• Non ci sono risultati.

Magnetic knots and groundstate energy spectrum:

N/A
N/A
Protected

Academic year: 2021

Condividi " Magnetic knots and groundstate energy spectrum:"

Copied!
19
0
0

Testo completo

(1)

Lecture 3

Magnetic knots and groundstate energy spectrum:

- Magnetic relaxation

- Topology bounds the energy

- Inflexional instability of magnetic knots

- Constrained minimization of magnetic energy

- Groundstate energy spectra of magnetic knots and links - Bending energy spectra: Magnetic vs. elastic systems

Selected references

Maggioni, F & Ricca, RL 2009 On the groundstate energy of tight knots.

Proc R Soc A 465, 2761.

Ricca, RL 2008 Topology bounds energy of knots and links. Proc R Soc A 464, 293.

Ricca, RL & Maggioni, F 2014 On the groundstate energy spectrum of

magnetic knots and links. J Phys A: Math & Theor 47, 205501.

(2)

Magnetic relaxation

Magnetic relaxation (Moffatt 1985): consider in a viscous and perfectly conducting fluid;

Near equilibrium we have:

Thus:

with magnetic energy monotonically decreasing as . t → ∞

dM

dt = B ⋅B

t

V B

( ) ∫ d

3

X = B ⋅ ∇ × u × B ( )

V B

( ) ∫ d

3

X

= − u ⋅ ∇ × B ( ) × B

V B

( ) ∫ d

3

X = − u ⋅ J × B [ ]

V B

( ) ∫ d

3

X

Du

Dt ∝ u

hence

dM

dt ∝ − u

V

( ) ∫

Ln 2

d

3

X ⇒ M ( L

n,ϕ

)

t

Du

Dt = − ∇p + J × B ⇒ u ∝ −∇p + J × B ϕ :L

n

→ L

n,ϕ

.

.

(3)

Magnetic relaxation to groundstate

Lk

i

= 0 ∀i

N components same flux

Magnetic helicity:

H = A ⋅ B

V (B)

d

3

x = Φ

2

Lk

ij

i≠ j

Φ Φ

1

Φ

1

Φ

2

Φ

2

ϕ ϕ

knot tightening link tightening

Magnetic relaxation (Moffatt 1985) under -preserving flow: { V, Φ

i

}

Theorem 1 (Freedman 1988; Moffatt 1990).

i)

+

l.b.: lim ; ii) ,

t→∞

M t ( ) = M

inf

M

min

= m Φ

2

V

1/3

where is a topological invariant of . m L

N

.

Φ

i

= Φ .

Φ

ϕ :L

n

→ L

n,ϕ

Let be a “zero-framed” magnetic link:

(4)

Topology bounds the energy

Theorem 2 (Arnold 1974; Freedman & He 1991).

i) ; ii) , where depends on the geometry of .

M t ( ) ≥ q H

q > 0 supp B ( )

M t ( ) 2

π

1/ 3

Φ

2

C V

1/ 3

L n

Theorem (Ricca 2008). Let be a zero-framed link. Then, we have:

I) : ,

II) : . M

min

= 2 π

1/3

c

min

Φ

2

V

1/3

M t ( ) 2

π

1/ 3

1

V

1/ 3

H

m = 2 π

1/3

c

min

q = 2

π

1/3

1 V

1/3

Proof:

From and we have Φ

i

= Φ Lk

i

= 0 ∀i ∈ 1,..., n ( )

from C = ε

r

and , we have

r

i≠ j

i≠ j

Lk

ij

= 1 2

i≠ j

r

ε

r

H = Φ

2

Lk

i

;

i = j

+ Lk

ij

i≠ j

= Φ

2

Lk

ij

i≠ j

= 0

(5)

. Therefore

. Now, from Theorem 2(ii), we have:

or

;

H = Φ

2

Lk

ij

i≠ j

≤ Φ

2

C C ≥ Φ H

2

M ≥ 2 π

1/ 3

Φ

2

C

V

1/ 3

≥ 2 π

1/ 3

Φ

2

c

min

V

1/ 3

also, by using above, we have:

Hence, from Theorem 2(i) follows (I). Moreover, at , from Theorem 1(ii) we have (II).

