• Non ci sono risultati.

Linear (and nonlinear) Dirichlet problems with singular convection/drift terms

N/A
N/A
Protected

Academic year: 2021

Condividi "Linear (and nonlinear) Dirichlet problems with singular convection/drift terms"

Copied!
163
0
0

Testo completo

(1)
(2)

Linear (and nonlinear) Dirichlet problems with singular convection/drift terms

Linear (and nonlinear) Dirichlet

problems with singular

convection/drift terms

LUCIO BOCCARDO

(3)

Linear (and nonlinear) Dirichlet problems with singular convection/drift terms An International Conference to celebrate Gianni Dal Maso-65

This workshop will focus on the most recent developments and achievements in a broad range of topics in the Calculus of Variations, with an emphasis on its applications to material science and imaging. It will provide an exceptional opportunity to present the state of the art of modern methods in the Calculus of Variations and their applications and to stimulate exchange of ideas and knowledge, through a rich selection of talks by leading experts in the field.  The conference is an occasion to celebrate the 65th birthday of Gianni Dal Maso and his deep and vast contribution to the Calculus of Variations, from its most fundamental theoretical foundations to its applications to solid mechanics, homogenization, fracture, plasticity, and imaging. It will also be an opportunity to bring together a large community of former students, postdocs, collaborators, and friends who have benefited of Gianni’s knowledge and mathematical advice throughout the years.

Speakers

G. Alberti, Univ. Pisa L. Ambrosio, SNS Pisa L. Boccardo, Sapienza Univ. Roma G. Bouchitté, Univ. Toulon A. Braides, Univ. Roma Tor Vergata G. Buttazzo, Univ. Pisa A. Chambolle*, École Polytechnique, Paris S. Conti, Univ. Bonn G. De Philippis, SISSA and Courant Institute A. De Simone, SISSA and Scuola Superiore Sant’Anna G. Dell’Antonio, Sapienza Univ. Roma and SISSA I. Fonseca, Carnegie Mellon Univ., Pittsburgh G. Francfort, Univ. Paris 13 H. Frankowska, Sorbonne Univ. N. Fusco, Univ. Napoli C. Larsen, Worcester Polytechnic Institute G. Leoni, Carnegie Mellon Univ., Pittsburgh P. Marcellini, Univ. Firenze A. Mielke, WIAS and Humboldt Univ., Berlin J. Morel, ENS Cachan    F. Murat, Sorbonne Univ. G. Savare, Univ. Pavia S. Sbordone, Univ. Napoli * to be confirmed

Organisers

V. Chiadò-Piat, Politecnico di Torino A. Garroni, Sapienza Univ. Roma N. Gigli, SISSA M.G. Mora, Univ. Pavia F. Solombrino, Univ. Napoli Federico II R. Toader, Univ. Udine

Where: SISSA

Scuola Internazionale Superiore di Studi Avanzati Via Bonomea 265 Trieste, Italy

When: 27 January – 1 February 2020 For registration: → [email protected] Info: → gianni65.weebly.com

CALCULUS OF VARIATIONS AND APPLICATIONS

Sponsors

AN INTERNATIONAL CONFERENCE TO CELEBRATE GIANNI DAL MASO’S 65th BIRTHDAY

(4)

Linear (and nonlinear) Dirichlet problems with singular convection/drift terms An International Conference to celebrate Gianni Dal Maso-65

Thanks for the invitation + excellent organization *

Good morning

Buon giorno

and thanks to the organizers: V. Chiad`o-Piat, A. Garroni, N. Gigli, M.G. Mora, F. Solombrino, R. Toader.

(5)

Linear (and nonlinear) Dirichlet problems with singular convection/drift terms An International Conference to celebrate Gianni Dal Maso-65

Thanks for the invitation + excellent organization *

Good morning

Buon giorno and thanks to the organizers:

V. Chiad`o-Piat, A. Garroni, N. Gigli, M.G. Mora, F. Solombrino, R. Toader.

(6)

Linear (and nonlinear) Dirichlet problems with singular convection/drift terms An International Conference to celebrate Gianni Dal Maso-65

Papers concerned with. first part of the talk

L. Boccardo: Some developments on Dirichlet problems with discontinuous coefficients; Boll. Unione Mat. Ital, 2 (2009) 285–297.

(invited paper in memory of 30-death Stampacchia)

L. Boccardo: Dirichlet problems with singular convection terms and applications; J. Differential Equations, 258 (2015) 2290–2314.

L. Boccardo: Stampacchia-Calderon-Zygmund theory for linear elliptic equations with discontinuous coefficients and singular drift; ESAIM, Control, Optimization and Calculus of

(7)

Linear (and nonlinear) Dirichlet problems with singular convection/drift terms An International Conference to celebrate Gianni Dal Maso-65

(8)

Linear (and nonlinear) Dirichlet problems with singular convection/drift terms An International Conference to celebrate Gianni Dal Maso-65

Gianni Dal Maso: good mathematician

(9)

Linear (and nonlinear) Dirichlet problems with singular convection/drift terms An International Conference to celebrate Gianni Dal Maso-65

Gianni Dal Maso: good mathematician

(10)

Linear (and nonlinear) Dirichlet problems with singular convection/drift terms Introduction

Duality

We discuss the existence of distributional solutions for the boundary value problems (the first with a

convection term, the second with a drift term)

( −div(M(x)∇u) = −div(u E (x)) + f (x) in Ω, u = 0 on ∂Ω, ( −div(M(x)∇ψ) = E (x) ∇ψ + g(x) in Ω, ψ = 0 on ∂Ω, We note that

at least formally, if M(x ) is symmetric, the two above linear problems are in duality.

(11)

Linear (and nonlinear) Dirichlet problems with singular convection/drift terms Introduction

Duality

We discuss the existence of distributional solutions for the boundary value problems (the first with a

convection term, the second with a drift term) ( −div(M(x)∇u) = −div(u E (x)) + f (x) in Ω, u = 0 on ∂Ω, ( −div(M(x)∇ψ) = E (x) ∇ψ + g(x) in Ω, ψ = 0 on ∂Ω, We note that

at least formally, if M(x ) is symmetric, the two above linear problems are in duality.

(12)

Linear (and nonlinear) Dirichlet problems with singular convection/drift terms Introduction

Duality

We discuss the existence of distributional solutions for the boundary value problems (the first with a

convection term, the second with a drift term) ( −div(M(x)∇u) = −div(u E (x)) + f (x) in Ω, u = 0 on ∂Ω, ( −div(M(x)∇ψ) = E (x) ∇ψ + g(x) in Ω, ψ = 0 on ∂Ω, We note that

at least formally, if M(x ) is symmetric, the two above linear problems are in duality.

(13)

Linear (and nonlinear) Dirichlet problems with singular convection/drift terms Introduction

Duality

We discuss the existence of distributional solutions for the boundary value problems (the first with a

convection term, the second with a drift term) ( −div(M(x)∇u) = −div(u E (x)) + f (x) in Ω, u = 0 on ∂Ω, ( −div(M(x)∇ψ) = E (x) ∇ψ + g(x) in Ω, ψ = 0 on ∂Ω, We note that

at least formally, if M(x ) is symmetric, the two above linear problems are in duality.

(14)

Linear (and nonlinear) Dirichlet problems with singular convection/drift terms Introduction Coercivity ( −div(M(x)∇u) = −div(u E (x)) + f (x) in Ω, u = 0 on ∂Ω, ( −div(M(x)∇ψ) = E (x) ∇ψ + g(x) in Ω, ψ = 0 on ∂Ω, We note that

the differential operators may be not coercive, unless one assumes that either the norm of |E | in LN(Ω) is small, or that div(kE k

(15)

Linear (and nonlinear) Dirichlet problems with singular convection/drift terms Introduction Coercivity ( −div(M(x)∇u) = −div(u E (x)) + f (x) in Ω, u = 0 on ∂Ω, ( −div(M(x)∇ψ) = E (x) ∇ψ + g(x) in Ω, ψ = 0 on ∂Ω, We note that

the differential operators may be not coercive, unless one assumes that either the norm of |E | in LN(Ω) is small, or that div(kE k

(16)

Linear (and nonlinear) Dirichlet problems with singular convection/drift terms Introduction Coercivity ( −div(M(x)∇u) = −div(u E (x)) + f (x) in Ω, u = 0 on ∂Ω, ( −div(M(x)∇ψ) = E (x) ∇ψ + g(x) in Ω, ψ = 0 on ∂Ω, We note that

the differential operators may be not coercive, unless one assumes that either the norm of |E | in LN(Ω) is small, or that div(kE kN) = 0: ...

(17)

Linear (and nonlinear) Dirichlet problems with singular convection/drift terms Setting

(18)

Linear (and nonlinear) Dirichlet problems with singular convection/drift terms Setting

(19)

Linear (and nonlinear) Dirichlet problems with singular convection/drift terms Setting

Assumptions

 −div(M(x)∇u)) = −div(u E(x)) + f (x) : Ω,

u = 0 : ∂Ω.

Ω bounded subset of RN,

ellipticity: 0< α, α|ξ|2 ≤ M(x)ξξ, |M(x)|1 ≤ β,

f ∈ Lm(Ω), 1≤ m ≤ ∞,

E ∈ (LN(Ω))N

11: dependence w.r.t. x / 2: nonsmooth dependence /

(20)

Linear (and nonlinear) Dirichlet problems with singular convection/drift terms Setting

Assumptions

 −div(M(x)∇u)) = −div(u E(x)) + f (x) : Ω,

u = 0 : ∂Ω. Ω bounded subset of RN, ellipticity: 0< α, α|ξ|2 ≤ M(x)ξξ, |M(x)|1 ≤ β, f ∈ Lm(Ω), 1≤ m ≤ ∞, E ∈ (LN(Ω))N

11: dependence w.r.t. x / 2: nonsmooth dependence /

(21)

Linear (and nonlinear) Dirichlet problems with singular convection/drift terms Setting

Assumptions

 −div(M(x)∇u)) = −div(u E(x)) + f (x) : Ω,

u = 0 : ∂Ω.

