• Non ci sono risultati.

The neoclassical model of economic growth

N/A
N/A
Protected

Academic year: 2021

Condividi "The neoclassical model of economic growth"

Copied!
40
0
0

Testo completo

(1)

The neoclassical model of economic growth

• Robert Solow (1956)Robert Solow (1956)

• Trevor Swan (1956)

Give rise to the ‘Solow‐Swan model’

(2)

premises p

Closed economy with 1 final output  Y

Exogenous labor supply L

Exogenous labor supply L

Initial physical capital stock  K0

At d t t ilib i i ll k t Y L K •

At every date t, equilibrium in all markets: Y, L, K Equilibrum may be interpreted as:

f fl bl

‐ outcome of flexible competitive prices

‐ outcome of active policy intervention

(3)

The neoclassical production function The neoclassical production function

K = capital L = labor A = technology K = capital L = labor A = technology

Y = F(K, L, A)

Assumption 1

• F(0, L, A) = F(K, 0, A) = 0  K and L are necessary

• F(λK λL A) = λYF(λK, λL, A) = λY constant returns to the scale of K Lconstant returns to the scale of K, L

• FK > 0 FKK < 0  deacreasing marginal product of K

• FL > 0 FLL < 0  deacreasing marginal product of L

(4)
(5)

MPK = F

K

= slope of (F(K) K)

MPK = F

K

= slope of (F(K), K)

(6)

Zero profit under competition Zero profit under competition

i l ’ h h

Using Euler’s theorem, constant returns to the  scale of K, L implies:

KF+ L FL = F(K, L, A)

Cost minimization in a competitive economy:

i l l R ( δ) F

capital rental RK = (r + δ) = FK

wage rate w = FL

Y = F(K, L, A) = 

KR

+ Lw

(7)
(8)

The slope of an isoquant at one point is the ratio MPL/MPK at that point

(9)

Steady states y

Definition: 

A steady state is a growth path on which every variable grows at a constant rate for ever

‐ variables that are bounded by definition are constant on a steady state ( their growth rate is zero)

example: wage share, profit share, propensity to save

‐ Analytical motivations for steady states:y y Steady state relations are easier to study

(10)

Empirical motivation for steady states

(11)

Existence of steady states requires labor ti t h l

augmenting technology

This requires writing Y = F(K, L, A)

in the form Y = F(K, LA)

LA = efficiency unts of labor LA = efficiency unts of labor

(12)

The neoclassical growth model

Robert Solow (1956) Trevor Swan (1956)

• Assume that economic agents save a constant fraction of their gross income:g

St = sYt

Ab f h i h h i

Abstrat from changes in st through time as resulting from intertemporal utilility

maximization

(13)

Solow model in discrete time with constant L and A

(14)

Steady state

Steady state

(15)
(16)
(17)

Non existence of a positive stationary

state when Inada conditions fail

(18)

Multiplicity of stationary states when

marginal returns are variable

(19)

k** maximizes steady state consumption

output

depreciation depreciation

yy

k k**

steady-state per-capita

steady-state per-capita k

= steady-state investment

(20)

The golden rule savings rate s*

The golden‐rule savings rate s

• The value

k**

maximizing per‐capita consumption is defined by:

consumption is defined by:

• Max: f(k) − δk ( )

hence…

• f’(k**) = δ ( ) this defines k**

• s* f(k**) = δk**

• s* = δk**/ f(k**)  this defines s*

(21)

The golden‐rule savings rate

(22)

Transitional dynamics

(23)

Solow model in continuous time with

growing population and technology

(24)

Rate of depreciation of capital in efficiency units Rate of depreciation of capital in efficiency units

• if the number of workers is growing with population growth

p p g

• If the efficiency of workers is growing with technological progress

technological progress

• k = K/AL depreciates not only as a result of

physical depreciation δ, but also as a result of population growing at rate n and of efficiency population growing at rate n and of efficiency growing at rate g

Th d i ti t f k i (δ )

The depreciation rate of k is (δ + n + g)

(25)
(26)