.

M

min

2 π

1/3

Φ

2

C

V

1/3

≥ 2 π

1/3

Φ

2

V

1/3

H

Φ

2

= 2 π

1/3

H V

1/3

(∗)

(∗)

In general, we have:

Question: do knot types of same c

min

relax to same groundstate energy?

M

min

∝ c

min

C ≥ ε

r

r

i≠ j

= Lk

ij

i≠ j

Lk

ij

i≠ j

(6)

Inflexion at I (in isolation): c = 0 generic behaviour in : 3

(Ricca & Moffatt 1992)

Reidemeister type I move in action:

(TRACE mission 2002)

F m F

∝ c ˆn

Lorentz force

inflexion

I X s, t ( ) = s − 2

3 t

2

s

3

, −ts

2

, s

3

Inflexional magnetic knots

(7)

From inflexion-free knots to magnetic braids

Definition. A knot in an inflexion-free configuration is a spiral knot.

Theorem (Ricca 2005). Let denote a loose magnetic knot in inflexional state. Then is in inflexional disequilibrium. K

t0

K

t0

Corollary. If is in inflexional disequilibrium, it relaxes to a spiral knot , for K t >t t

0

0 .

K t

inflexional

instability

(8)

From minimal knots to spiral knots

(9)

Knots and links tabulation

10-crossing knot table (Tait 1885)

3-component links by KnotPlot

(Scharein 2000)

up to arbitrarily large # crossings

O(10

6

)

(10)

Groundstate energy of zero-framed knots and links

Relaxation of 0-framed, 5-crossing knots:

M

min

∝ c

min

Under signature-preserving flows, we have:

V = 1, Φ = 1, 0-framing c

min

# knot types

3 1

4 1

5 2

6 3

7 7

8 21

9 49

10 166

… …

ϕ K (

5.1

)

ϕ K

(

5.2

)

6

13

6

23

0

4

(11)

magnetic field:

B = 0, 1 L

P

dr , 1 2 π r

T

dr + 0, ∂ψ

s , − ∂ψ

∂ϑ

twist parameter:

fluxes , :

Φ

P

Φ

T

Constrained minimization of magnetic energy of knots

B = 0, B (

ϑ

( ) r , B

s

( ) r )

Φ

P

Φ

T

tubular knot : ; Mercier (orthogonal) system:

Theorem (Maggioni & Ricca 2009). Let us assume that (i) { V, Φ } invariant ( V = 1, Φ = 1 );

(ii) circular cross-section independent of arc-length;

(iii) independent of arc-length;

(iv) L independent of internal twist.

Then, we have ψ ˜

.

K V K ( ) = π a

2

L ( r,ϑ,s )

h = Φ

P

/ Φ

T

∇ ⋅ B = 0

( )

R

*

L

*

ropelength: λ = L * /R * M

λ*

( ) h = λ

4/3

2 π

2/3

+

π

4/3

h

2

λ

2/3

= m( λ , h)

(12)

c min

h

3 4 5

6 7

8 9

10 Groundstate energy spectrum: averaging over complexity

m( λ , h)

c min

m

min

( ) h = 3

2 π

2/3

h

4/3

( h ≥ 2 )

(see also Chui & Moffatt 1992)

tightening: V = 1, Φ = 1 , h = 0

SONO ( Pieranski et al. 1998)

RIDGERUNNER (Ashton et al. 2010)

(13)

Groundstate energy spectrum of first 250 prime knots

10 crossings

9 crossings

8 crossings

7 crossings

6 crossings

5 crossings 4 crossings 3 crossings

m(#

K

) = m ( λ (#

K

), 0 )

M

ο*

= λ (#

K

) 2 π

4/3

m(#

K

)

#

K

M

ο*

= 2 ( π

2

)

1/3

V = 1, Φ = 1 , h = 0 tight unknot:

(Rolfsen table)

(14)

m(#

K

) = 4.5ln #

K

+10.5

best fit:

linear fit over c

min

-families

Tight knots

RIDGERUNNER

m(#

K

)

m(#

K

) = m ( λ (#

K

), 0 )