Ω bounded subset of RN,

ellipticity: 0< α, α|ξ|2 ≤ M(x)ξξ, |M(x)|1 ≤ β,

f ∈ Lm(Ω), 1≤ m ≤ ∞,

E ∈ (LN(Ω))N

11: dependence w.r.t. x / 2: nonsmooth dependence /

(22)

Linear (and nonlinear) Dirichlet problems with singular convection/drift terms Setting

Assumptions

 −div(M(x)∇u)) = −div(u E(x)) + f (x) : Ω,

u = 0 : ∂Ω.

Ω bounded subset of RN,

ellipticity: 0< α, α|ξ|2 ≤ M(x)ξξ, |M(x)|1 ≤ β,

f ∈ Lm(Ω), 1≤ m ≤ ∞,

E ∈ (LN(Ω))N

11: dependence w.r.t. x / 2: nonsmooth dependence /

(23)

Linear (and nonlinear) Dirichlet problems with singular convection/drift terms Setting

Boundary value problem and Lax-Milgram

u weak solution of the boundary value problem  −div(M(x)∇u)) = −div(uE (x )) + f (x ) : Ω,

u = 0 : ∂Ω. means u∈ W01,2(Ω) : Z Ω M(x )∇u∇v = Z Ω u E (x )∇v+ Z Ω f (x )v, ∀ v ∈ W01,2(Ω).

(24)

Linear (and nonlinear) Dirichlet problems with singular convection/drift terms Setting

Boundary value problem and Lax-Milgram

u weak solution of the boundary value problem  −div(M(x)∇u)) = −div(uE (x )) + f (x ) : Ω,

u = 0 : ∂Ω. means u∈ W01,2(Ω) : Z Ω M(x )∇u∇v = Z Ω u E (x )∇v+ Z Ω f (x )v, ∀ v ∈ W01,2(Ω).

(25)

Linear (and nonlinear) Dirichlet problems with singular convection/drift terms Setting

Coercivity of −div(M(x)∇u) + div(u E (x))

Z Ω M(x )∇v∇v ± Z Ω v E (x )∇v ≥ α Z Ω |∇v|2h Z Ω |v|2∗i 1 2∗hZ Ω |E (x)|Ni 1 NhZ Ω |∇v|2i 1 2 ≥nα 1 S hZ Ω|E (x)| Ni 1 NoZ Ω|∇v| 2 E ∈ LN

(26)

Linear (and nonlinear) Dirichlet problems with singular convection/drift terms Setting

Coercivity of −div(M(x)∇u) + div(u E (x))

Z Ω M(x )∇v∇v ± Z Ω v E (x )∇v ≥ α Z Ω |∇v|2h Z Ω |v|2∗i 1 2∗hZ Ω |E (x)|Ni 1 NhZ Ω |∇v|2i 1 2 ≥nα 1 S hZ Ω|E (x)| Ni 1 NoZ Ω|∇v| 2 E ∈ LN

(27)

Linear (and nonlinear) Dirichlet problems with singular convection/drift terms Setting

Coercivity of −div(M(x)∇u) + div(u E (x))

Z Ω M(x )∇v∇v ± Z Ω v E (x )∇v ≥ α Z Ω |∇v|2h Z Ω |v|2∗i 1 2∗hZ Ω |E (x)|Ni 1 NhZ Ω |∇v|2i 1 2 ≥nα 1 S hZ Ω|E (x)| Ni 1 NoZ Ω|∇v| 2 E ∈ LN

(28)

Linear (and nonlinear) Dirichlet problems with singular convection/drift terms Setting

Coercivity of −div(M(x)∇u) + div(u E (x))

Z Ω M(x )∇v∇v ± Z Ω v E (x )∇v ≥ α Z Ω |∇v|2h Z Ω |v|2∗i 1 2∗hZ Ω |E (x)|Ni 1 NhZ Ω |∇v|2i 1 2 ≥nα 1 S hZ Ω|E (x)| Ni 1 NoZ Ω|∇v| 2 E ∈ LN

(29)

Linear (and nonlinear) Dirichlet problems with singular convection/drift terms Setting

Coercivity of −div(M(x)∇u) + div(u E (x))

Z Ω M(x )∇v∇v ± Z Ω v E (x )∇v ≥ α Z Ω |∇v|2h Z Ω |v|2∗i 1 2∗hZ Ω |E (x)|Ni 1 NhZ Ω |∇v|2i 1 2 ≥nα 1 S hZ Ω|E (x)| Ni 1 NoZ Ω|∇v| 2 E ∈ LN

(30)

Linear (and nonlinear) Dirichlet problems with singular convection/drift terms Setting

Coercivity of −div(M(x)∇u) + div(u E (x))

Z Ω M(x )∇v∇v ± Z Ω v E (x )∇v ≥ α Z Ω |∇v|2h Z Ω |v|2∗i 1 2∗hZ Ω |E (x)|Ni 1 NhZ Ω |∇v|2i 1 2 ≥nα 1 S hZ Ω|E (x)| Ni 1 NoZ Ω|∇v| 2 E ∈ LN

(31)

Linear (and nonlinear) Dirichlet problems with singular convection/drift terms Setting

Our approach hinges on test function method

The proofs of all the results are very easy

(32)

Linear (and nonlinear) Dirichlet problems with singular convection/drift terms Setting

Our approach hinges on test function method

The proofs of all the results are very easy

(33)

Linear (and nonlinear) Dirichlet problems with singular convection/drift terms Existence of weak/distributional solutions

(34)

Linear (and nonlinear) Dirichlet problems with singular convection/drift terms Existence of weak/distributional solutions

(35)

Linear (and nonlinear) Dirichlet problems with singular convection/drift terms Existence of weak/distributional solutions

Summability properties of solutions

Stampacchia-Calderon-Zygmund for the two problems

( −div(M(x)∇u) = −div(u E (x)) + f (x) in Ω, u = 0 on ∂Ω, 2 ( −div(M(x)∇ψ) = E (x) ∇ψ + g(x) in Ω, ψ = 0 on ∂Ω, 3 Ω bounded subset of RN, ellipticity: 0< α, α|ξ|2 ≤ M(x)ξξ, |M(x)| ≤ β, f ∈ Lm(Ω), 1≤ m ≤ ∞, E ∈ (LN(Ω))N

and we prove for both the b.v.p. the same

Stampacchia-Calderon-Zygmund results of the case

E = 0.

2 paper invitation U.M.I. in memory of 30-Stampacchia 3 ESAIM-COCV 2019

(36)

Linear (and nonlinear) Dirichlet problems with singular convection/drift terms Existence of weak/distributional solutions

Summability properties of solutions

Stampacchia-Calderon-Zygmund for the two problems

( −div(M(x)∇u) = −div(u E (x)) + f (x) in Ω, u = 0 on ∂Ω, 2 ( −div(M(x)∇ψ) = E (x) ∇ψ + g(x) in Ω, ψ = 0 on ∂Ω, 3 Ω bounded subset of RN, ellipticity: 0< α, α|ξ|2 ≤ M(x)ξξ, |M(x)| ≤ β, f ∈ Lm(Ω), 1≤ m ≤ ∞, E ∈ (LN(Ω))N

and we prove for both the b.v.p. the same

Stampacchia-Calderon-Zygmund results of the case

E = 0.

2 paper invitation U.M.I. in memory of 30-Stampacchia 3 ESAIM-COCV 2019

(37)

Linear (and nonlinear) Dirichlet problems with singular convection/drift terms Existence of weak/distributional solutions

Summability properties of solutions

Stampacchia-Calderon-Zygmund for the two problems

( −div(M(x)∇u) = −div(u E (x)) + f (x) in Ω, u = 0 on ∂Ω, 2 ( −div(M(x)∇ψ) = E (x) ∇ψ + g(x) in Ω, ψ = 0 on ∂Ω, 3 Ω bounded subset of RN, ellipticity: 0< α, α|ξ|2 ≤ M(x)ξξ, |M(x)| ≤ β, f ∈ Lm(Ω), 1≤ m ≤ ∞, E ∈ (LN(Ω))N

and we prove for both the b.v.p. the same

Stampacchia-Calderon-Zygmund results of the case

E = 0.

2 paper invitation U.M.I. in memory of 30-Stampacchia 3 ESAIM-COCV 2019

(38)

Linear (and nonlinear) Dirichlet problems with singular convection/drift terms Existence of weak/distributional solutions

Summability properties of solutions

Stampacchia-Calderon-Zygmund for the two problems

( −div(M(x)∇u) = −div(u E (x)) + f (x) in Ω, u = 0 on ∂Ω, 2 ( −div(M(x)∇ψ) = E (x) ∇ψ + g(x) in Ω, ψ = 0 on ∂Ω, 3 Ω bounded subset of RN, ellipticity: 0< α, α|ξ|2 ≤ M(x)ξξ, |M(x)| ≤ β, f ∈ Lm(Ω), 1≤ m ≤ ∞, E ∈ (LN(Ω))N

and we prove for both the b.v.p. the same

Stampacchia-Calderon-Zygmund results of the case

E = 0.

