• Non ci sono risultati.

Show that ∞ X k=1 akFkF2k−1 2k − 1 ∞ X n=0 (−1)kn Fkn+2k−1Fkn+3k−1 =π 4

N/A
N/A
Protected

Academic year: 2021

Condividi "Show that ∞ X k=1 akFkF2k−1 2k − 1 ∞ X n=0 (−1)kn Fkn+2k−1Fkn+3k−1 =π 4"

Copied!
1
0
0

Testo completo

(1)

Problem 11505

(American Mathematical Monthly, Vol.117, May 2010) Proposed by B. Burdick (USA).

Define {an} to be the periodic sequence given by a1= a3= 1, a2= 2, a4= a6= −1, a5= −2, and an= an−6 forn ≥ 7. Let {Fn} be the Fibonacci sequence with F1= F2= 1. Show that

X

k=1

akFkF2k−1

2k − 1

X

n=0

(−1)kn Fkn+2k−1Fkn+3k−1

=π 4.

Solution proposed by Roberto Tauraso, Dipartimento di Matematica, Universit`a di Roma “Tor Vergata”, via della Ricerca Scientifica, 00133 Roma, Italy.

By d’Ocagne’s identity

FNFM+1− FN+1FM = (−1)MFN −M we have that for M = kn + 2k − 1 and N = k(n + 1) + 2k − 1

(−1)kn Fkn+2k−1Fkn+3k−1

= −Fk(n+1)+2k−1Fkn+2k+ Fk(n+1)+2kFkn+2k−1

FkFkn+2k−1Fk(n+1)+2k−1

= 1 Fk

 Fk(n+1)+2k

Fk(n+1)+2k−1 − Fkn+2k

Fkn+2k−1

.



Hence

X

n=0

(−1)kn Fkn+2k−1Fkn+3k−1

= 1 Fk

X

n=0

 Fk(n+1)+2k

Fk(n+1)+2k−1 − Fkn+2k

Fkn+2k−1

.



= 1 Fk



Φ − F2k

F2k−1



where Φ = (√

5 + 1)/2. Therefore

S :=

X

k=1

akFkF2k−1

2k − 1

X

n=0

(−1)kn Fkn+2k−1Fkn+3k−1

=

X

k=1

ak(ΦF2k−1− F2k) 2k − 1 =

X

k=1

ak(Φ)(2k−1) 2k − 1 because FN+1− ΦFN = (−Φ)−N.

Since ak= 2Im(exp(πi/6)2k−1) then by letting z = exp(πi/6)/Φ = (√

3 + i)/(2Φ) we obtain

S = 2Im

X

k=1

1 2k − 1

 exp(πi/6) Φ

2k−1!

= Im



ln 1 + z 1 − z



= Arg 1 + z 1 − z



= arctan 2Im(z) 1 − |z|2



= arctan

 1/Φ 1 − 1/Φ2



= arctan(1) = π 4.



Riferimenti