• Non ci sono risultati.

Cohomological dimension of open subsets of the projective space

N/A
N/A
Protected

Academic year: 2021

Condividi "Cohomological dimension of open subsets of the projective space"

Copied!
155
0
0

Testo completo

(1)

Cohomological dimension of open subsets of the projective space

Matteo Varbaro

Dipartimento di Matematica, Universit`a di Genova

(2)

ZARISKI VS ´ ETALE TOPOLOGY

M o t i v a t i o n s

X ⊂ P

n

projective variety over K = K . By definition:

X = {P ∈ P

n

: f

1

(P) = f

2

(P) = . . . = f

r

(P) = 0}.

What about the minimum r ?

1. Combinatorial tools to approach such a minimum from above.

2. Cohomological ones to bound it from below.

(3)

ZARISKI VS ´ ETALE TOPOLOGY

M o t i v a t i o n s

X ⊂ P

n

projective variety over K = K . By definition:

X = {P ∈ P

n

: f

1

(P) = f

2

(P) = . . . = f

r

(P) = 0}.

What about the minimum r ?

1. Combinatorial tools to approach such a minimum from above.

2. Cohomological ones to bound it from below.

(4)

ZARISKI VS ´ ETALE TOPOLOGY

M o t i v a t i o n s

X ⊂ P

n

projective variety over K = K . By definition:

X = {P ∈ P

n

: f

1

(P) = f

2

(P) = . . . = f

r

(P) = 0}.

What about the minimum r ?

1. Combinatorial tools to approach such a minimum from above.

2. Cohomological ones to bound it from below.

(5)

ZARISKI VS ´ ETALE TOPOLOGY

M o t i v a t i o n s

X ⊂ P

n

projective variety over K = K. By definition:

X = {P ∈ P

n

: f

1

(P) = f

2

(P) = . . . = f

r

(P) = 0}.

What about the minimum r ?

1. Combinatorial tools to approach such a minimum from above.

2. Cohomological ones to bound it from below.

(6)

ZARISKI VS ´ ETALE TOPOLOGY

M o t i v a t i o n s

X ⊂ P

n

projective variety over K = K . By definition:

X = {P ∈ P

n

: f

1

(P) = f

2

(P) = . . . = f

r

(P) = 0}.

What about the minimum r ?

1. Combinatorial tools to approach such a minimum from above.

2. Cohomological ones to bound it from below.

(7)

ZARISKI VS ´ ETALE TOPOLOGY

M o t i v a t i o n s

X ⊂ P

n

projective variety over K = K . By definition:

X = {P ∈ P

n

: f

1

(P) = f

2

(P) = . . . = f

r

(P) = 0}.

What about the minimum r ?

1. Combinatorial tools to approach such a minimum from above.

2. Cohomological ones to bound it from below.

(8)

ZARISKI VS ´ ETALE TOPOLOGY

M o t i v a t i o n s

X ⊂ P

n

projective variety over K = K . By definition:

X = {P ∈ P

n

: f

1

(P) = f

2

(P) = . . . = f

r

(P) = 0}.

What about the minimum r ?

1. Combinatorial tools to approach such a minimum from above.

2. Cohomological ones to bound it from below.

(9)

ZARISKI VS ´ ETALE TOPOLOGY

M o t i v a t i o n s

X ⊂ P

n

projective variety over K = K . By definition:

X = {P ∈ P

n

: f

1

(P) = f

2

(P) = . . . = f

r

(P) = 0}.

What about the minimum r ?

1. Combinatorial tools to approach such a minimum from above.

2. Cohomological ones to bound it from below.

(10)

ZARISKI VS ´ ETALE TOPOLOGY

M o t i v a t i o n s

X ⊂ P

n

projective variety over K = K . By definition:

X = {P ∈ P

n

: f

1

(P) = f

2

(P) = . . . = f

r

(P) = 0}.

What about the minimum r ?

1. Combinatorial tools to approach such a minimum from above.

2. Cohomological ones to bound it from below.

(11)

ZARISKI VS ´ ETALE TOPOLOGY

M o t i v a t i o n s

The most used lower bounds, setting U = P

n

\ X , come from:

Cohomology over U.

Cohomology over U

´et

.

What does provide a better lower bound?

In the first part of the talk we will discuss this question.

(12)

ZARISKI VS ´ ETALE TOPOLOGY

M o t i v a t i o n s

The most used lower bounds, setting U = P

n

\ X , come from:

Cohomology over U.

Cohomology over U

´et

.

What does provide a better lower bound?

In the first part of the talk we will discuss this question.

(13)

ZARISKI VS ´ ETALE TOPOLOGY

M o t i v a t i o n s

The most used lower bounds, setting U = P

n

\ X , come from:

Cohomology over U.

Cohomology over U

´et

.

What does provide a better lower bound?

In the first part of the talk we will discuss this question.

(14)

ZARISKI VS ´ ETALE TOPOLOGY

M o t i v a t i o n s

The most used lower bounds, setting U = P

n

\ X , come from:

Cohomology over U.

Cohomology over U

´et

.

What does provide a better lower bound?

In the first part of the talk we will discuss this question.

(15)

ZARISKI VS ´ ETALE TOPOLOGY

M o t i v a t i o n s

The most used lower bounds, setting U = P

n

\ X , come from:

Cohomology over U.

Cohomology over U

´et

.

What does provide a better lower bound?

