• Non ci sono risultati.

1 n n X k=1 cot(θk/2) sin θk (x − cos θk)2+ sin2θk where wk= exp(iθk) with θk = (2k − 1)π/n for k = 1

N/A
N/A
Protected

Academic year: 2021

Condividi "1 n n X k=1 cot(θk/2) sin θk (x − cos θk)2+ sin2θk where wk= exp(iθk) with θk = (2k − 1)π/n for k = 1"

Copied!
2
0
0

Testo completo

(1)

Problem 11873

(American Mathematical Monthly, Vol.122, December 2015) Proposed by E. J. Ionascu (USA).

Show that forn ∈ N with n ≥ 2,

n

X

k=1



1 − 2k − 1 n



cot(2k − 1)π

2n =

n−1

X

k=1

csckπ n .

Solution proposed by Roberto Tauraso, Dipartimento di Matematica, Universit`a di Roma “Tor Vergata”, via della Ricerca Scientifica, 00133 Roma, Italy.

First solution. We will show the identity by computing the integral

In:=

Z 1 0

1 − xn−1 (1 − x)(1 + xn)dx in two different ways.

By using the partial fraction decomposition, for x ≥ 0,

1 − xn−1 (1 − x)(1 + xn) =

n

X

k=1

1−wnk−1 (1−wk)nwnk−1

x − wk = −i n

n

X

k=1

cot(θk/2) x − wk

= 1 n

n

X

k=1

cot(θk/2) · Im

 1

x − wk



= 1 n

n

X

k=1

cot(θk/2) sin θk

(x − cos θk)2+ sin2θk

where wk= exp(iθk) with θk = (2k − 1)π/n for k = 1, . . . , n are the n-th roots of −1. Hence

In = 1 n

n

X

k=1

cot(θk/2) Z 1

0

sin θk

(x − cos θk)2+ sin2θk

dx

= 1 n

n

X

k=1

cot(θk/2)



arctan x − cos θk

sin θk

1 0

= π 2n

n

X

k=1



1 − 2k − 1 n



cot(2k − 1)π 2n . On the other hand, we have that,

In = Z 1

0

Pn−1 k=1xk−1 1 + xn dx = 1

2

n−1

X

k=1

Z 1 0

xk−1 1 + xndx +

Z 1 0

xn−k−1 1 + xn dx



=1 2

n−1

X

k=1

Z 1 0

xk−1 1 + xn dx +

Z 1 +∞

(1/x)n−k−1 1 + (1/x)n d(1/x)



=1 2

n−1

X

k=1

Z 1 0

xk−1 1 + xn dx +

Z +∞

1

xk−1 1 + xn



=1 2

n−1

X

k=1

Z +∞

0

xk−1

1 + xn dx = π 2n

n−1

X

k=1

csckπ n .

The proof is complete as soon as we compare the two formulas for In. 

(2)

Second solution. It is known that for z = e with θ ∈ R,

cot θ = i z + z1

z − z1 = i + 2i

z2−1 and csc θ = 2i

z − z1 = 2iz z2−1 Hence, by letting z = eiπ/n, the identity is equivalent to

n

X

k=1



1 − 2k − 1 n

 

i + 2i z2k−1−1



=

n−1

X

k=1

2izk z2k−1 that is

n

X

k=1



1 −2k − 1 n



· 1

z2k−1−1 =

n−1

X

k=1

zk z2k−1. The above identity holds because

n

X

k=1



1 −2k − 1 n



· 1

z2k−1−1 =

2n−1

X

k=1

 1 − k

n



· 1 zk−1 −

n−1

X

k=1

 1 − 2k

n



· 1 z2k−1

=

2n−1

X

k=1

1 zk−1 −1

n

2n−1

X

k=1

k zk−1 −1

2

n−1

X

k=1

1 zk−1 +1

2

n−1

X

k=1

1 zk+ 1

+1 n

n−1

X

k=1

k zk−1 −1

n

n−1

X

k=1

k zk+ 1

=

2n−1

X

k=n

1 zk−1 −1

n

2n−1

X

k=n

k zk−1 +1

2

n−1

X

k=1

1 zk−1 +1

2

n−1

X

k=1

1 zk+ 1

−1 n

2n−1

X

k=n

k − n zk−n+ 1

zn=−1

=

2n−1

X

k=n

1 zk−1 −1

n

2n−1

X

k=n

k zk−1 +

n−1

X

k=1

zk z2k−1+ 1

n

2n−1

X

k=n

k − n zk−1

=

n−1

X

k=1

zk z2k−1.



Riferimenti