• Non ci sono risultati.

Magnetic knots and groundstate energy spectrum:

N/A
N/A
Protected

Academic year: 2021

Condividi " Magnetic knots and groundstate energy spectrum:"

Copied!
19
0
0

Testo completo

(1)

Lecture 3

Magnetic knots and groundstate energy spectrum:

- Magnetic relaxation

- Topology bounds the energy

- Inflexional instability of magnetic knots

- Constrained minimization of magnetic energy

- Groundstate energy spectra of magnetic knots and links - Bending energy spectra: Magnetic vs. elastic systems

Selected references

Maggioni, F & Ricca, RL 2009 On the groundstate energy of tight knots.

Proc R Soc A 465, 2761.

Ricca, RL 2008 Topology bounds energy of knots and links. Proc R Soc A 464, 293.

Ricca, RL & Maggioni, F 2014 On the groundstate energy spectrum of

magnetic knots and links. J Phys A: Math & Theor 47, 205501.

(2)

Magnetic relaxation

Magnetic relaxation (Moffatt 1985): consider in a viscous and perfectly conducting fluid;

Near equilibrium we have:

Thus:

with magnetic energy monotonically decreasing as . t → ∞

dM

dt = B ⋅B

t

V B

( ) ∫ d

3

X = B ⋅ ∇ × u × B ( )

V B

( ) ∫ d

3

X

= − u ⋅ ∇ × B ( ) × B

V B

( ) ∫ d

3

X = − u ⋅ J × B [ ]

V B

( ) ∫ d

3

X

Du

Dt ∝ u

hence

dM

dt ∝ − u

V

( ) ∫

Ln 2

d

3

X ⇒ M ( L

n,ϕ

)

t

Du

Dt = − ∇p + J × B ⇒ u ∝ −∇p + J × B ϕ :L

n

→ L

n,ϕ

.

.

(3)

Magnetic relaxation to groundstate

Lk

i

= 0 ∀i

N components same flux

Magnetic helicity:

H = A ⋅ B

V (B)

d

3

x = Φ

2

Lk

ij

i≠ j

Φ Φ

1

Φ

1

Φ

2

Φ

2

ϕ ϕ

knot tightening link tightening

Magnetic relaxation (Moffatt 1985) under -preserving flow: { V, Φ

i

}

Theorem 1 (Freedman 1988; Moffatt 1990).

i)

+

l.b.: lim ; ii) ,

t→∞

M t ( ) = M

inf

M

min

= m Φ

2

V

1/3

where is a topological invariant of . m L

N

.

Φ

i

= Φ .

Φ

ϕ :L

n

→ L

n,ϕ

Let be a “zero-framed” magnetic link:

(4)

Topology bounds the energy

Theorem 2 (Arnold 1974; Freedman & He 1991).

i) ; ii) , where depends on the geometry of .

M t ( ) ≥ q H

q > 0 supp B ( )

M t ( ) 2

π

1/ 3

Φ

2

C V

1/ 3

L n

Theorem (Ricca 2008). Let be a zero-framed link. Then, we have:

I) : ,

II) : . M

min

= 2 π

1/3

c

min

Φ

2

V

1/3

M t ( ) 2

π

1/ 3

1

V

1/ 3

H

m = 2 π

1/3

c

min

q = 2

π

1/3

1 V

1/3

Proof:

From and we have Φ

i

= Φ Lk

i

= 0 ∀i ∈ 1,..., n ( )

from C = ε

r

and , we have

r

i≠ j

i≠ j

Lk

ij

= 1 2

i≠ j

r

ε

r

H = Φ

2

Lk

i

;

i = j

+ Lk

ij

i≠ j

= Φ

2

Lk

ij

i≠ j

= 0

(5)

. Therefore

. Now, from Theorem 2(ii), we have:

or

;

H = Φ

2

Lk

ij

i≠ j

≤ Φ

2

C C ≥ Φ H

2

M ≥ 2 π

1/ 3

Φ

2

C

V

1/ 3

≥ 2 π

1/ 3

Φ

2

c

min

V

1/ 3

also, by using above, we have:

Hence, from Theorem 2(i) follows (I). Moreover, at , from Theorem 1(ii) we have (II).