In the first part of the talk we will discuss this question.

(16)

ZARISKI VS ´ ETALE TOPOLOGY

M o t i v a t i o n s

The most used lower bounds, setting U = P

n

\ X , come from:

Cohomology over U.

Cohomology over U

´et

.

What does provide a better lower bound?

In the first part of the talk we will discuss this question.

(17)

ZARISKI VS ´ ETALE TOPOLOGY

P r e c i s e s t a t e m e n t

Let U be a scheme over a field K . Its cohomological dimension is:

cd(U) = sup{i ∈ N : ∃ quasi-coherent sheaf F : H

i

(U, F ) 6= 0}.

The ´ etale cohomological dimension of U is:

´ ecd(U) = sup{i ∈ N : ∃ torsion sheaf G : H

i

(U

´et

, G) 6= 0}.

QUESTION (Hartshorne, 1970): ´ ecd(U) ≤ cd(U) + dim(U) ?

(18)

ZARISKI VS ´ ETALE TOPOLOGY

P r e c i s e s t a t e m e n t

Let U be a scheme over a field K . Its cohomological dimension is:

cd(U) = sup{i ∈ N : ∃ quasi-coherent sheaf F : H

i

(U, F ) 6= 0}.

The ´ etale cohomological dimension of U is:

´

ecd(U) = sup{i ∈ N : ∃ torsion sheaf G : H

i

(U

´et

, G) 6= 0}.

QUESTION (Hartshorne, 1970): ´ ecd(U) ≤ cd(U) + dim(U) ?

(19)

ZARISKI VS ´ ETALE TOPOLOGY

P r e c i s e s t a t e m e n t

Let U be a scheme over a field K . Its cohomological dimension is:

cd(U) = sup{i ∈ N : ∃ quasi-coherent sheaf F : H

i

(U, F ) 6= 0}.

The ´ etale cohomological dimension of U is:

´

ecd(U) = sup{i ∈ N : ∃ torsion sheaf G : H

i

(U

´et

, G) 6= 0}.

QUESTION (Hartshorne, 1970): ´ ecd(U) ≤ cd(U) + dim(U) ?

(20)

ZARISKI VS ´ ETALE TOPOLOGY

P r e c i s e s t a t e m e n t

Let U be a scheme over a field K . Its cohomological dimension is:

cd(U) = sup{i ∈ N : ∃ quasi-coherent sheaf F : H

i

(U, F ) 6= 0}.

The ´ etale cohomological dimension of U is:

´

ecd(U) = sup{i ∈ N : ∃ torsion sheaf G : H

i

(U

´et

, G) 6= 0}.

QUESTION (Hartshorne, 1970): ´ ecd(U) ≤ cd(U) + dim(U) ?

(21)

ZARISKI VS ´ ETALE TOPOLOGY

P r e c i s e s t a t e m e n t

Let U be a scheme over a field K . Its cohomological dimension is:

cd(U) = sup{i ∈ N : ∃ quasi-coherent sheaf F : H

i

(U, F ) 6= 0}.

The ´ etale cohomological dimension of U is:

´

ecd(U) = sup{i ∈ N : ∃ torsion sheaf G : H

i

(U

´et

, G) 6= 0}.

QUESTION (Hartshorne, 1970): ´ ecd(U) ≤ cd(U) + dim(U) ?

(22)

ZARISKI VS ´ ETALE TOPOLOGY

P r e c i s e s t a t e m e n t

Let U be a scheme over a field K . Its cohomological dimension is:

cd(U) = sup{i ∈ N : ∃ quasi-coherent sheaf F : H

i

(U, F ) 6= 0}.

The ´ etale cohomological dimension of U is:

´

ecd(U) = sup{i ∈ N : ∃ torsion sheaf G : H

i

(U

´et

, G) 6= 0}.

QUESTION (Hartshorne, 1970): ´ ecd(U) ≤ cd(U) + dim(U) ?

(23)

ZARISKI VS ´ ETALE TOPOLOGY

P r e c i s e s t a t e m e n t

Let U be a scheme over a field K . Its cohomological dimension is:

cd(U) = sup{i ∈ N : ∃ quasi-coherent sheaf F : H

i

(U, F ) 6= 0}.

The ´ etale cohomological dimension of U is:

´

ecd(U) = sup{i ∈ N : ∃ torsion sheaf G : H

i

(U

´et

, G) 6= 0}.

QUESTION (Hartshorne, 1970): ´ ecd(U) ≤ cd(U) + dim(U) ?

(24)

ZARISKI VS ´ ETALE TOPOLOGY

P r e c i s e s t a t e m e n t

Let U be a scheme over a field K . Its cohomological dimension is:

cd(U) = sup{i ∈ N : ∃ quasi-coherent sheaf F : H

i

(U, F ) 6= 0}.

The ´ etale cohomological dimension of U is:

´

ecd(U) = sup{i ∈ N : ∃ torsion sheaf G : H

i

(U

´et

, G) 6= 0}.

QUESTION (Hartshorne, 1970): ´ ecd(U) ≤ cd(U) + dim(U) ?

(25)

ZARISKI VS ´ ETALE TOPOLOGY

P r e c i s e s t a t e m e n t

Let U be a scheme over a field K . Its cohomological dimension is:

cd(U) = sup{i ∈ N : ∃ quasi-coherent sheaf F : H

i

(U, F ) 6= 0}.

