• Non ci sono risultati.

Let L= lim n→∞ Z 1 0 pn xn+ (1 − x)ndx

N/A
N/A
Protected

Academic year: 2021

Condividi "Let L= lim n→∞ Z 1 0 pn xn+ (1 − x)ndx"

Copied!
1
0
0

Testo completo

(1)

Problem 11941

(American Mathematical Monthly, Vol.123, November 2016) Proposed by O. Furdui (Romania).

Let

L= lim

n→∞

Z 1 0

pn

xn+ (1 − x)ndx.

(a) Find L.

(b) Find

n→∞lim n2

Z 1 0

pn

xn+ (1 − x)ndx − L

 .

Solution proposed by Roberto Tauraso, Dipartimento di Matematica, Universit`a di Roma “Tor Vergata”, via della Ricerca Scientifica, 00133 Roma, Italy.

Solution.

(a) Let t = 1−xx , then x = 1+tt , dx = (1+t)dt 2, and Z 1

0

pn

xn+ (1 − x)ndx= 2 Z 1/2

0 (1 − x)n s

1 +

 x 1 − x

n

dx= 2 Z 1

0

n

1 + tn (1 + t)3 dt.

Since for all t ∈ [0, 1],

n

1 + tn

(1 + t)3 → 1

(1 + t)3 and 0 ≤

n

1 + tn

(1 + t)3 ≤ 2 (1 + t)3, by the Lebesgue’s Dominated Convergence Theorem,

L= lim

n→∞

Z 1 0

pn

xn+ (1 − x)ndx= 2 Z 1

0

1

(1 + t)3 dt=



− 1

(1 + t)2

1 0

=3 4. (b) By letting s = tn, we obtain t = s1/n, dt = n1s1/n−1ds, and

n2

Z 1 0

pn

xn+ (1 − x)ndx − L



= 2n2 Z 1

0

n

1 + tn− 1 (1 + t)3 dt

= 2n Z 1

0

(1 + s)1/n− 1

(1 + s1/n)3 s1/n−1ds

= 2n Z 1

0

exp(n1ln(1 + s)) − exp(0)

(1 + s1/n)3 s1/n−1ds

= 2 Z 1

0

exp(hn(s)) ln(1 + s)

(1 + s1/n)3 s1/n−1ds

where 0 < hn(s) < n1ln(1 + s) is given by the Mean Value Theorem. Now for all s ∈ (0, 1], exp(hn(s)) ln(1 + s)

(1 + s1/n)3 s1/n−1→ ln(1 + s)

8s and 0 ≤ exp(hn(s)) ln(1 + s)

(1 + s1/n)3 s1/n−1≤ 2 ln(1 + s)

s .

Hence, by the Lebesgue’s Dominated Convergence Theorem,

n→∞lim n2

Z 1 0

pn

xn+ (1 − x)ndx − L



=1 4

Z 1 0

ln(1 + s) s ds= 1

4 Z 1

0

X

k=1

(−1)k−1sk−1 k

=1 4

X

k=1

(−1)k−1 k22

48.



Riferimenti

Documenti correlati