2 paper invitation U.M.I. in memory of 30-Stampacchia 3 ESAIM-COCV 2019

(39)

Linear (and nonlinear) Dirichlet problems with singular convection/drift terms Existence of weak/distributional solutions

Summability properties of solutions

Stampacchia-Calderon-Zygmund for the two problems

( −div(M(x)∇u) = −div(u E (x)) + f (x) in Ω, u = 0 on ∂Ω, 2 ( −div(M(x)∇ψ) = E (x) ∇ψ + g(x) in Ω, ψ = 0 on ∂Ω, 3 Ω bounded subset of RN, ellipticity: 0< α, α|ξ|2 ≤ M(x)ξξ, |M(x)| ≤ β, f ∈ Lm(Ω), 1≤ m ≤ ∞, E ∈ (LN(Ω))N

and we prove for both the b.v.p. the same

Stampacchia-Calderon-Zygmund results of the case

E = 0.

2 paper invitation U.M.I. in memory of 30-Stampacchia 3 ESAIM-COCV 2019

(40)

Linear (and nonlinear) Dirichlet problems with singular convection/drift terms Existence of weak/distributional solutions

Summability properties of solutions

|E | ∈ LN(Ω) as E = 0

 −div(M(x)∇u)) = −div(u E(x)) + f (x) : Ω,

u = 0 : ∂Ω 1 2N N+2 ≤ m < N 2 ⇒ u ∈W 1,2 0 (Ω)∩ Lm ∗∗ (Ω); 2 1< m < 2N N+2 ⇒ u ∈W 1,m∗ 0 (Ω); 3 m = 1 ⇒ u ∈W1,q 0 (Ω), q < N−1N . u : Z Ω M∇u∇φ = Z Ω u E∇φ + Z Ω fφ, ∀ φ ∈ D. Theorem (70-Brezis) E = 0, m> N 2, it is false that u∈ W 1,m∗ 0 (Ω) Remark E = 0, N+22N +δMeyers < m < N2, u ∈?

(41)

Linear (and nonlinear) Dirichlet problems with singular convection/drift terms Existence of weak/distributional solutions

Summability properties of solutions

|E | ∈ LN(Ω) as E = 0

 −div(M(x)∇u)) = −div(u E(x)) + f (x) : Ω,

u = 0 : ∂Ω 1 2N N+2 ≤ m < N 2 ⇒ u ∈W 1,2 0 (Ω)∩ Lm ∗∗ (Ω); 2 1< m < 2N N+2 ⇒ u ∈W 1,m∗ 0 (Ω); 3 m = 1 ⇒ u ∈W1,q 0 (Ω), q < N−1N . u : Z Ω M∇u∇φ = Z Ω u E∇φ + Z Ω fφ, ∀ φ ∈ D. Theorem (70-Brezis) E = 0, m> N 2, it is false that u∈ W 1,m∗ 0 (Ω) Remark E = 0, N+22N +δMeyers < m < N2, u ∈?

(42)

Linear (and nonlinear) Dirichlet problems with singular convection/drift terms Existence of weak/distributional solutions

Summability properties of solutions

|E | ∈ LN(Ω) as E = 0

 −div(M(x)∇u)) = −div(u E(x)) + f (x) : Ω,

u = 0 : ∂Ω 1 2N N+2 ≤ m < N 2 ⇒ u ∈W 1,2 0 (Ω)∩ Lm ∗∗ (Ω); 2 1< m < 2N N+2 ⇒ u ∈W 1,m∗ 0 (Ω); 3 m = 1 ⇒ u ∈W01,q(Ω), q < N N−1 . u : Z Ω M∇u∇φ = Z Ω u E∇φ + Z Ω fφ, ∀ φ ∈ D. Theorem (70-Brezis) E = 0, m> N 2, it is false that u∈ W 1,m∗ 0 (Ω) Remark E = 0, N+22N +δMeyers < m < N2, u ∈?

(43)

Linear (and nonlinear) Dirichlet problems with singular convection/drift terms Existence of weak/distributional solutions

Summability properties of solutions

|E | ∈ LN(Ω) as E = 0

 −div(M(x)∇u)) = −div(u E(x)) + f (x) : Ω,

u = 0 : ∂Ω 1 2N N+2 ≤ m < N 2 ⇒ u ∈W 1,2 0 (Ω)∩ Lm ∗∗ (Ω); 2 1< m < 2N N+2 ⇒ u ∈W 1,m∗ 0 (Ω); 3 m = 1 ⇒ u ∈W1,q 0 (Ω), q < N−1N . u : Z Ω M∇u∇φ = Z Ω u E∇φ + Z Ω fφ, ∀ φ ∈ D. Theorem (70-Brezis) E = 0, m> N 2, it is false that u∈ W 1,m∗ 0 (Ω) Remark E = 0, N+22N +δMeyers < m < N2, u ∈?

(44)

Linear (and nonlinear) Dirichlet problems with singular convection/drift terms Existence of weak/distributional solutions

Summability properties of solutions

|E | ∈ LN(Ω) as E = 0

 −div(M(x)∇u)) = −div(u E(x)) + f (x) : Ω,

u = 0 : ∂Ω 1 2N N+2 ≤ m < N 2 ⇒ u ∈W 1,2 0 (Ω)∩ Lm ∗∗ (Ω); 2 1< m < 2N N+2 ⇒ u ∈W 1,m∗ 0 (Ω); 3 m = 1 ⇒ u ∈W1,q 0 (Ω), q < N−1N . u : Z Ω M∇u∇φ = Z Ω u E∇φ + Z Ω fφ, ∀ φ ∈ D. Theorem (70-Brezis) E = 0, m> N 2, it is false that u∈ W 1,m∗ 0 (Ω) Remark E = 0, N+22N +δMeyers < m < N2, u ∈?

(45)

Linear (and nonlinear) Dirichlet problems with singular convection/drift terms Existence of weak/distributional solutions

Summability properties of solutions

|E | ∈ LN(Ω) as E = 0

 −div(M(x)∇u)) = −div(u E(x)) + f (x) : Ω,

u = 0 : ∂Ω 1 2N N+2 ≤ m < N 2 ⇒ u ∈W 1,2 0 (Ω)∩ Lm ∗∗ (Ω); 2 1< m < 2N N+2 ⇒ u ∈W 1,m∗ 0 (Ω); 3 m = 1 ⇒ u ∈W1,q 0 (Ω), q < N−1N . u : Z Ω M∇u∇φ = Z Ω u E∇φ + Z Ω fφ, ∀ φ ∈ D. Theorem (70-Brezis) E = 0, m> N 2, it is false that u∈ W 1,m∗ 0 (Ω) Remark E = 0, N+22N +δMeyers < m < N2, u ∈?

(46)

Linear (and nonlinear) Dirichlet problems with singular convection/drift terms Existence of weak/distributional solutions

Summability properties of solutions

Same results for the drift problem

(

−div(M(x)∇ψ) = E (x) ∇ψ + g(x) in Ω,

ψ = 0 on ∂Ω,

4

(47)

Linear (and nonlinear) Dirichlet problems with singular convection/drift terms Existence of weak/distributional solutions

Summability properties of solutions

Same results for the drift problem

(

−div(M(x)∇ψ) = E (x) ∇ψ + g(x) in Ω,

ψ = 0 on ∂Ω,

4

(48)

Linear (and nonlinear) Dirichlet problems with singular convection/drift terms Existence of weak/distributional solutions

Summability properties of solutions

Other recent papers

L. Boccardo, S. Buccheri, G.R. Cirmi: Two linear noncoercive Dirichlet problems in duality; Milan J. Math. 86 (2018), 97–104.

L. Boccardo, S. Buccheri, R.G. Cirmi: Calderon-Zygmund theory for infinite energy solutions of nonlinear elliptic equations with singular drift; preprint.

L. Boccardo, S. Buccheri: A nonlinear homotopy between two linear Dirichlet problems; preprint.

L. Boccardo: Two semilinear Dirichlet problems “almost” in duality; Boll. Unione Mat. Ital. 12 (2019), 349–356.

L. Boccardo, L. Orsina, A. Porretta: Some noncoercive

parabolic equations with lower order terms in divergence form. Dedicated to Philippe B´enilan. J. Evol. Equ. 3 (2003),

(49)

Linear (and nonlinear) Dirichlet problems with singular convection/drift terms Existence of weak/distributional solutions

((E ∈ (L(((

(50)

Linear (and nonlinear) Dirichlet problems with singular convection/drift terms Existence of weak/distributional solutions

((E ∈ (L(((

N(Ω))N

If E 6∈ (LN(Ω))N, even for nothing, as in

|E | ≤ |A||x|, A∈ R , 0 ∈ Ω,

the framework changes completely:

uW01,2(Ω) or uW01,q(Ω) depends on the size of A . 5 1) if |A| < α(N−2m)m , and N+22N ≤ m < N2, then

u∈ W01,2(Ω)∩ Lm∗∗(Ω);

2) if |A| < α(N−2m)m , and 1< m < 2N

N+2, then

u∈ W01,m∗(Ω);

3) if |A| < α(N − 2), and m = 1, then ∇u ∈ (MN−1N (Ω))N

and u ∈ W01,q(Ω), for every q< N N−1;

4 if α(N − 2) ≤ |A| < α(N − 1), then u ∈ W01,q(Ω), for

every q< Nα |A|+α

(51)

Linear (and nonlinear) Dirichlet problems with singular convection/drift terms Existence of weak/distributional solutions

((E ∈ (L(((

N(Ω))N

If E 6∈ (LN(Ω))N, even for nothing, as in

|E | ≤ |A||x|, A∈ R , 0 ∈ Ω,

the framework changes completely:

uW01,2(Ω) or uW01,q(Ω) depends on the size of A . 5

1) if |A| < α(N−2m)m , and N+22N ≤ m < N2, then u∈ W01,2(Ω)∩ Lm∗∗(Ω);