The ´ etale cohomological dimension of U is:

´

ecd(U) = sup{i ∈ N : ∃ torsion sheaf G : H

i

(U

´et

, G) 6= 0}.

QUESTION (Hartshorne, 1970): ´ ecd(U) ≤ cd(U) + dim(U) ?

(26)

ZARISKI VS ´ ETALE TOPOLOGY

P r e c i s e s t a t e m e n t

Let U be a scheme over a field K . Its cohomological dimension is:

cd(U) = sup{i ∈ N : ∃ quasi-coherent sheaf F : H

i

(U, F ) 6= 0}.

The ´ etale cohomological dimension of U is:

´

ecd(U) = sup{i ∈ N : ∃ torsion sheaf G : H

i

(U

´et

, G) 6= 0}.

QUESTION (Hartshorne, 1970): ´ ecd(U) ≤ cd(U) + dim(U) ?

(27)

ZARISKI VS ´ ETALE TOPOLOGY

O p e n s u b s e t s o f P

n

Take K = K and U ⊂ P

n

open. Then

X = P

n

\ U = {P ∈ P

n

: f

1

(P) = f

2

(P) = . . . = f

r

(P) = 0}.

We have:

1. r ≥ cd(U) + 1.

2. r ≥ ´ ecd(U) − n + 1 = ´ ecd(U) − dim(U) + 1.

(28)

ZARISKI VS ´ ETALE TOPOLOGY

O p e n s u b s e t s o f P

n

Take K = K and U ⊂ P

n

open. Then

X = P

n

\ U = {P ∈ P

n

: f

1

(P) = f

2

(P) = . . . = f

r

(P) = 0}.

We have:

1. r ≥ cd(U) + 1.

2. r ≥ ´ ecd(U) − n + 1 = ´ ecd(U) − dim(U) + 1.

(29)

ZARISKI VS ´ ETALE TOPOLOGY

O p e n s u b s e t s o f P

n

Take K = K and U ⊂ P

n

open. Then

X = P

n

\ U = {P ∈ P

n

: f

1

(P) = f

2

(P) = . . . = f

r

(P) = 0}.

We have:

1. r ≥ cd(U) + 1.

2. r ≥ ´ ecd(U) − n + 1 = ´ ecd(U) − dim(U) + 1.

(30)

ZARISKI VS ´ ETALE TOPOLOGY

O p e n s u b s e t s o f P

n

Take K = K and U ⊂ P

n

open. Then

X = P

n

\ U = {P ∈ P

n

: f

1

(P) = f

2

(P) = . . . = f

r

(P) = 0}.

We have:

1. r ≥ cd(U) + 1.

2. r ≥ ´ ecd(U) − n + 1 = ´ ecd(U) − dim(U) + 1.

(31)

ZARISKI VS ´ ETALE TOPOLOGY

O p e n s u b s e t s o f P

n

Take K = K and U ⊂ P

n

open. Then

X = P

n

\ U = {P ∈ P

n

: f

1

(P) = f

2

(P) = . . . = f

r

(P) = 0}.

We have:

1. r ≥ cd(U) + 1.

2. r ≥ ´ ecd(U) − n + 1 = ´ ecd(U) − dim(U) + 1.

(32)

ZARISKI VS ´ ETALE TOPOLOGY

O p e n s u b s e t s o f P

n

Take K = K and U ⊂ P

n

open. Then

X = P

n

\ U = {P ∈ P

n

: f

1

(P) = f

2

(P) = . . . = f

r

(P) = 0}.

We have:

1. r ≥ cd(U) + 1.

2. r ≥ ´ ecd(U) − n + 1 = ´ ecd(U) − dim(U) + 1.

(33)

ZARISKI VS ´ ETALE TOPOLOGY

O p e n s u b s e t s o f P

n

Take K = K and U ⊂ P

n

open. Then

X = P

n

\ U = {P ∈ P

n

: f

1

(P) = f

2

(P) = . . . = f

r

(P) = 0}.

We have:

1. r ≥ cd(U) + 1.

2. r ≥ ´ ecd(U) − n + 1 = ´ ecd(U) − dim(U) + 1.

(34)

ZARISKI VS ´ ETALE TOPOLOGY

S o m e r e s u l t s a r o u n d t h e i s s u e

The expectation of Hartshorne was not correct:

(Ogus, 1973): char(K ) = 0, X = v

s

(P

d

) ⊂ P

n

, U = P

n

\ X .

´

ecd(U) = 2n − 2, cd(U) = n − d − 1

In positive characteristic, negative answers can be produced using:

(Peskine-Szpiro , 1973): char(K ) > 0, X ⊂ P

n

d -dimensional arithmetically Cohen-Macaulay scheme, U = P

n

\ X . Then

cd(U) = n − d − 1

(Bruns-Schw¨ anzl , 1990): char(K ) > 0, X = P

s

× P

t

⊆ P

n

.

2n − 3 = ´ ecd(U) > cd(U) + n = 2n − s − t − 1

(35)

ZARISKI VS ´ ETALE TOPOLOGY

S o m e r e s u l t s a r o u n d t h e i s s u e

The expectation of Hartshorne was not correct:

(Ogus, 1973): char(K ) = 0, X = v

s

(P

d

) ⊂ P

n

, U = P

n

\ X .

