• Non ci sono risultati.

Prove Z 1 0 log(x6+ 1) x2+ 1 dx = π log(6) 2 − 3G, whereG is the Catalan’s constantP∞ k=0(−1)k/(2k + 1)2

N/A
N/A
Protected

Academic year: 2021

Condividi "Prove Z 1 0 log(x6+ 1) x2+ 1 dx = π log(6) 2 − 3G, whereG is the Catalan’s constantP∞ k=0(−1)k/(2k + 1)2"

Copied!
1
0
0

Testo completo

(1)

Problem 12221

(American Mathematical Monthly, Vol.127, December 2020) Proposed by N. Batir (Turkey).

Prove

Z 1 0

log(x6+ 1)

x2+ 1 dx = π log(6) 2 − 3G, whereG is the Catalan’s constantP

k=0(−1)k/(2k + 1)2.

Solution proposed by Roberto Tauraso, Dipartimento di Matematica, Universit`a di Roma “Tor Vergata”, via della Ricerca Scientifica, 00133 Roma, Italy.

Solution. By letting x = 1/t, I :=

Z 1

0

log(x6+ 1) x2+ 1 dx =

Z +∞

1

log(1/t6+ 1) t2+ 1 dt =

Z +∞

1

log(t6+ 1) t2+ 1 dt − 6

Z +∞

1

log(t) t2+ 1dt.

We have Z

1

log(t)

t2+ 1dt = − Z 1

0

log(x)

1 + x2dx = − Z 1

0 log(x) d(arctan(x)) = [− log(x) arctan(x)]10+ Z 1

0

arctan(x)

x dx

= 0 + Z 1

0

X

k=0

(−1)kx2k 2k + 1 dx =

X

k=0

(−1)k (2k + 1)2 = G.

Hence, since x6+ 1 = (x2+ 1)(x2+√

3x + 1)(x2−√

3x + 1), we find I = 1

2 Z 1

0

log(x6+ 1) x2+ 1 dx + 1

2 Z +∞

1

log(t6+ 1) t2+ 1 dt − 3

Z +∞

1

log(t) t2+ 1dt = 1

2 Z +∞

0

log(x6+ 1)

x2+ 1 dx − 3G

=J(0) + J(√

3) + J(−√ 3)

2 − 3G,

where, for |a| < 2, J(a) =

Z +∞

0

log(x2+ ax + 1) x2+ 1 dx =

Z π/2 0

log

 1

cos2(t)+ a tan(t)

 dt

= Z π/2

0

log 1 +a

2sin(2t) dt − 2

Z π/2 0

log(cos(t)) dt

= Z π/2

0

log 1 +a

2sin(t)

dt + π log(2).

In the last step we appliedRπ/2

0 log(cos(t)) dt = −π2log(2) which follows from Z π/2

0

log(cos(t)) dt = Z π/2

0

log(sin(t)) dt =1 2

Z π/2 0

log(sin(2t)/2) dt = 1 2

Z π/2 0

log(sin(t)) dt −π 4log(2).

By using the Wallis’ formulaRπ2

0 sin2n(x) dx =π241n 2nn, J(a) + J(−a) =

Z π/2 0

log

 1 − a2

4 sin2(t)



dt + 2π log(2)

= −

X

n=1

(a2/4)n n

Z π/2 0

sin2n(t) dt + 2π log(2)

= −π 2

X

n=1

a2n 16nn

2n n



+ 2π log(2) = π log 1 +p1 − a2/4 2

!

+ 2π log(2).

Finally,

I = J(0) + J(√

3) + J(−√ 3)

2 − 3G = π log(2) + π log 34 + 2π log(2)

2 − 3G = π log(6)

2 − 3G.



Riferimenti