2) if |A| < α(N−2m)m , and 1< m < 2N

N+2, then

u∈ W01,m∗(Ω);

3) if |A| < α(N − 2), and m = 1, then ∇u ∈ (MN−1N (Ω))N

and u ∈ W01,q(Ω), for every q< N N−1;

4 if α(N − 2) ≤ |A| < α(N − 1), then u ∈ W01,q(Ω), for

every q< Nα |A|+α

(52)

Linear (and nonlinear) Dirichlet problems with singular convection/drift terms Existence of weak/distributional solutions

((E ∈ (L(((

N(Ω))N

If E 6∈ (LN(Ω))N, even for nothing, as in

|E | ≤ |A||x|, A∈ R , 0 ∈ Ω,

the framework changes completely:

uW01,2(Ω) or uW01,q(Ω) depends on the size of A . 5 1) if |A| < α(N−2m)m , and N+22N ≤ m < N2, then

u∈ W01,2(Ω)∩ Lm∗∗(Ω);

2) if |A| < α(N−2m)m , and 1< m < 2N

N+2, then

u∈ W01,m∗(Ω);

3) if |A| < α(N − 2), and m = 1, then ∇u ∈ (MN−1N (Ω))N

and u ∈ W01,q(Ω), for every q< N N−1;

4 if α(N − 2) ≤ |A| < α(N − 1), then u ∈ W01,q(Ω), for

every q< Nα |A|+α

(53)

Linear (and nonlinear) Dirichlet problems with singular convection/drift terms Existence of weak/distributional solutions

((E ∈ (L(((

N(Ω))N Radial ex.

(54)

Linear (and nonlinear) Dirichlet problems with singular convection/drift terms Existence of weak/distributional solutions

(((( (((( ((E ∈ (L(((

(55)

Linear (and nonlinear) Dirichlet problems with singular convection/drift terms Existence of weak/distributional solutions

(((( (((( ((E ∈ (L((( 2(Ω))N E ∈ (L2(Ω))N ( definition of solution; existence of solution. 6 6JDE 2015

(56)

Linear (and nonlinear) Dirichlet problems with singular convection/drift terms Existence of weak/distributional solutions

(((( (((( ((E ∈ (L((( 2(Ω))N E ∈ (L2(Ω))N ( definition of solution; existence of solution. 6 6JDE 2015

(57)

Linear (and nonlinear) Dirichlet problems with singular convection/drift terms Existence of weak/distributional solutions

(((( (((( ((E ∈ (L(((

2(Ω))N

If we add the zero order term “+u”, the framework changes completely.

A , un∈ W01,2(Ω) : −div(M(x)∇un) + A un =−div  un 1 + n1|un| E (x )+ f (x ) Third estimate A Z Ω |un| ≤ Z Ω |f | ! only (again) E ∈ L2 is needed.

(58)

Linear (and nonlinear) Dirichlet problems with singular convection/drift terms Existence of weak/distributional solutions

(((( (((( ((E ∈ (L(((

2(Ω))N

If we add the zero order term “+u”, the framework changes completely.

A , un∈ W01,2(Ω) : −div(M(x)∇un) + A un =−div  un 1 + 1n|un| E (x )+ f (x ) Third estimate A Z Ω |un| ≤ Z Ω |f | ! only (again) E ∈ L2 is needed.

(59)

Linear (and nonlinear) Dirichlet problems with singular convection/drift terms Existence of weak/distributional solutions

(((( (((( ((E ∈ (L(((

2(Ω))N

If we add the zero order term “+u”, the framework changes completely.

A , un∈ W01,2(Ω) : −div(M(x)∇un) + A un =−div  un 1 + 1n|un| E (x )+ f (x ) Third estimate A Z Ω |un| ≤ Z Ω |f |

(60)

Linear (and nonlinear) Dirichlet problems with singular convection/drift terms Existence of weak/distributional solutions

(((( (((( ((E ∈ (L(((

2(Ω))N

If we add the zero order term “+u”, the framework changes completely.

A , un∈ W01,2(Ω) : −div(M(x)∇un) + A un =−div  un 1 + 1n|un| E (x )+ f (x ) Third estimate A Z Ω |un| ≤ Z Ω |f | !

(61)

Linear (and nonlinear) Dirichlet problems with singular convection/drift terms Existence of weak/distributional solutions

(((( (((( ((E ∈ (L(((

2(Ω))N

If we add the zero order term “+u”, the framework changes completely.

A , un∈ W01,2(Ω) : −div(M(x)∇un) + A un =−div  un 1 + 1n|un| E (x )+ f (x ) Third estimate A Z Ω |un| ≤ Z Ω |f | ! only (again) E ∈ L2 is needed.

(62)

Linear (and nonlinear) Dirichlet problems with singular convection/drift terms Existence of weak/distributional solutions

(((( (((( ((E ∈ (L(((

2(Ω))N

If we add the zero order term “+u”, the framework changes completely.

A , un∈ W01,2(Ω) : −div(M(x)∇un) + A un =−div  un 1 + 1n|un| E (x )+ f (x ) Third estimate A Z Ω |un| ≤ Z Ω |f | ! only (again) E ∈ L2 is needed.

(63)

Linear (and nonlinear) Dirichlet problems with singular convection/drift terms Existence of weak/distributional solutions

(((( (((( ((E ∈ (L(((

2(Ω))N

By duality: problems with very singular drifts

( −div(M(x)∇ψ) + ψ = E (x) ∇ψ + g(x) in Ω, ψ = 0 on ∂Ω, 7 E ∈ L28, f bounded ⇒ u ∈ W1,2 0 (Ω), bounded. 7 DIE 2019 8 only L2

(64)

Linear (and nonlinear) Dirichlet problems with singular convection/drift terms Existence of weak/distributional solutions

(((( (((( ((E ∈ (L(((

2(Ω))N

By duality: problems with very singular drifts

( −div(M(x)∇ψ) + ψ = E (x) ∇ψ + g(x) in Ω, ψ = 0 on ∂Ω, 7 E ∈ L28, f bounded ⇒ u ∈ W1,2 0 (Ω), bounded. 7 DIE 2019 8 only L2

(65)

Linear (and nonlinear) Dirichlet problems with singular convection/drift terms Existence of weak/distributional solutions

(((( (((( ((E ∈ (L(((

2(Ω))N

By duality: problems with very singular drifts

( −div(M(x)∇ψ) + ψ = E (x) ∇ψ + g(x) in Ω, ψ = 0 on ∂Ω, 7 E ∈ L28, f bounded ⇒ u ∈ W1,2 0 (Ω), bounded. 7 DIE 2019 8 only L2

(66)

Linear (and nonlinear) Dirichlet problems with singular convection/drift terms Existence of weak/distributional solutions

(((( (((( ((E ∈ (L(((

2(Ω))N

An elliptic system connected with the mathematical study of PDE models for chemotaxis  −div(A(x)∇u) + u =−div(uM(x )ψ) + f (x ), −div(M(x)∇ψ) = uθ. 910 9JDE 2015 10Comm.PDE + L. Orsina

(67)

Linear (and nonlinear) Dirichlet problems with singular convection/drift terms Existence of weak/distributional solutions

(((( (((( ((E ∈ (L(((

2(Ω))N

An elliptic system connected with the mathematical study of PDE models for chemotaxis  −div(A(x)∇u) + u =−div(uM(x )ψ) + f (x ), −div(M(x)∇ψ) = uθ. 910 9JDE 2015 10Comm.PDE + L. Orsina

(68)

Linear (and nonlinear) Dirichlet problems with singular convection/drift terms The convection problem

(69)

Linear (and nonlinear) Dirichlet problems with singular convection/drift terms The convection problem

(70)

Linear (and nonlinear) Dirichlet problems with singular convection/drift terms The convection problem

The starting point

((((

((((

kE k

(71)

Linear (and nonlinear) Dirichlet problems with singular convection/drift terms The convection problem

The starting point

Nonlinearapproach tolinear problems

un∈ W01,2(Ω) : −div(M(x)∇un) =−div  un 1 + 1n|un| E (x )+f (x ) that is un∈ W01,2(Ω) : Z Ω M(x )∇un∇v = Z Ω un 1 + 1n|un| E (x )∇v + Z Ω f (x )v, ∀ v ∈ W01,2(Ω). Existence un: Schauder

(72)

Linear (and nonlinear) Dirichlet problems with singular convection/drift terms The convection problem

The starting point

Nonlinearapproach tolinear problems

un∈ W01,2(Ω) :−div(M(x)∇un) =−div  un 1 + 1 n|un| E (x )+f (x ) that is un∈ W01,2(Ω) : Z Ω M(x )∇un∇v = Z Ω un 1 + 1n|un| E (x )∇v + Z Ω f (x )v, ∀ v ∈ W01,2(Ω). Existence un: Schauder

(73)

Linear (and nonlinear) Dirichlet problems with singular convection/drift terms The convection problem

The starting point

Nonlinearapproach tolinear problems

un∈ W01,2(Ω) :−div(M(x)∇un) =−div  un 1 + 1 n|un| E (x )+f (x ) that is un∈ W01,2(Ω) : Z Ω M(x )∇un∇v = Z Ω un 1 + 1n|un| E (x )∇v + Z Ω f (x )v, ∀ v ∈ W01,2(Ω). Existence un: Schauder

(74)

Linear (and nonlinear) Dirichlet problems with singular convection/drift terms The convection problem