´

ecd(U) = 2n − 2, cd(U) = n − d − 1

In positive characteristic, negative answers can be produced using:

(Peskine-Szpiro , 1973): char(K ) > 0, X ⊂ P

n

d -dimensional arithmetically Cohen-Macaulay scheme, U = P

n

\ X . Then

cd(U) = n − d − 1

(Bruns-Schw¨ anzl , 1990): char(K ) > 0, X = P

s

× P

t

⊆ P

n

.

2n − 3 = ´ ecd(U) > cd(U) + n = 2n − s − t − 1

(36)

ZARISKI VS ´ ETALE TOPOLOGY

S o m e r e s u l t s a r o u n d t h e i s s u e

The expectation of Hartshorne was not correct:

(Ogus, 1973): char(K ) = 0, X = v

s

(P

d

) ⊂ P

n

, U = P

n

\ X .

´

ecd(U) = 2n − 2, cd(U) = n − d − 1

In positive characteristic, negative answers can be produced using:

(Peskine-Szpiro , 1973): char(K ) > 0, X ⊂ P

n

d -dimensional arithmetically Cohen-Macaulay scheme, U = P

n

\ X . Then

cd(U) = n − d − 1

(Bruns-Schw¨ anzl , 1990): char(K ) > 0, X = P

s

× P

t

⊆ P

n

.

2n − 3 = ´ ecd(U) > cd(U) + n = 2n − s − t − 1

(37)

ZARISKI VS ´ ETALE TOPOLOGY

S o m e r e s u l t s a r o u n d t h e i s s u e

The expectation of Hartshorne was not correct:

(Ogus, 1973): char(K ) = 0, X = v

s

(P

d

) ⊂ P

n

, U = P

n

\ X .

´

ecd(U) = 2n − 2, cd(U) = n − d − 1

In positive characteristic, negative answers can be produced using:

(Peskine-Szpiro , 1973): char(K ) > 0, X ⊂ P

n

d -dimensional arithmetically Cohen-Macaulay scheme, U = P

n

\ X . Then

cd(U) = n − d − 1

(Bruns-Schw¨ anzl , 1990): char(K ) > 0, X = P

s

× P

t

⊆ P

n

.

2n − 3 = ´ ecd(U) > cd(U) + n = 2n − s − t − 1

(38)

ZARISKI VS ´ ETALE TOPOLOGY

S o m e r e s u l t s a r o u n d t h e i s s u e

The expectation of Hartshorne was not correct:

(Ogus, 1973): char(K ) = 0, X = v

s

(P

d

) ⊂ P

n

, U = P

n

\ X .

´

ecd(U) = 2n − 2, cd(U) = n − d − 1

In positive characteristic, negative answers can be produced using:

(Peskine-Szpiro , 1973): char(K ) > 0, X ⊂ P

n

d -dimensional arithmetically Cohen-Macaulay scheme, U = P

n

\ X . Then

cd(U) = n − d − 1

(Bruns-Schw¨ anzl , 1990): char(K ) > 0, X = P

s

× P

t

⊆ P

n

.

2n − 3 = ´ ecd(U) > cd(U) + n = 2n − s − t − 1

(39)

ZARISKI VS ´ ETALE TOPOLOGY

S o m e r e s u l t s a r o u n d t h e i s s u e

The expectation of Hartshorne was not correct:

(Ogus, 1973): char(K ) = 0, X = v

s

(P

d

) ⊂ P

n

, U = P

n

\ X .

´

ecd(U) = 2n − 2, cd(U) = n − d − 1

In positive characteristic, negative answers can be produced using:

(Peskine-Szpiro , 1973): char(K ) > 0, X ⊂ P

n

d -dimensional arithmetically Cohen-Macaulay scheme, U = P

n

\ X . Then

cd(U) = n − d − 1

(Bruns-Schw¨ anzl , 1990): char(K ) > 0, X = P

s

× P

t

⊆ P

n

.

2n − 3 = ´ ecd(U) > cd(U) + n = 2n − s − t − 1

(40)

ZARISKI VS ´ ETALE TOPOLOGY

S o m e r e s u l t s a r o u n d t h e i s s u e

The expectation of Hartshorne was not correct:

(Ogus, 1973): char(K ) = 0, X = v

s

(P

d

) ⊂ P

n

, U = P

n

\ X .

´

ecd(U) = 2n − 2, cd(U) = n − d − 1

In positive characteristic, negative answers can be produced using:

(Peskine-Szpiro, 1973): char(K ) > 0, X ⊂ P

n

d -dimensional arithmetically Cohen-Macaulay scheme, U = P

n

\ X . Then

cd(U) = n − d − 1

(Bruns-Schw¨ anzl , 1990): char(K ) > 0, X = P

s

× P

t

⊆ P

n

.

2n − 3 = ´ ecd(U) > cd(U) + n = 2n − s − t − 1

(41)

ZARISKI VS ´ ETALE TOPOLOGY

S o m e r e s u l t s a r o u n d t h e i s s u e

The expectation of Hartshorne was not correct:

(Ogus, 1973): char(K ) = 0, X = v

s

(P

d

) ⊂ P

n

, U = P

n

\ X .

´

ecd(U) = 2n − 2, cd(U) = n − d − 1

In positive characteristic, negative answers can be produced using:

(Peskine-Szpiro, 1973): char(K ) > 0, X ⊂ P

n

d -dimensional arithmetically Cohen-Macaulay scheme, U = P

n

\ X . Then

cd(U) = n − d − 1

(Bruns-Schw¨ anzl , 1990): char(K ) > 0, X = P

s

× P

t

⊆ P

n

.