M

ο*

= λ (#

K

) 2 π

4/3

M

ο*

= 2 ( π

2

)

1/3

V = 1, Φ = 1 , h = 0 tight unknot:

Knot energy spectrum by increasing ropelength (Ricca & Maggioni 2014)

#

K

RIDGERUNNER

(increasing ropelength)

(15)

m(#

K

)

m(#

K

) = m ( λ (#

K

), 0 )

M

ο*

= λ (#

K

) 2 π

4/3

m(#

K

) = 4.5ln #

K

+ 9.3

best fit:

linear fit over c

min

-families

Tight links M

ο*

= 2 ( π

2

)

1/3

V = 1, Φ = 1 , h = 0 tight unknot:

Link energy spectrum by increasing ropelength (Ricca & Maggioni 2014)

#

K

(increasing ropelength)

RIDGERUNNER

(16)

V = 1, h = 0

Bending energy spectrum of elastic knots

e(#

K

) e(#

K

)

e(#

K

) = 0.2 ln #

K

+ 0.6

best fit:

linear fit over c

min

-families

Tight knots

RIDGERUNNER

#

K

RIDGERUNNER

e = E

b

E

o

= ∫

K

[ c(s) ]

2

ds

2

4/3

π

5/3

E

o

= π R

*

2

1/3

π

5/3

tight torus:

(increasing ropelength)

(17)

e = E

b

E

o

= ∫

K

[ c(s) ]

2

ds

2

4/3

π

5/3

E

o

= π R

*

2

1/3

π

5/3

V = 1, h = 0 tight torus:

Bending energy spectrum of elastic links

e(#

K

) e(#

K

)

e(#

K

) = 0.2 ln #

K

+ 0.5

best fit:

linear fit over c

min

-families

Tight links

RIDGERUNNER RIDGERUNNER

#

K

(increasing ropelength)

(18)

Magnetic versus bending energy (Ricca & Maggioni 2017)

#

K

(increasing ropelength)

χ (#

K

)

χ (#

K

)

8_4_3

Tight knots: χ (#

K

) = 21.62

Tight links: χ (#

K

) = 21.42

(19)

λ (#

K

)

[ ]

4/3

∝ a ln #

K

+ b [ λ (#

K

) ]

4/3

∝ c

min

in partial agreement with

O c ( )

min3/4

λ (#

K

) ≤ O c (

min

ln

5

c

min

)

(Buck & Simon 1999; Cantarella et al . 2002; Diao 2003; Diao et al. 2013).

m c (

min

) M

min

m

ο

= c

min

π

λ ( ) #

K

≥ 2 π

1/4

c

min3/4

≈ 2.66 c

min3/4

; then , or

From lower bounds on energy (V = 1, Φ = 1 ), we have:

M

min

= 2 π

1/3

c

min

and ; since

∀ c

min

better than Buck & Simon (1999), where constant (4π/11) 3/4 ≈ 1.10 . then

, .

,

m(#

K

) ∝ [ λ (#

K

) ]

4/3

Assumption: , then from we have

m # ( )

K

≥ m c (

min

) = c

min

π ,

λ (# K ) ∝ c min 3/4

# K ~ A c

min

Ropelength versus topological crossing number

Riferimenti

Documenti correlati

PM (total suspended particles) was sampled in the urban area of Milan at two sites: a traffic site (TR, within the Campus of the University of Milano Bicocca) and a limited

È inoltre evidente che occorre confrontare le osservazioni sul secondo Cinquecento col momento aureo di normalizzazione della lingua poetica – per cui ho

Quanto è stato previsto a livello ministe- riale – e prima ancora nel documento del- la FISM – per tutelare la salute di bambini, personale, famiglie rispetto alla pandemia

Sono tante le epatiti ma a rischio trasmissione sessuale sembra essere solo il tipo B, un virus comunque da evitare.. Dica33.it

significativamente all’incremento della viscosità del liquido ionico La dipendenza della viscosità dalla temperatura nel caso dei liquidi ionici è molto più

Figure 3.12 Plots representing normalized root mean squared (RMS) error as a function of level of missingness for different levels of missingness and imputation method for

Tempi, spazi e relazioni nel sertão di Guimarães