The starting point

Nonlinearapproach tolinear problems

un∈ W01,2(Ω) :−div(M(x)∇un) =−div  un 1 + 1 n|un| E (x )+f (x ) that is un∈ W01,2(Ω) : Z Ω M(x )∇un∇v = Z Ω un 1 + 1n|un| E (x )∇v + Z Ω f (x )v, ∀ v ∈ W01,2(Ω). Existence un: Schauder

(75)

Linear (and nonlinear) Dirichlet problems with singular convection/drift terms The convection problem

Estimates

Log-estimate (first estimate)

un∈ W01,2(Ω) :−div(M(x)∇un) =−div  un 1 + 1 n|un| E (x )  +f (x ) test f. un 1 +|un|⇒α Z Ω |∇un|2 (1 +|un|)2≤ Z Ω |un| 1 +|un||E | |∇un| (1 +|un|) + Z Ω |fn| α 2 Z Ω |∇un|2 (1 +|un|)2 ≤ 1 2α Z Ω|E | 2+ Z Ω|f |, Z Ω |∇ log(1 + |un|)|2 ≤ 1 α2 Z Ω |E |2+ 2 α Z Ω |f | hZ Ω | log(1 + |un|)|2 ∗i2∗2 ≤ 1 S2α2 Z Ω |E |2+ 2 S2α Z Ω |f |1

(76)

Linear (and nonlinear) Dirichlet problems with singular convection/drift terms The convection problem

Estimates

Log-estimate (first estimate)

un∈ W01,2(Ω) :−div(M(x)∇un) =−div  un 1 + 1 n|un| E (x )  +f (x ) test f. un 1 +|un|⇒α Z Ω |∇un|2 (1 +|un|)2≤ Z Ω |un| 1 +|un||E | |∇un| (1 +|un|) + Z Ω |fn| α 2 Z Ω |∇un|2 (1 +|un|)2 ≤ 1 2α Z Ω|E | 2+ Z Ω|f |, Z Ω |∇ log(1 + |un|)|2 ≤ 1 α2 Z Ω |E |2+ 2 α Z Ω |f | hZ Ω | log(1 + |un|)|2 ∗i2∗2 ≤ 1 S2α2 Z Ω |E |2+ 2 S2α Z Ω |f |1

(77)

Linear (and nonlinear) Dirichlet problems with singular convection/drift terms The convection problem

Estimates

Log-estimate (first estimate)

un∈ W01,2(Ω) :−div(M(x)∇un) =−div  un 1 + 1 n|un| E (x )  +f (x ) test f. un 1 +|un|⇒α Z Ω |∇un|2 (1 +|un|)2≤ Z Ω |un| 1 +|un||E | |∇un| (1 +|un|) + Z Ω |fn| α 2 Z Ω |∇un|2 (1 +|un|)2 ≤ 1 2α Z Ω|E | 2+ Z Ω|f |, Z Ω |∇ log(1 + |un|)|2 ≤ 1 α2 Z Ω |E |2+ 2 α Z Ω |f | hZ Ω | log(1 + |un|)|2 ∗i2∗2 ≤ 1 S2α2 Z Ω |E |2+ 2 S2α Z Ω |f |1

(78)

Linear (and nonlinear) Dirichlet problems with singular convection/drift terms The convection problem

Estimates

Log-estimate (first estimate)

un∈ W01,2(Ω) :−div(M(x)∇un) =−div  un 1 + 1 n|un| E (x )  +f (x ) test f. un 1 +|un|⇒α Z Ω |∇un|2 (1 +|un|)2≤ Z Ω |un| 1 +|un||E | |∇un| (1 +|un|) + Z Ω |fn| α 2 Z Ω |∇un|2 (1 +|un|)2 ≤ 1 2α Z Ω|E | 2+ Z Ω|f |, Z Ω |∇ log(1 + |un|)|2 ≤ 1 α2 Z Ω |E |2+ 2 α Z Ω |f | hZ Ω | log(1 + |un|)|2 ∗i2∗2 ≤ 1 S2α2 Z Ω |E |2+ 2 S2α Z Ω |f |1

(79)

Linear (and nonlinear) Dirichlet problems with singular convection/drift terms The convection problem

Estimates

Log-estimate (first estimate)

un∈ W01,2(Ω) :−div(M(x)∇un) =−div  un 1 + 1 n|un| E (x )  +f (x ) test f. un 1 +|un|⇒α Z Ω |∇un|2 (1 +|un|)2≤ Z Ω |un| 1 +|un||E | |∇un| (1 +|un|) + Z Ω |fn| α 2 Z Ω |∇un|2 (1 +|un|)2 ≤ 1 2α Z Ω|E | 2+ Z Ω|f |, Z Ω |∇ log(1 + |un|)|2 ≤ 1 α2 Z Ω |E |2+ 2 α Z Ω |f | hZ Ω | log(1 + |un|)|2 ∗i2∗2 ≤ 1 S2α2 Z Ω |E |2+ 2 S2α Z Ω |f |1

(80)

Linear (and nonlinear) Dirichlet problems with singular convection/drift terms The convection problem

Estimates

Truncation-estimate (second estimate)

Tk(s) −k −k k k −k k Gk(s) −k k Th(Gk(s))/h −k − h -1 k + h 1 1

(81)

Linear (and nonlinear) Dirichlet problems with singular convection/drift terms The convection problem

Estimates

Truncation-estimate (second estimate)

Tk(s) −k −k k k −k k Gk(s) −k k Th(Gk(s))/h −k − h -1 k + h 1 1

(82)

Linear (and nonlinear) Dirichlet problems with singular convection/drift terms The convection problem

Estimates

Truncation-estimate (second estimate)

un∈W01,2(Ω) :−div(M(x)∇un) =−div  un 1 + n1|un| E (x )+f α Z Ω |∇Tk(un)|2 ≤ Z Ω |un| |E ||∇Tk(un)|+ Z Ω fTk(un) ≤ k Z Ω |E ||∇Tk(un)| + k Z Ω |f | ≤ α 2 Z Ω |∇Tk(un)|2+ 2 αk 2 Z Ω |E |2 + k Z Ω |f |⇒ α 2 Z Ω |∇Tk(un)|2 ≤ 2 αk 2 Z Ω |E |2+ k Z Ω |f |1

(83)

Linear (and nonlinear) Dirichlet problems with singular convection/drift terms The convection problem

Estimates

Truncation-estimate (second estimate)

un∈W01,2(Ω) :−div(M(x)∇un) =−div  un 1 + n1|un| E (x )+f α Z Ω |∇Tk(un)|2 ≤ Z Ω |un| |E ||∇Tk(un)|+ Z Ω fTk(un) ≤ k Z Ω |E ||∇Tk(un)| + k Z Ω |f | ≤ α 2 Z Ω |∇Tk(un)|2+ 2 αk 2 Z Ω |E |2 + k Z Ω |f |⇒ α 2 Z Ω |∇Tk(un)|2 ≤ 2 αk 2 Z Ω |E |2+ k Z Ω |f |1

(84)

Linear (and nonlinear) Dirichlet problems with singular convection/drift terms The convection problem

Estimates

Truncation-estimate (second estimate)

un∈W01,2(Ω) :−div(M(x)∇un) =−div  un 1 + n1|un| E (x )+f α Z Ω |∇Tk(un)|2 ≤ Z Ω |un| |E ||∇Tk(un)|+ Z Ω fTk(un) ≤ k Z Ω |E ||∇Tk(un)| + k Z Ω |f | ≤ α2 Z Ω|∇T k(un)|2+ 2 αk 2 Z Ω|E | 2 + k Z Ω|f |⇒ α 2 Z Ω |∇Tk(un)|2 ≤ 2 αk 2 Z Ω |E |2+ k Z Ω |f |1

(85)

Linear (and nonlinear) Dirichlet problems with singular convection/drift terms The convection problem

Estimates

Truncation-estimate (second estimate)

un∈W01,2(Ω) :−div(M(x)∇un) =−div  un 1 + n1|un| E (x )+f α Z Ω |∇Tk(un)|2 ≤ Z Ω |un| |E ||∇Tk(un)|+ Z Ω fTk(un) ≤ k Z Ω |E ||∇Tk(un)| + k Z Ω |f | ≤ α2 Z Ω|∇T k(un)|2+ 2 αk 2 Z Ω|E | 2 + k Z Ω|f |⇒ α 2 Z Ω |∇Tk(un)|2 ≤ 2 αk 2 Z Ω |E |2+ k Z Ω |f |1

(86)

Linear (and nonlinear) Dirichlet problems with singular convection/drift terms The convection problem

Estimates

Two important estimates

un∈ W01,2(Ω) :−div(M(x)∇un) =−div  un 1 + 1n|un| E (x )+f (x ) hZ Ω| log(1 + |u n|)|2 ∗i2∗2 ≤ S21α2 Z Ω|E | 2+ 2 S2α Z Ω|f | 1 α 2 Z Ω|∇T k(un)|2 ≤ 2 αk 2 Z Ω|E | 2+ k Z Ω|f | 1

(87)

Linear (and nonlinear) Dirichlet problems with singular convection/drift terms The convection problem

Estimates kGk(un)k W01,2(Ω)≤ C (E , f , α) Proof of kGk(un)kW1,2 0 (Ω) ≤ C (E , f , α), k > kE(kE kN)

(88)

Linear (and nonlinear) Dirichlet problems with singular convection/drift terms The convection problem

Estimates

Let δ > 0. Use Gk(un) as test f.; Young, H¨older, Sob.⇒

α Z Ω |∇Gk(un)|2≤ Z Ω |Gk(un)||E ||∇Gk(un)|+k Z Ω |E ||∇Gk(un)|+ Z Ω |Gk(un)||f | ≤ 1 S( Z k<|un| |E |N)N1 Z Ω|∇G k(un)|2+δ Z Ω|∇G k(un)|2+ k2 4δ Z k<|un| |E |2 +δ Z Ω |∇Gk(un)|2+ S 2 4δ  Z k<|un| |f |N+22N N+2N , " α− 1 S  Z k<|un| |E |N N1 − 2δ # Z Ω |∇Gk(un)|2 ≤ k 2 4δ Z k<|un| |E |2+S 2 4δ  Z k<|un| |f |N+22N N+2N .