2n − 3 = ´ ecd(U) > cd(U) + n = 2n − s − t − 1

(42)

ZARISKI VS ´ ETALE TOPOLOGY

S o m e r e s u l t s a r o u n d t h e i s s u e

The expectation of Hartshorne was not correct:

(Ogus, 1973): char(K ) = 0, X = v

s

(P

d

) ⊂ P

n

, U = P

n

\ X .

´

ecd(U) = 2n − 2, cd(U) = n − d − 1

In positive characteristic, negative answers can be produced using:

(Peskine-Szpiro, 1973): char(K ) > 0, X ⊂ P

n

d -dimensional arithmetically Cohen-Macaulay scheme, U = P

n

\ X . Then

cd(U) = n − d − 1

(Bruns-Schw¨ anzl , 1990): char(K ) > 0, X = P

s

× P

t

⊆ P

n

.

2n − 3 = ´ ecd(U) > cd(U) + n = 2n − s − t − 1

(43)

ZARISKI VS ´ ETALE TOPOLOGY

S o m e r e s u l t s a r o u n d t h e i s s u e

The expectation of Hartshorne was not correct:

(Ogus, 1973): char(K ) = 0, X = v

s

(P

d

) ⊂ P

n

, U = P

n

\ X .

´

ecd(U) = 2n − 2, cd(U) = n − d − 1

In positive characteristic, negative answers can be produced using:

(Peskine-Szpiro, 1973): char(K ) > 0, X ⊂ P

n

d -dimensional arithmetically Cohen-Macaulay scheme, U = P

n

\ X . Then

cd(U) = n − d − 1

(Bruns-Schw¨ anzl , 1990): char(K ) > 0, X = P

s

× P

t

⊆ P

n

.

2n − 3 = ´ ecd(U) > cd(U) + n = 2n − s − t − 1

(44)

ZARISKI VS ´ ETALE TOPOLOGY

S o m e r e s u l t s a r o u n d t h e i s s u e

The expectation of Hartshorne was not correct:

(Ogus, 1973): char(K ) = 0, X = v

s

(P

d

) ⊂ P

n

, U = P

n

\ X .

´

ecd(U) = 2n − 2, cd(U) = n − d − 1

In positive characteristic, negative answers can be produced using:

(Peskine-Szpiro, 1973): char(K ) > 0, X ⊂ P

n

d -dimensional arithmetically Cohen-Macaulay scheme, U = P

n

\ X . Then

cd(U) = n − d − 1

(Bruns-Schw¨ anzl , 1990): char(K ) > 0, X = P

s

× P

t

⊆ P

n

.

2n − 3 = ´ ecd(U) > cd(U) + n = 2n − s − t − 1

(45)

ZARISKI VS ´ ETALE TOPOLOGY

S o m e r e s u l t s a r o u n d t h e i s s u e

The expectation of Hartshorne was not correct:

(Ogus, 1973): char(K ) = 0, X = v

s

(P

d

) ⊂ P

n

, U = P

n

\ X .

´

ecd(U) = 2n − 2, cd(U) = n − d − 1

In positive characteristic, negative answers can be produced using:

(Peskine-Szpiro, 1973): char(K ) > 0, X ⊂ P

n

d -dimensional arithmetically Cohen-Macaulay scheme, U = P

n

\ X . Then

cd(U) = n − d − 1

(Bruns-Schw¨ anzl, 1990): char(K ) > 0, X = P

s

× P

t

⊆ P

n

.

2n − 3 = ´ ecd(U) > cd(U) + n = 2n − s − t − 1

(46)

ZARISKI VS ´ ETALE TOPOLOGY

S o m e r e s u l t s a r o u n d t h e i s s u e

The expectation of Hartshorne was not correct:

(Ogus, 1973): char(K ) = 0, X = v

s

(P

d

) ⊂ P

n

, U = P

n

\ X .

´

ecd(U) = 2n − 2, cd(U) = n − d − 1

In positive characteristic, negative answers can be produced using:

(Peskine-Szpiro , 1973): char(K ) > 0, X ⊂ P

n

d -dimensional arithmetically Cohen-Macaulay scheme, U = P

n

\ X . Then

cd(U) = n − d − 1

(Bruns-Schw¨ anzl, 1990): char(K ) > 0, X = P

s

× P

t

⊆ P

n

.

2n − 3 = ´ ecd(U) > cd(U) + n = 2n − s − t − 1

(47)

ZARISKI VS ´ ETALE TOPOLOGY

S o m e r e s u l t s a r o u n d t h e i s s u e

The expectation of Hartshorne was not correct:

(Ogus, 1973): char(K ) = 0, X = v

s

(P

d

) ⊂ P

n

, U = P

n

\ X .

´

ecd(U) = 2n − 2, cd(U) = n − d − 1

In positive characteristic, negative answers can be produced using:

(Peskine-Szpiro , 1973): char(K ) > 0, X ⊂ P

n

d -dimensional arithmetically Cohen-Macaulay scheme, U = P

n

\ X . Then

cd(U) = n − d − 1

(Bruns-Schw¨ anzl, 1990): char(K ) > 0, X = P

s

× P

t

⊆ P

n

.