Per‐capita consumption and investment with g = 0

(27)

The previous slide shows:

The previous slide shows:

• f(k) / k = is a deceasing function of k

• f(k) = output in efficiency untsf(k)   output in efficiency unts

• k = capital in efficiency units

• As k gets higher, the marginal product of capital gets lower, causing the fall of f(k)/kp g , g ( )/

(28)

Growth rate of K/AL

= rate of growth of capital per unit of

efficiency

(29)

Exogenous growth

(30)

Definition of exogenous growth Definition of exogenous growth

• Steady state growth rate of per‐capita output :

‐ does not depend on the savings ratedoes not depend on the savings rate

‐ is exogenous (is not explained by the model) 

(31)

Effects of a higher savings rate s

(32)
(33)

output per-capita=steady-state steady-state capital per unit of efficiency

(34)

The long run The long‐run

• Long‐run GDP per capita is

If population growth n and technological  progress g are uniform across countries:

p g g

• Long‐run GDP per capita is higher if

savings rate s is higher, hence  k* is higher

initial level of efficiency Ainitial level of efficiency A00 is higheris higher

(35)

The long run The long‐run

Savings rate s does not differ so much across

countries to justify the observed large differencesj y g in GDP per capita

• As we have seen in the Cobb Douglas example

• As we have seen in the Cobb‐Douglas example, 

steady state k* is uniform, is s, g and n are uniform

• We are still given the possibility of explaining why one country is richer than the other, by invoking one country is richer than the other, by invoking the reasons why its initial efficiency A0 is higher

(36)

The transition to the long‐run

Convergence:

Convergence:

unconditional vs conditional

(37)

Unconditional convergence: an economy farther

f th t d t t f t

away from the same steady state, grows faster

(38)

Conditional convergence: growth rate during transition depends on   distance from steady sate.  A’s saving rate = s; B’s savings rate = s’

(39)

Conditional convergence Conditional convergence

• In the previous slide,  if countries A and B have the  same initial condition k0  < k* < k**, then, during the g transition to steady state, country B grows faster

than country A because it has higher propensity to than country A, because it has higher propensity to save.

h l h f

• The transitional growth component of a country is an increasing funcion of its distance from its steady  state  kt* − k0.

Other things equal kt* − k0 is larger if is higher

Other things equal, kt k0 is larger if is higher,  because k0 = K0 / (L0 A0)

- s

(40)

Summing up Summing up

The long‐run GDP per capita is an increasing function of the

The long‐run GDP per capita is an increasing function of the  savings rate and of the initial efficiency level of a country

Th i t t th t f GDP it i

The persistent growth component of GDP per capita is uniformly equal to g

The transitional growth component of GDP per capita is an increasing function of initial distance from the country

steady state.

Other things equal, initial distance from steady state is larger if:

‐ propenisty to save s is higherp p y g

‐ initial level of country efficiency A0 is higher

Riferimenti

Documenti correlati

[r]

Questo risultato ottenuto può avere un effetto negativo sul brand Louis Vuitton nel lungo periodo, in quanto i consumatori possono ritenere più conveniente acquistare i prodotti in

(a) Confocal fluorescence microscopy image of crystals and fibers of 1, the image is a merge of fluorescence collected with two PMT with bandpass filters 525/50 nm and 595/50 nm.

Il libro di Mannia rappresenta senz’altro un’utile lettura per chi desideri acquisire adeguate conoscenze sulle principali dinamiche che hanno segnato le sorti della pasto- rizia

che va perseguito sin dall'impostazione progettuale (prima di tutto a livello delle scelte di base) in quella particolare fase della progettazione architettonica in

In this article, we have reported the synthesis and the structural characterization of a novel amphiphilic monomer (PCA) containing in the same molecule three different functions:

The data in this News Release can be subject to revisions, caused by updates to the seasonally adjusted series whenever new monthly data are added; the inclusion of the most

The youth unemployment rate is the number of people aged 15 to 24 unemployed as a percentage of the labour force of the same age.. Therefore, the youth unemployment rate should not