(89)

Linear (and nonlinear) Dirichlet problems with singular convection/drift terms The convection problem

Estimates " α 1 S  Z k<|un| |E |N N1 − 2δ # Z Ω |∇Gk(un)|2 ≤ k 2 4δ Z k<|un| |E |2 +S 2 4δ  Z k<|un| |f |N+22N N+2N .

Fix δ so that 2δ = α4. Then log-estimate implies that there exists kE, such that

1 S  Z k<|un| |E |N N1 ≤ α 4, k ≥ kE. Thus, for some C1 > 0, we have, if k ≥ kE,

C (kE k LN) Z Ω|∇G k(un)|2 ≤ C1k2 Z k<|un| |E |2+C 2  Z k<|un| |f |N+22N N+2N .

(90)

Linear (and nonlinear) Dirichlet problems with singular convection/drift terms The convection problem

Estimates 3 estimates hZ Ω| log(1 + |u n|)|2 ∗i2∗2 ≤ S21α2 Z Ω|E | 2+ 2 S2α Z Ω|f | 1 α 2 Z Ω|∇T k(un)|2 ≤ 2 αk 2 Z Ω|E | 2+ k Z Ω|f | 1, forall k > 0 C (kE k LN) Z Ω|∇G k(un)|2≤k2 Z k<|un| |E |2+ Z k<|un| |f |N+22N N+2N , k≥k(kE k N)

(91)

Linear (and nonlinear) Dirichlet problems with singular convection/drift terms The convection problem

Estimates k = kE C0 Z Ω |∇Tk(un)|2 ≤ k2 Z Ω |E |2+ k Z Ω |f |1, forall k > 0 C (kE k LN) Z Ω |∇Gk(un)|2≤k2 Z k<|un| |E |2+ Z k<|un| |f |N+22N N+2N , k≥k(kE kN) h C0+C (kE kLN) iZ Ω |∇un|2 ≤ 2k2 Z Ω |E |2+k Z Ω |f |1+  Z Ω |f |N+22N N+2N L([tun]) =−div([tun] E ) + (tf ) t2hC0+C (kE kLN) iZ Ω |∇un|2≤2k2 Z Ω |E |2 +tk Z Ω |f |1 +t2 Z Ω |f |N+22N N+2N

(92)

Linear (and nonlinear) Dirichlet problems with singular convection/drift terms The convection problem

Estimates k = kE C0 Z Ω |∇Tk(un)|2 ≤ k2 Z Ω |E |2+ k Z Ω |f |1, forall k > 0 C (kE k LN) Z Ω |∇Gk(un)|2≤k2 Z k<|un| |E |2+ Z k<|un| |f |N+22N N+2N , k≥k(kE kN) h C0+C (kE kLN) iZ Ω |∇un|2 ≤ 2k2 Z Ω |E |2+k Z Ω |f |1+  Z Ω |f |N+22N N+2N L([tun]) =−div([tun] E ) + (tf ) t2hC0+C (kE kLN) iZ Ω |∇un|2≤2k2 Z Ω |E |2 +tk Z Ω |f |1 +t2 Z Ω |f |N+22N N+2N

(93)

Linear (and nonlinear) Dirichlet problems with singular convection/drift terms The convection problem

Estimates k = kE C0 Z Ω |∇Tk(un)|2 ≤ k2 Z Ω |E |2+ k Z Ω |f |1, forall k > 0 C (kE k LN) Z Ω |∇Gk(un)|2≤k2 Z k<|un| |E |2+ Z k<|un| |f |N+22N N+2N , k≥k(kE kN) h C0+C (kE kLN) iZ Ω |∇un|2 ≤ 2k2 Z Ω |E |2+k Z Ω |f |1+  Z Ω |f |N+22N N+2N L([tun]) =−div([tun] E ) + (tf ) t2hC0+C (kE kLN) iZ Ω |∇un|2≤2k2 Z Ω |E |2 +tk Z Ω |f |1 +t2 Z Ω |f |N+22N N+2N

(94)

Linear (and nonlinear) Dirichlet problems with singular convection/drift terms The convection problem

Estimates k = kE C0 Z Ω |∇Tk(un)|2 ≤ k2 Z Ω |E |2+ k Z Ω |f |1, forall k > 0 C (kE k LN) Z Ω |∇Gk(un)|2≤k2 Z k<|un| |E |2+ Z k<|un| |f |N+22N N+2N , k≥k(kE kN) h C0+C (kE kLN) iZ Ω |∇un|2 ≤ 2k2 Z Ω |E |2+k Z Ω |f |1+  Z Ω |f |N+22N N+2N L([tun]) =−div([tun] E ) + (tf ) t2hC0+C (kE kLN) iZ Ω |∇un|2≤2k2 Z Ω |E |2 +tk Z Ω |f |1 +t2 Z Ω |f |N+22N N+2N

(95)

Linear (and nonlinear) Dirichlet problems with singular convection/drift terms The convection problem

Estimates t2hC0+C (kE kLN) iZ Ω |∇un|2≤2kE2 Z Ω |E |2+tk E Z Ω |f |1+t2 Z Ω |f |N+22N N+2N h C0+C (kE kLN) iZ Ω |∇un|2≤ 2k2 E t2 Z Ω |E |2+kE t Z Ω |f |1+ Z Ω |f |N+22N N+2N lim t→∞ h C0+ C (kE kLN) iZ Ω |∇un|2 ≤  Z Ω |f |N+22N N+2N

(96)

Linear (and nonlinear) Dirichlet problems with singular convection/drift terms The convection problem

Estimates t2hC0+C (kE kLN) iZ Ω |∇un|2≤2kE2 Z Ω |E |2+tk E Z Ω |f |1+t2 Z Ω |f |N+22N N+2N h C0+C (kE kLN) iZ Ω |∇un|2≤ 2k2 E t2 Z Ω |E |2+kE t Z Ω |f |1+ Z Ω |f |N+22N N+2N lim t→∞ h C0+ C (kE kLN) iZ Ω |∇un|2 ≤  Z Ω |f |N+22N N+2N

(97)

Linear (and nonlinear) Dirichlet problems with singular convection/drift terms The convection problem

Estimates t2hC0+C (kE kLN) iZ Ω |∇un|2≤2kE2 Z Ω |E |2+tk E Z Ω |f |1+t2 Z Ω |f |N+22N N+2N h C0+C (kE kLN) iZ Ω |∇un|2≤ 2k2 E t2 Z Ω |E |2+kE t Z Ω |f |1+ Z Ω |f |N+22N N+2N lim t→∞ h C0+ C (kE kLN) iZ Ω |∇un|2 ≤  Z Ω |f |N+22N N+2N

(98)

Linear (and nonlinear) Dirichlet problems with singular convection/drift terms The convection problem

Estimates t2hC0+C (kE kLN) iZ Ω |∇un|2≤2kE2 Z Ω |E |2+tk E Z Ω |f |1+t2 Z Ω |f |N+22N N+2N h C0+C (kE kLN) iZ Ω |∇un|2≤ 2k2 E t2 Z Ω |E |2+kE t Z Ω |f |1+ Z Ω |f |N+22N N+2N lim t→∞ h C0+ C (kE kLN) iZ Ω |∇un|2 ≤  Z Ω |f |N+22N N+2N

(99)

Linear (and nonlinear) Dirichlet problems with singular convection/drift terms The convection problem

Estimates un∈ W01,2(Ω) :−div(M(x)∇un) =−div  un 1 + 1n|un| E (x )+f (x ) r h C0+ C (kE kLN) i Z Ω|∇u n|2 12 ≤ kf kL 2N N+2

(100)

Linear (and nonlinear) Dirichlet problems with singular convection/drift terms The convection problem

Estimates Theorem

Let E ∈ (LN(Ω))N, f ∈ Lm(Ω), m 2N

N+2. Then there exists

u∈ W01,2(Ω) weak solution, that is Z Ω M(x )∇u∇v = Z Ω u E (x )∇v + Z Ω f v, ∀ v ∈ W01,2(Ω).