2n − 3 = ´ ecd(U) > cd(U) + n = 2n − s − t − 1

(48)

ZARISKI VS ´ ETALE TOPOLOGY

S o m e r e s u l t s a r o u n d t h e i s s u e

The expectation of Hartshorne was not correct:

(Ogus, 1973): char(K ) = 0, X = v

s

(P

d

) ⊂ P

n

, U = P

n

\ X .

´

ecd(U) = 2n − 2, cd(U) = n − d − 1

In positive characteristic, negative answers can be produced using:

(Peskine-Szpiro , 1973): char(K ) > 0, X ⊂ P

n

d -dimensional arithmetically Cohen-Macaulay scheme, U = P

n

\ X . Then

cd(U) = n − d − 1

(Bruns-Schw¨ anzl, 1990): char(K ) > 0, X = P

s

× P

t

⊆ P

n

.

2n − 3 = ´ ecd(U) > cd(U) + n = 2n − s − t − 1

(49)

ZARISKI VS ´ ETALE TOPOLOGY

S o m e r e s u l t s a r o u n d t h e i s s u e

The expectation of Hartshorne was not correct:

(Ogus, 1973): char(K ) = 0, X = v

s

(P

d

) ⊂ P

n

, U = P

n

\ X .

´

ecd(U) = 2n − 2, cd(U) = n − d − 1

In positive characteristic, negative answers can be produced using:

(Peskine-Szpiro , 1973): char(K ) > 0, X ⊂ P

n

d -dimensional arithmetically Cohen-Macaulay scheme, U = P

n

\ X . Then

cd(U) = n − d − 1

(Bruns-Schw¨ anzl, 1990): char(K ) > 0, X = P

s

× P

t

⊆ P

n

.

2n − 3 = ´ ecd(U) > cd(U) + n = 2n − s − t − 1

(50)

ZARISKI VS ´ ETALE TOPOLOGY

S o m e r e s u l t s a r o u n d t h e i s s u e

The expectation of Hartshorne was not correct:

(Ogus, 1973): char(K ) = 0, X = v

s

(P

d

) ⊂ P

n

, U = P

n

\ X .

´

ecd(U) = 2n − 2, cd(U) = n − d − 1

In positive characteristic, negative answers can be produced using:

(Peskine-Szpiro , 1973): char(K ) > 0, X ⊂ P

n

d -dimensional arithmetically Cohen-Macaulay scheme, U = P

n

\ X . Then

cd(U) = n − d − 1

(Bruns-Schw¨ anzl , 1990): char(K ) > 0, X = P

s

× P

t

⊆ P

n

.

2n − 3 = ´ ecd(U) > cd(U) + n = 2n − s − t − 1

(51)

ZARISKI VS ´ ETALE TOPOLOGY

S o m e r e s u l t s a r o u n d t h e i s s u e

The expectation of Hartshorne was not correct:

(Ogus, 1973): char(K ) = 0, X = v

s

(P

d

) ⊂ P

n

, U = P

n

\ X .

´

ecd(U) = 2n − 2, cd(U) = n − d − 1

In positive characteristic, negative answers can be produced using:

(Peskine-Szpiro , 1973): char(K ) > 0, X ⊂ P

n

d -dimensional arithmetically Cohen-Macaulay scheme, U = P

n

\ X . Then

cd(U) = n − d − 1

(Bruns-Schw¨ anzl , 1990): char(K ) > 0, X = P

s

× P

t

⊆ P

n

.

2n − 3 = ´ ecd(U) > cd(U) + n = 2n − s − t − 1

(52)

ZARISKI VS ´ ETALE TOPOLOGY

N o w a d a y s

CONJECTURE (Lyubeznik, 2002): ´ ecd(U) ≥ cd(U) + n

(Kummini-Walther, 2010): Counterexample in positive characteristic . It consists in an open subset U ⊂ P

n

.

(-, 2010): True if U ⊂ P

n

is such that P

n

\ U is a smooth

projective variety over a field K of characteristic 0.

(53)

ZARISKI VS ´ ETALE TOPOLOGY

N o w a d a y s

CONJECTURE (Lyubeznik, 2002): ´ ecd(U) ≥ cd(U) + n

(Kummini-Walther, 2010): Counterexample in positive characteristic . It consists in an open subset U ⊂ P

n

.

(-, 2010): True if U ⊂ P

n

is such that P

n

\ U is a smooth

projective variety over a field K of characteristic 0.

(54)

ZARISKI VS ´ ETALE TOPOLOGY

N o w a d a y s

CONJECTURE (Lyubeznik, 2002): ´ ecd(U) ≥ cd(U) + n

(Kummini-Walther, 2010): Counterexample in positive characteristic . It consists in an open subset U ⊂ P

n

.

(-, 2010): True if U ⊂ P

n

is such that P

n

\ U is a smooth

projective variety over a field K of characteristic 0.

(55)

ZARISKI VS ´ ETALE TOPOLOGY

N o w a d a y s

CONJECTURE (Lyubeznik, 2002): ´ ecd(U) ≥ cd(U) + n

(Kummini-Walther, 2010): Counterexample in positive characteristic . It consists in an open subset U ⊂ P

n

.

(-, 2010): True if U ⊂ P

n

is such that P

n

\ U is a smooth

projective variety over a field K of characteristic 0.