.

M

min

2 π

1/3

Φ

2

C

V

1/3

≥ 2 π

1/3

Φ

2

V

1/3

H

Φ

2

= 2 π

1/3

H V

1/3

(∗)

(∗)

In general, we have:

Question: do knot types of same c

min

relax to same groundstate energy?

M

min

∝ c

min

C ≥ ε

r

r

i≠ j

= Lk

ij

i≠ j

Lk

ij

i≠ j

(6)

Inflexion at I (in isolation): c = 0 generic behaviour in : 3

(Ricca & Moffatt 1992)

Reidemeister type I move in action:

(TRACE mission 2002)

F m F

∝ c ˆn

Lorentz force

inflexion

I X s, t ( ) = s − 2

3 t

2

s

3

, −ts

2

, s

3

Inflexional magnetic knots

(7)

From inflexion-free knots to magnetic braids

Definition. A knot in an inflexion-free configuration is a spiral knot.

Theorem (Ricca 2005). Let denote a loose magnetic knot in inflexional state. Then is in inflexional disequilibrium. K

t0

K

t0

Corollary. If is in inflexional disequilibrium, it relaxes to a spiral knot , for K t >t t

0

0 .

K t

inflexional

instability

(8)

From minimal knots to spiral knots

(9)

Knots and links tabulation

10-crossing knot table (Tait 1885)

3-component links by KnotPlot

(Scharein 2000)

up to arbitrarily large # crossings

O(10

6

)

(10)

Groundstate energy of zero-framed knots and links

Relaxation of 0-framed, 5-crossing knots:

M

min

∝ c

min

Under signature-preserving flows, we have:

V = 1, Φ = 1, 0-framing c

min

# knot types

3 1

4 1

5 2

6 3

7 7

8 21

9 49

10 166

… …

ϕ K (

5.1

)

ϕ K

(

5.2

)

6

13

6

23

0

4

(11)

magnetic field:

B = 0, 1 L

P

dr , 1 2 π r

T

dr + 0, ∂ψ

s , − ∂ψ

∂ϑ

twist parameter:

fluxes , :

Φ

P

Φ

T

Constrained minimization of magnetic energy of knots

B = 0, B (

ϑ

( ) r , B

s

( ) r )

Φ

P

Φ

T

tubular knot : ; Mercier (orthogonal) system:

Theorem (Maggioni & Ricca 2009). Let us assume that (i) { V, Φ } invariant ( V = 1, Φ = 1 );

(ii) circular cross-section independent of arc-length;

(iii) independent of arc-length;

(iv) L independent of internal twist.

Then, we have ψ ˜

.

K V K ( ) = π a

2

L ( r,ϑ,s )

h = Φ

P

/ Φ

T

∇ ⋅ B = 0

( )

R

*

L

*

ropelength: λ = L * /R * M

λ*

( ) h = λ

4/3

2 π

2/3

+

π

4/3

h

2

λ

2/3

= m( λ , h)

(12)

c min

h

3 4 5

6 7

8 9

10 Groundstate energy spectrum: averaging over complexity

m( λ , h)

c min

m

min

( ) h = 3

2 π

2/3

h

4/3

( h ≥ 2 )

(see also Chui & Moffatt 1992)

tightening: V = 1, Φ = 1 , h = 0

SONO ( Pieranski et al. 1998)

RIDGERUNNER (Ashton et al. 2010)

(13)

Groundstate energy spectrum of first 250 prime knots

10 crossings

9 crossings

8 crossings

7 crossings

6 crossings

5 crossings 4 crossings 3 crossings

m(#

K

) = m ( λ (#

K

), 0 )

M

ο*

= λ (#

K

) 2 π

4/3

m(#

K

)

#

K

M

ο*

= 2 ( π

2

)

1/3

V = 1, Φ = 1 , h = 0 tight unknot:

(Rolfsen table)

(14)

m(#

K

) = 4.5ln #

K

+10.5

best fit:

linear fit over c

min

-families

Tight knots

RIDGERUNNER

m(#

K

)

m(#

K

) = m ( λ (#

K

), 0 )