Since the sequence {un} is bounded in W01,2(Ω), then,

up to subsequences, un converges weakly in W01,2(Ω) to

a function u. Z Ω M(x )∇un∇v = Z Ω un 1 + 1n|un| E (x )∇v + Z Ω f (x )v, Passing to the limit as n tends to infinity yields the result. Moreover (thanks to the weak lower s.c.)

q C0+ C (kE kLN) hR Ω|∇u| 2i 1 2 ≤ kf kL2N N+2

(101)

Linear (and nonlinear) Dirichlet problems with singular convection/drift terms The convection problem

Estimates Theorem

Let E ∈ (LN(Ω))N, f ∈ Lm(Ω), m 2N

N+2. Then there exists

u∈ W01,2(Ω) weak solution, that is Z Ω M(x )∇u∇v = Z Ω u E (x )∇v + Z Ω f v, ∀ v ∈ W01,2(Ω). Since the sequence {un} is bounded in W01,2(Ω), then,

up to subsequences, un converges weakly in W01,2(Ω) to

a function u. Z Ω M(x )∇un∇v = Z Ω un 1 + 1n|un| E (x )∇v + Z Ω f (x )v, Passing to the limit as n tends to infinity yields the result. Moreover (thanks to the weak lower s.c.)

q C0+ C (kE kLN) hR Ω|∇u| 2i 1 2 ≤ kf kL2N N+2

(102)

Linear (and nonlinear) Dirichlet problems with singular convection/drift terms The convection problem

Estimates Theorem

Let E ∈ (LN(Ω))N, f ∈ Lm(Ω), m 2N

N+2. Then there exists

u∈ W01,2(Ω) weak solution, that is Z Ω M(x )∇u∇v = Z Ω u E (x )∇v + Z Ω f v, ∀ v ∈ W01,2(Ω). Since the sequence {un} is bounded in W01,2(Ω), then,

up to subsequences, un converges weakly in W01,2(Ω) to

a function u. Z Ω M(x )∇un∇v = Z Ω un 1 + 1n|un| E (x )∇v + Z Ω f (x )v,

Passing to the limit as n tends to infinity yields the result. Moreover (thanks to the weak lower s.c.)

q C0+ C (kE kLN) hR Ω|∇u| 2i 1 2 ≤ kf kL2N N+2

(103)

Linear (and nonlinear) Dirichlet problems with singular convection/drift terms The convection problem

Estimates Theorem

Let E ∈ (LN(Ω))N, f ∈ Lm(Ω), m 2N

N+2. Then there exists

u∈ W01,2(Ω) weak solution, that is Z Ω M(x )∇u∇v = Z Ω u E (x )∇v + Z Ω f v, ∀ v ∈ W01,2(Ω). Since the sequence {un} is bounded in W01,2(Ω), then,

up to subsequences, un converges weakly in W01,2(Ω) to

a function u. Z Ω M(x )∇un∇v = Z Ω un 1 + 1n|un| E (x )∇v + Z Ω f (x )v, Passing to the limit as n tends to infinity yields the result.

Moreover (thanks to the weak lower s.c.)

q C0+ C (kE kLN) hR Ω|∇u| 2i 1 2 ≤ kf kL2N N+2

(104)

Linear (and nonlinear) Dirichlet problems with singular convection/drift terms The convection problem

Estimates Theorem

Let E ∈ (LN(Ω))N, f ∈ Lm(Ω), m 2N

N+2. Then there exists

u∈ W01,2(Ω) weak solution, that is Z Ω M(x )∇u∇v = Z Ω u E (x )∇v + Z Ω f v, ∀ v ∈ W01,2(Ω). Since the sequence {un} is bounded in W01,2(Ω), then,

up to subsequences, un converges weakly in W01,2(Ω) to

a function u. Z Ω M(x )∇un∇v = Z Ω un 1 + 1n|un| E (x )∇v + Z Ω f (x )v, Passing to the limit as n tends to infinity yields the result. Moreover (thanks to the weak lower s.c.)

q C0+ C (kE kLN) hR Ω|∇u| 2i 1 2 ≤ kf kL2N N+2

(105)

Linear (and nonlinear) Dirichlet problems with singular convection/drift terms The convection problem

Estimates Theorem

Let E ∈ (LN(Ω))N, f ∈ Lm(Ω), m 2N

N+2. Then there exists

u∈ W01,2(Ω) weak solution, that is Z Ω M(x )∇u∇v = Z Ω u E (x )∇v + Z Ω f v, ∀ v ∈ W01,2(Ω). Since the sequence {un} is bounded in W01,2(Ω), then,

up to subsequences, un converges weakly in W01,2(Ω) to

a function u. Z Ω M(x )∇un∇v = Z Ω un 1 + 1n|un| E (x )∇v + Z Ω f (x )v, Passing to the limit as n tends to infinity yields the result. Moreover (thanks to the weak lower s.c.)

q C0+ C (kE kLN) hR Ω|∇u| 2i 1 2 ≤ kf kL2N N+2

(106)

Linear (and nonlinear) Dirichlet problems with singular convection/drift terms By duality

(107)

Linear (and nonlinear) Dirichlet problems with singular convection/drift terms By duality

(108)

Linear (and nonlinear) Dirichlet problems with singular convection/drift terms By duality

Drift problem

Last part of the talk: new presentation of some results

(109)

Linear (and nonlinear) Dirichlet problems with singular convection/drift terms By duality

Drift problem

Last part of the talk: new presentation of some results

(110)

Linear (and nonlinear) Dirichlet problems with singular convection/drift terms By duality

Drift problem

Estimate on the sequence {un}

r h C0+ C (kE kLN) i Z Ω |∇un|2 12 ≤ kf kL 2N N+2 un∈ W01,2(Ω) : −div(M(x)∇un) =−div  un 1 + 1n|un| 1 1 + 1n|∇ψn| E (x )+ f (x ) Z Ω M∗(x )∇ψn∇un= Z Ω E (x )·∇ψn 1 1 + n1|∇ψn| 1 1 + n1|un| un+ Z Ω f (x )ψn ψn ∈ W01,2(Ω) :−div(M ∗ (x )∇ψn) = E (x )· ∇ψn 1 + 1n|∇ψn| 1 1 + 1n|un| + g (x ) Z Ω ψnf = Z Ω ung ≤ kunk2∗kgk2N N+2 ≤ ˜ C (kE k N)kf kN+22N kgkN+22N ⇒ kψnk2∗ ≤ ˜C (kE kN)kgk2N N+2

(111)

Linear (and nonlinear) Dirichlet problems with singular convection/drift terms By duality

Drift problem

Estimate on the sequence {un}

r h C0+ C (kE kLN) i Z Ω |∇un|2 12 ≤ kf kL 2N N+2 un∈ W01,2(Ω) : −div(M(x)∇un) =−div  un 1 + 1n|un| 1 1 + 1n|∇ψn| E (x )+ f (x ) Z Ω M∗(x )∇ψn∇un= Z Ω E (x )·∇ψn 1 1 + 1n|∇ψn| 1 1 + n1|un| un+ Z Ω f (x )ψn ψn ∈ W01,2(Ω) :−div(M ∗ (x )∇ψn) = E (x )· ∇ψn 1 + 1n|∇ψn| 1 1 + 1n|un| + g (x ) Z Ω ψnf = Z Ω ung ≤ kunk2∗kgk2N N+2 ≤ ˜ C (kE k N)kf kN+22N kgkN+22N ⇒ kψnk2∗ ≤ ˜C (kE kN)kgk2N N+2

(112)

Linear (and nonlinear) Dirichlet problems with singular convection/drift terms By duality

Drift problem

Estimate on the sequence {un}

r h C0+ C (kE kLN) i Z Ω |∇un|2 12 ≤ kf kL 2N N+2 un∈ W01,2(Ω) : −div(M(x)∇un) =−div  un 1 + 1n|un| 1 1 + 1n|∇ψn| E (x )+ f (x ) Z Ω M∗(x )∇ψn∇un= Z Ω E (x )·∇ψn 1 1 + 1n|∇ψn| 1 1 + n1|un| un+ Z Ω f (x )ψn ψn ∈ W01,2(Ω) :−div(M ∗ (x )∇ψn) = E (x )· ∇ψn 1 + 1n|∇ψn| 1 1 + 1n|un| + g (x ) Z Ω ψnf = Z Ω ung ≤ kunk2∗kgk2N N+2 ≤ ˜ C (kE k N)kf kN+22N kgkN+22N ⇒ kψnk2∗ ≤ ˜C (kE kN)kgk2N N+2

(113)

Linear (and nonlinear) Dirichlet problems with singular convection/drift terms By duality

Drift problem

Estimate on the sequence {un}

r h C0+ C (kE kLN) i Z Ω |∇un|2 12 ≤ kf kL 2N N+2 un∈ W01,2(Ω) : −div(M(x)∇un) =−div  un 1 + 1n|un| 1 1 + 1n|∇ψn| E (x )+ f (x ) Z Ω M∗(x )∇ψn∇un= Z Ω E (x )·∇ψn 1 1 + 1n|∇ψn| 1 1 + n1|un| un+ Z Ω f (x )ψn ψn ∈ W01,2(Ω) :−div(M ∗ (x )∇ψn) = E (x )· ∇ψn 1 + 1n|∇ψn| 1 1 + 1n|un| + g (x ) Z Ω ψnf = Z Ω ung ≤ kunk2∗kgk2N N+2 ≤ ˜ C (kE k N)kf kN+22N kgkN+22N ⇒ kψnk2∗ ≤ ˜C (kE kN)kgk2N N+2

(114)

Linear (and nonlinear) Dirichlet problems with singular convection/drift terms By duality

Drift problem

Estimate on the sequence {un}

r h C0+ C (kE kLN) i Z Ω |∇un|2 12 ≤ kf kL 2N N+2 un∈ W01,2(Ω) : −div(M(x)∇un) =−div  un 1 + 1n|un| 1 1 + 1n|∇ψn| E (x )+ f (x ) Z Ω M∗(x )∇ψn∇un= Z Ω E (x )·∇ψn 1 1 + 1n|∇ψn| 1 1 + n1|un| un+ Z Ω f (x )ψn ψn ∈ W01,2(Ω) :−div(M ∗ (x )∇ψn) = E (x )· ∇ψn 1 + 1n|∇ψn| 1 1 + 1n|un| + g (x ) Z Ω ψnf = Z Ω ung ≤ kunk2∗kgk2N N+2 ≤ ˜ C (kE k N)kf kN+22N kgkN+22N ⇒ kψnk2∗ ≤ ˜C (kE kN)kgk2N N+2

(115)