(56)

ZARISKI VS ´ ETALE TOPOLOGY

N o w a d a y s

CONJECTURE (Lyubeznik, 2002): ´ ecd(U) ≥ cd(U) + n

(Kummini-Walther, 2010): Counterexample in positive characteristic . It consists in an open subset U ⊂ P

n

.

(-, 2010): True if U ⊂ P

n

is such that P

n

\ U is a smooth

projective variety over a field K of characteristic 0.

(57)

ZARISKI VS ´ ETALE TOPOLOGY

N o w a d a y s

CONJECTURE (Lyubeznik, 2002): ´ ecd(U) ≥ cd(U) + n

(Kummini-Walther, 2010): Counterexample in positive characteristic . It consists in an open subset U ⊂ P

n

.

(-, 2010): True if U ⊂ P

n

is such that P

n

\ U is a smooth

projective variety over a field K of characteristic 0.

(58)

ZARISKI VS ´ ETALE TOPOLOGY

S k e t c h o f t h e p r o o f

X ⊂ P

n

smooth, U = P

n

\ X . 1. Reduction to K = C ; 2. H

i

(U, F )

Ogus+Hartshorne

−−−−−−−−−−→ H

j

(X

h

, C) ; 3. H

j

(X

h

, C) −−−→

Artin

H

j

(X

´et

, Z/pZ) ; 4. H

j

(X

´et

, Z/pZ)

Poincare

0 duality

−−−−−−−−−−→ H

n+i

(U

´et

, Z/pZ) .

(59)

ZARISKI VS ´ ETALE TOPOLOGY

S k e t c h o f t h e p r o o f

X ⊂ P

n

smooth, U = P

n

\ X . 1. Reduction to K = C ; 2. H

i

(U, F )

Ogus+Hartshorne

−−−−−−−−−−→ H

j

(X

h

, C) ; 3. H

j

(X

h

, C) −−−→

Artin

H

j

(X

´et

, Z/pZ) ; 4. H

j

(X

´et

, Z/pZ)

Poincare

0 duality

−−−−−−−−−−→ H

n+i

(U

´et

, Z/pZ) .

(60)

ZARISKI VS ´ ETALE TOPOLOGY

S k e t c h o f t h e p r o o f

X ⊂ P

n

smooth, U = P

n

\ X . 1. Reduction to K = C ; 2. H

i

(U, F )

Ogus+Hartshorne

−−−−−−−−−−→ H

j

(X

h

, C) ; 3. H

j

(X

h

, C) −−−→

Artin

H

j

(X

´et

, Z/pZ) ; 4. H

j

(X

´et

, Z/pZ)

Poincare

0 duality

−−−−−−−−−−→ H

n+i

(U

´et

, Z/pZ) .

(61)

ZARISKI VS ´ ETALE TOPOLOGY

S k e t c h o f t h e p r o o f

X ⊂ P

n

smooth, U = P

n

\ X . 1. Reduction to K = C ; 2. H

i

(U, F )

Ogus+Hartshorne

−−−−−−−−−−→ H

j

(X

h

, C) ; 3. H

j

(X

h

, C) −−−→

Artin

H

j

(X

´et

, Z/pZ) ; 4. H

j

(X

´et

, Z/pZ)

Poincare

0 duality

−−−−−−−−−−→ H

n+i

(U

´et

, Z/pZ) .

(62)

ZARISKI VS ´ ETALE TOPOLOGY

S k e t c h o f t h e p r o o f

X ⊂ P

n

smooth, U = P

n

\ X . 1. Reduction to K = C ; 2. H

i

(U, F )

Ogus+Hartshorne

−−−−−−−−−−→ H

j

(X

h

, C) ; 3. H

j

(X

h

, C) −−−→

Artin

H

j

(X

´et

, Z/pZ) ; 4. H

j

(X

´et

, Z/pZ)

Poincare

0 duality

−−−−−−−−−−→ H

n+i

(U

´et

, Z/pZ) .

(63)

ZARISKI VS ´ ETALE TOPOLOGY

S k e t c h o f t h e p r o o f

X ⊂ P

n

smooth, U = P

n

\ X . 1. Reduction to K = C ; 2. H

i

(U, F )

Ogus+Hartshorne

−−−−−−−−−−→ H

j

(X

h

, C) ; 3. H

j

(X

h

, C) −−−→

Artin

H

j

(X

´et

, Z/pZ) ; 4. H

j

(X

´et

, Z/pZ)

Poincare

0 duality

−−−−−−−−−−→ H

n+i

(U

´et

, Z/pZ) .

(64)

ZARISKI VS ´ ETALE TOPOLOGY

S k e t c h o f t h e p r o o f

X ⊂ P

n

smooth, U = P

n

\ X . 1. Reduction to K = C ; 2. H

i

(U, F )

Ogus+Hartshorne

−−−−−−−−−−→ H

j

(X

h

, C) ; 3. H

j

(X

h

, C) −−−→

Artin

H

j

(X

´et

, Z/pZ) ; 4. H

j

(X

´et

, Z/pZ)

Poincare

0 duality

−−−−−−−−−−→ H

n+i

(U

´et

, Z/pZ) .

(65)

ZARISKI VS ´ ETALE TOPOLOGY

Q u e s t i o n s

1. What about X ⊂ P

n

possibly singular and char(K ) = 0? Is still true that ´ ecd(U) ≥ cd(U) + n?

