• Non ci sono risultati.

Evaluate n−1 X k=0,k6=m cot2 (m − k)π n

N/A
N/A
Protected

Academic year: 2021

Condividi "Evaluate n−1 X k=0,k6=m cot2 (m − k)π n"

Copied!
1
0
0

Testo completo

(1)

Problem 12099

(American Mathematical Monthly, Vol.126, March 2019) Proposed by M. Bataille (France).

Letm and n be integers with 0 ≤ m ≤ n − 1. Evaluate

n−1

X

k=0,k6=m

cot2 (m − k)π n

 .

Solution proposed by Roberto Tauraso, Dipartimento di Matematica, Universit`a di Roma “Tor Vergata”, via della Ricerca Scientifica, 00133 Roma, Italy.

Solution. Let j = m − k then

n−1

X

k=0,k6=m

cot2 (m − k)π n



=

−1

X

j=m−n+1

cot2 jπ n

 +

m

X

j=1

cot2 jπ n



=

n−1

X

j=m+1

cot2 (j − n)π n

 +

m

X

j=1

cot2 jπ n



=

n−1

X

j=1

cot2 jπ n



which means that the given sum does not depend on m.

Moreover, by De Moivre’s formula,

sin(nt) = Im ((cos(t) + i sin(t))n) =

⌊n/2⌋

X

k=0

(−1)k

 n 2k + 1



cosn−(2k+1)(t) sin2k+1(t).

Hence, by letting t = jπ/n with 1 ≤ j ≤ n − 1, we have that

⌊n/2⌋

X

k=0

(−1)k

 n 2k + 1



cotn−(2k+1) jπ n



= 0,

which implies that the polynomial

P (z) :=

⌊n/2⌋

X

k=0

(−1)k

 n 2k + 1



zn−(2k+1)= nzn−1−n 3



zn−3+ . . .

has degree n − 1 and it has n − 1 distinct solutions given by zj := cot n for 1 ≤ j ≤ n − 1.

Therefore, by Vieta’s formulas,

n−1

X

k=0,k6=m

cot2 (m − k)π n



=

n−1

X

j=1

z2j =

n−1

X

j=1

zj

2

−2

 X

1≤j<k≤n−1

zjzk

= 0 − 2− n3

n =(n − 1)(n − 2)

3 .



Riferimenti