Linear (and nonlinear) Dirichlet problems with singular convection/drift terms By duality Drift problem ψn ∈ W01,2(Ω) :−div(M ∗(x ) ∇ψn) = E (x )· ∇ψn 1 + 1 n|∇ψn| 1 1 + 1 n|un| + g (x ) Z Ω ψnf = Z Ω ung ≤ kunk2∗kgk2N N+2 ≤ ˜ C (kE k N)kf k 2N N+2kgk 2N N+2 ⇒ kψnk2∗ ≤ ˜C (kE kN)kgk2N N+2 Z Ω M∗(x )∇ψn∇ψn≤ kE kLN  Z Ω |∇ψn|2 12 ˜ C (kE k N)kgkN+22N + ˜C (kE kN)kgk 2 2N N+2 ⇒ α2 Z Ω|∇ψ n|2 ≤ 1 2αkE k 2 LN ˜ C (kE k N) 2 kgk2 2N N+2 + ˜C (kE k N)kgk 2 2N N+2 :  Z Ω |∇ψn|2 12 ≤ ¯C (kE k N)kgkN+22N

(116)

Linear (and nonlinear) Dirichlet problems with singular convection/drift terms By duality Drift problem ψn ∈ W01,2(Ω) :−div(M ∗(x ) ∇ψn) = E (x )· ∇ψn 1 + 1 n|∇ψn| 1 1 + 1 n|un| + g (x ) Z Ω ψnf = Z Ω ung ≤ kunk2∗kgk2N N+2 ≤ ˜ C (kE k N)kf k2N N+2kgk 2N N+2 ⇒ kψnk2∗ ≤ ˜C (kE kN)kgk2N N+2 Z Ω M∗(x )∇ψn∇ψn≤ kE kLN  Z Ω |∇ψn|2 12 ˜ C (kE k N)kgkN+22N + ˜C (kE kN)kgk 2 2N N+2 ⇒ α2 Z Ω|∇ψ n|2 ≤ 1 2αkE k 2 LN ˜ C (kE k N) 2 kgk2 2N N+2 + ˜C (kE k N)kgk 2 2N N+2 :  Z Ω |∇ψn|2 12 ≤ ¯C (kE k N)kgkN+22N

(117)

Linear (and nonlinear) Dirichlet problems with singular convection/drift terms By duality Drift problem ψn ∈ W01,2(Ω) :−div(M ∗(x ) ∇ψn) = E (x )· ∇ψn 1 + 1 n|∇ψn| 1 1 + 1 n|un| + g (x ) Z Ω ψnf = Z Ω ung ≤ kunk2∗kgk2N N+2 ≤ ˜ C (kE k N)kf k2N N+2kgk 2N N+2 ⇒ kψnk2∗ ≤ ˜C (kE kN)kgk2N N+2 Z Ω M∗(x )∇ψn∇ψn≤ kE kLN  Z Ω |∇ψn|2 12 ˜ C (kE k N)kgkN+22N + ˜C (kE kN)kgk 2 2N N+2 ⇒ α2 Z Ω|∇ψ n|2 ≤ 1 2αkE k 2 LN ˜ C (kE k N) 2 kgk2 2N N+2 + ˜C (kE k N)kgk 2 2N N+2 :  Z Ω |∇ψn|2 12 ≤ ¯C (kE k N)kgkN+22N

(118)

Linear (and nonlinear) Dirichlet problems with singular convection/drift terms By duality Drift problem ψn ∈ W01,2(Ω) :−div(M ∗(x ) ∇ψn) = E (x )· ∇ψn 1 + 1 n|∇ψn| 1 1 + 1 n|un| + g (x ) Z Ω ψnf = Z Ω ung ≤ kunk2∗kgk2N N+2 ≤ ˜ C (kE k N)kf k2N N+2kgk 2N N+2 ⇒ kψnk2∗ ≤ ˜C (kE kN)kgk2N N+2 Z Ω M∗(x )∇ψn∇ψn≤ kE kLN  Z Ω |∇ψn|2 12 ˜ C (kE k N)kgkN+22N + ˜C (kE kN)kgk 2 2N N+2 ⇒ α2 Z Ω|∇ψ n|2 ≤ 1 2αkE k 2 LN ˜ C (kE k N) 2 kgk2 2N N+2 + ˜C (kE k N)kgk 2 2N N+2 :  Z Ω |∇ψn|2 12 ≤ ¯C (kE k N)kgkN+22N

(119)

Linear (and nonlinear) Dirichlet problems with singular convection/drift terms By duality Drift problem ψn ∈ W01,2(Ω) :−div(M ∗(x ) ∇ψn) = E (x )· ∇ψn 1 + 1 n|∇ψn| 1 1 + 1 n|un| + g (x ) Z Ω ψnf = Z Ω ung ≤ kunk2∗kgk2N N+2 ≤ ˜ C (kE k N)kf k2N N+2kgk 2N N+2 ⇒ kψnk2∗ ≤ ˜C (kE kN)kgk2N N+2 Z Ω M∗(x )∇ψn∇ψn≤ kE kLN  Z Ω |∇ψn|2 12 ˜ C (kE k N)kgkN+22N + ˜C (kE kN)kgk 2 2N N+2 ⇒ α2 Z Ω|∇ψ n|2 ≤ 1 2αkE k 2 LN ˜ C (kE k N) 2 kgk2 2N N+2 + ˜C (kE k N)kgk 2 2N N+2 :  Z Ω |∇ψn|2 12 ≤ ¯C (kE k N)kgkN+22N

(120)

Linear (and nonlinear) Dirichlet problems with singular convection/drift terms By duality Drift problem ψn ∈ W01,2(Ω) :−div(M ∗ (x )∇ψn) = E (x )· ∇ψn 1 + 1n|∇ψn| 1 1 + 1n|un| + g (x )  Z Ω |∇ψn|2 12 ≤ ¯C (kE k N)kgk2N N+2 ∇ψn *∇ ˜ψ;

now it is not enough. Note: un ∈ W01,2(Ω) :−div(M

(x )

∇ψn) = yn* in L

2N N+2(Ω)

It is possible to prove that11 ∇ψ

n(x )→ ∇ ˜ψ(x), a.e. Z Ω M∗(x )∇ψn∇v = Z Ω E (x )·∇ψn 1 1 + 1n|∇ψn| 1 1 + 1n|un| v + Z Ω f v

(121)

Linear (and nonlinear) Dirichlet problems with singular convection/drift terms By duality Drift problem ψn ∈ W01,2(Ω) :−div(M ∗ (x )∇ψn) = E (x )· ∇ψn 1 + 1n|∇ψn| 1 1 + 1n|un| + g (x )  Z Ω |∇ψn|2 12 ≤ ¯C (kE k N)kgk2N N+2 ∇ψn*∇ ˜ψ;

now it is not enough. Note: un ∈ W01,2(Ω) :−div(M

(x )

∇ψn) = yn* in L

2N N+2(Ω)

It is possible to prove that11 ∇ψ

n(x )→ ∇ ˜ψ(x), a.e. Z Ω M∗(x )∇ψn∇v = Z Ω E (x )·∇ψn 1 1 + 1n|∇ψn| 1 1 + 1n|un| v + Z Ω f v

(122)

Linear (and nonlinear) Dirichlet problems with singular convection/drift terms By duality Drift problem ψn ∈ W01,2(Ω) :−div(M ∗ (x )∇ψn) = E (x )· ∇ψn 1 + 1n|∇ψn| 1 1 + 1n|un| + g (x )  Z Ω |∇ψn|2 12 ≤ ¯C (kE k N)kgk2N N+2 ∇ψn*∇ ˜ψ;

now it is not enough.

Note: un ∈ W01,2(Ω) :−div(M ∗(x )

∇ψn) = yn* in L

2N N+2(Ω)

It is possible to prove that11 ∇ψ

n(x )→ ∇ ˜ψ(x), a.e. Z Ω M∗(x )∇ψn∇v = Z Ω E (x )·∇ψn 1 1 + 1n|∇ψn| 1 1 + 1n|un| v + Z Ω f v

(123)

Linear (and nonlinear) Dirichlet problems with singular convection/drift terms By duality Drift problem ψn ∈ W01,2(Ω) :−div(M ∗ (x )∇ψn) = E (x )· ∇ψn 1 + 1n|∇ψn| 1 1 + 1n|un| + g (x )  Z Ω |∇ψn|2 12 ≤ ¯C (kE k N)kgk2N N+2 ∇ψn*∇ ˜ψ;

now it is not enough. Note: un ∈ W01,2(Ω) :−div(M

(x )

∇ψn) = yn* in L

2N N+2(Ω)

It is possible to prove that11 ∇ψ

n(x )→ ∇ ˜ψ(x), a.e. Z Ω M∗(x )∇ψn∇v = Z Ω E (x )·∇ψn 1 1 + 1n|∇ψn| 1 1 + 1n|un| v + Z Ω f v

Riferimenti

Documenti correlati

La serie di pubblicazioni scientifiche Ricerche | architettura, design, territorio ha l’obiettivo di diffondere i risultati delle ricerche e dei progetti realizzati dal Dipartimento

We have shown that an explicit time-marching method combined with the well-known concept of evolution in imaginary time can be profitably adapted to the numerical determination of

Agostino G. Humans are simulated as Intelligent Individual entities characterized by several attributes created from Open Data available by means of a Agent Based

Negli ultimi anni della sua vita Modesta sembra aver ottenuto anche una saggezza filosofica, così il romanzo si trasforma anche in un elogio alla vecchiaia, visto come periodo

L’oggetto della presente tesi è l’analisi della sicurezza statica e della vulnerabilità sismica di un edificio storico a Massa: Palazzo Bourdillon.. Il fabbricato, di proprietà

Tale disposizione prevede che il trattamento dei dati personali debba svolgersi nel rispetto dei diritti e delle libertà fondamentali, nonché della