) = 2G − π log(2).

Finally

S = 16 π

2 − π 2

+ 1 − π

2



− (2G − π log(2))

= 16 log(2) − 32G π +48

π − 16.



Riferimenti