• Non ci sono risultati.

1 − xn 1 − yn

N/A
N/A
Protected

Academic year: 2021

Condividi "1 − xn 1 − yn "

Copied!
1
0
0

Testo completo

(1)

Problem 11788

(American Mathematical Monthly, Vol.121, June-July 2014) Proposed by S. P. Andriopoulos (Greece).

Let n be a positive integer, and suppose that 0 < yi≤ xi< 1 for 1 ≤ i ≤ n. Prove that ln x1+ · · · + ln xn

ln y1+ · · · + ln yn

≤r 1 − x1 1 − y1

+ · · · + 1 − xn 1 − yn

.

Solution proposed by Roberto Tauraso, Dipartimento di Matematica, Universit`a di Roma “Tor Vergata”, via della Ricerca Scientifica, 00133 Roma, Italy.

We show by induction on n that a more general inequality holds: if 0 < yi ≤ xi < 1 for 1 ≤ i ≤ n and t ∈ [0, 1] then

ln x1+ · · · + ln xn

ln y1+ · · · + ln yn ≤ 1 − x1

1 − y1 + · · · + 1 − xn

1 − yn

t . For n = 1, since 0 < y1< 1 then ln y1< 0 and the inequality is equivalent to

ln x1

(1 − x1)t ≥ ln y1

(1 − y1)t

which holds because the map x → (ln x)/(1 − x)tis increasing in (0, 1):

Dx

 ln x (1 − x)t



= 1

x(1 − x)t+ t ln x

(1 − x)t+1 = (1/x) − 1 − t ln(1/x) (1 − x)t+1 > 0 where we used the fact that 1 < ln s < s − 1 for s > 1.

Now we prove the induction step. Since 0 < ynyn+1≤ xnxn+1< 1, by the inductive hypothesis, ln x1+ · · · + ln xn+ ln xn+1

ln y1+ · · · + ln yn+ ln yn+1

= ln x1+ · · · + ln(xnxn+1)

ln y1+ · · · + ln(ynyn+1) ≤ 1 − x1 1 − y1

+ · · · +1 − xnxn+1 1 − ynyn+1

t .

Since x → xtis increasing in [0, +∞), it suffices to show that 1 − xnxn+1

1 − ynyn+1

≤ 1 − xn

1 − yn

+1 − xn+1

1 − yn+1

which holds because the linear map x →1 − xn

1 − yn

+ 1 − x 1 − yn+1

− 1 − xnx 1 − ynyn+1

= 1 − xn

1 − yn

+ yn+1(1 − yn)

(1 − yn+1)(1 − ynyn+1)−x·(1 − xn) + yn+1(xn− yn) (1 − yn+1)(1 − ynyn+1)

is decreasing in [yn+1, 1] and positive at 1. 

Riferimenti

Documenti correlati

Solution proposed by Roberto Tauraso, Dipartimento di Matematica, Universit`a di Roma “Tor Vergata”, via della Ricerca Scientifica, 00133 Roma,

Solution proposed by Roberto Tauraso, Dipartimento di Matematica, Universit`a di Roma “Tor Vergata”, via della Ricerca Scientifica, 00133 Roma,

[r]

[r]

Solution proposed by Moubinool Omarjee, Lyc´ee Henri IV, Paris, France, and Roberto Tauraso, Dipartimento di Matematica, Universit`a di Roma “Tor Vergata”,

[r]

[r]

Therefore the sequence hx n i is positive