M

ο*

= λ (#

K

) 2 π

4/3

M

ο*

= 2 ( π

2

)

1/3

V = 1, Φ = 1 , h = 0 tight unknot:

Knot energy spectrum by increasing ropelength (Ricca & Maggioni 2014)

#

K

RIDGERUNNER

(increasing ropelength)

(15)

m(#

K

)

m(#

K

) = m ( λ (#

K

), 0 )

M

ο*

= λ (#

K

) 2 π

4/3

m(#

K

) = 4.5ln #

K

+ 9.3

best fit:

linear fit over c

min

-families

Tight links M

ο*

= 2 ( π

2

)

1/3

V = 1, Φ = 1 , h = 0 tight unknot:

Link energy spectrum by increasing ropelength (Ricca & Maggioni 2014)

#

K

(increasing ropelength)

RIDGERUNNER

(16)

V = 1, h = 0

Bending energy spectrum of elastic knots

e(#

K

) e(#

K

)

e(#

K

) = 0.2 ln #

K

+ 0.6

best fit:

linear fit over c

min

-families

Tight knots

RIDGERUNNER

#

K

RIDGERUNNER

e = E

b

E

o

= ∫

K

[ c(s) ]

2

ds

2

4/3

π

5/3

E

o

= π R

*

2

1/3

π

5/3

tight torus:

(increasing ropelength)

(17)

e = E

b

E

o

= ∫

K

[ c(s) ]

2

ds

2

4/3

π

5/3

E

o

= π R

*

2

1/3

π

5/3

V = 1, h = 0 tight torus:

Bending energy spectrum of elastic links

e(#

K

) e(#

K

)

e(#

K

) = 0.2 ln #

K

+ 0.5

best fit:

linear fit over c

min

-families

Tight links

RIDGERUNNER RIDGERUNNER

#

K

(increasing ropelength)

(18)

Magnetic versus bending energy (Ricca & Maggioni 2017)

#

K

(increasing ropelength)

χ (#

K

)

χ (#

K

)

8_4_3

Tight knots: χ (#

K

) = 21.62

Tight links: χ (#

K

) = 21.42

(19)

λ (#

K

)

[ ]

4/3

∝ a ln #

K

+ b [ λ (#

K

) ]

4/3

∝ c

min

in partial agreement with

O c ( )

min3/4

λ (#

K

) ≤ O c (

min

ln

5

c

min

)

(Buck & Simon 1999; Cantarella et al . 2002; Diao 2003; Diao et al. 2013).

m c (

min

) M

min

m

ο

= c

min

π

λ ( ) #

K

≥ 2 π

1/4

c

min3/4

≈ 2.66 c

min3/4

; then , or

From lower bounds on energy (V = 1, Φ = 1 ), we have:

M

min

= 2 π

1/3

c

min

and ; since

∀ c

min

better than Buck & Simon (1999), where constant (4π/11) 3/4 ≈ 1.10 . then

, .

,

m(#

K

) ∝ [ λ (#

K

) ]

4/3

Assumption: , then from we have

m # ( )

K

≥ m c (

min

) = c

min

π ,

λ (# K ) ∝ c min 3/4

# K ~ A c

min

Ropelength versus topological crossing number

Riferimenti

Documenti correlati

significativamente all’incremento della viscosità del liquido ionico La dipendenza della viscosità dalla temperatura nel caso dei liquidi ionici è molto più

Figure 3.12 Plots representing normalized root mean squared (RMS) error as a function of level of missingness for different levels of missingness and imputation method for

Tempi, spazi e relazioni nel sertão di Guimarães

Quanto è stato previsto a livello ministe- riale – e prima ancora nel documento del- la FISM – per tutelare la salute di bambini, personale, famiglie rispetto alla pandemia

Sono tante le epatiti ma a rischio trasmissione sessuale sembra essere solo il tipo B, un virus comunque da evitare.. Dica33.it

PM (total suspended particles) was sampled in the urban area of Milan at two sites: a traffic site (TR, within the Campus of the University of Milano Bicocca) and a limited

È inoltre evidente che occorre confrontare le osservazioni sul secondo Cinquecento col momento aureo di normalizzazione della lingua poetica – per cui ho