2. Example in positive characteristic of a smooth X ⊂ P

n

such that ´ ecd(U) < cd(U) + n?

3. What about U ⊂ Z open subset of a projective scheme Z

possibly different from P

n

?

(66)

ZARISKI VS ´ ETALE TOPOLOGY

Q u e s t i o n s

1. What about X ⊂ P

n

possibly singular and char(K ) = 0? Is still true that ´ ecd(U) ≥ cd(U) + n?

2. Example in positive characteristic of a smooth X ⊂ P

n

such that ´ ecd(U) < cd(U) + n?

3. What about U ⊂ Z open subset of a projective scheme Z

possibly different from P

n

?

(67)

ZARISKI VS ´ ETALE TOPOLOGY

Q u e s t i o n s

1. What about X ⊂ P

n

possibly singular and char(K ) = 0? Is still true that ´ ecd(U) ≥ cd(U) + n?

2. Example in positive characteristic of a smooth X ⊂ P

n

such that ´ ecd(U) < cd(U) + n?

3. What about U ⊂ Z open subset of a projective scheme Z

possibly different from P

n

?

(68)

ZARISKI VS ´ ETALE TOPOLOGY

Q u e s t i o n s

1. What about X ⊂ P

n

possibly singular and char(K ) = 0? Is still true that ´ ecd(U) ≥ cd(U) + n?

2. Example in positive characteristic of a smooth X ⊂ P

n

such that ´ ecd(U) < cd(U) + n?

3. What about U ⊂ Z open subset of a projective scheme Z

possibly different from P

n

?

(69)

ZARISKI VS ´ ETALE TOPOLOGY

Q u e s t i o n s

1. What about X ⊂ P

n

possibly singular and char(K ) = 0? Is still true that ´ ecd(U) ≥ cd(U) + n?

2. Example in positive characteristic of a smooth X ⊂ P

n

such that ´ ecd(U) < cd(U) + n?

3. What about U ⊂ Z open subset of a projective scheme Z

possibly different from P

n

?

(70)

ZARISKI VS ´ ETALE TOPOLOGY

Q u e s t i o n s

1. What about X ⊂ P

n

possibly singular and char(K ) = 0? Is still true that ´ ecd(U) ≥ cd(U) + n?

2. Example in positive characteristic of a smooth X ⊂ P

n

such that ´ ecd(U) < cd(U) + n?

3. What about U ⊂ Z open subset of a projective scheme Z

possibly different from P

n

?

(71)

ZARISKI VS ´ ETALE TOPOLOGY

Q u e s t i o n s

1. What about X ⊂ P

n

possibly singular and char(K ) = 0? Is still true that ´ ecd(U) ≥ cd(U) + n?

2. Example in positive characteristic of a smooth X ⊂ P

n

such that ´ ecd(U) < cd(U) + n?

3. What about U ⊂ Z open subset of a projective scheme Z

possibly different from P

n

?

(72)

COHOMOLOGICAL DIMENSION AND DEPTH

I n t r o d u c t i o n t o t h e p r o b l e m

(Peskine-Szpiro, 1973): char(K ) > 0, X ⊂ P

n

d -dimensional arithmetically Cohen-Macaulay scheme, U = P

n

\ X . Then

cd(U) = n − d − 1

The above result fails in characteristic 0.

EXAMPLE : char(K ) = 0, X = P

r

× P

s

⊂ P

n

. Then:

cd(U) = n − 3.

dim(X ) = r + s, so the characteristic 0 analog of the theorem of Peskine-Szpiro fails as soon as dim(X ) > 2.

What if dim(X ) ≤ 2?

(73)

COHOMOLOGICAL DIMENSION AND DEPTH

I n t r o d u c t i o n t o t h e p r o b l e m

(Peskine-Szpiro, 1973): char(K ) > 0, X ⊂ P

n

d -dimensional arithmetically Cohen-Macaulay scheme, U = P

n

\ X . Then

cd(U) = n − d − 1

The above result fails in characteristic 0.

EXAMPLE : char(K ) = 0, X = P

r

× P

s

⊂ P

n

. Then:

cd(U) = n − 3.

dim(X ) = r + s, so the characteristic 0 analog of the theorem of Peskine-Szpiro fails as soon as dim(X ) > 2.

What if dim(X ) ≤ 2?

(74)

COHOMOLOGICAL DIMENSION AND DEPTH

I n t r o d u c t i o n t o t h e p r o b l e m

(Peskine-Szpiro, 1973): char(K ) > 0, X ⊂ P

n

d -dimensional arithmetically Cohen-Macaulay scheme, U = P

n

\ X . Then

cd(U) = n − d − 1

The above result fails in characteristic 0.

EXAMPLE : char(K ) = 0, X = P

r

× P

s

⊂ P

n

. Then:

cd(U) = n − 3.

dim(X ) = r + s, so the characteristic 0 analog of the theorem of Peskine-Szpiro fails as soon as dim(X ) > 2.

What if dim(X ) ≤ 2?

(75)

COHOMOLOGICAL DIMENSION AND DEPTH

I n t r o d u c t i o n t o t h e p r o b l e m

(Peskine-Szpiro, 1973): char(K ) > 0, X ⊂ P

n

d -dimensional arithmetically Cohen-Macaulay scheme, U = P

n

\ X . Then

cd(U) = n − d − 1

The above result fails in characteristic 0.

EXAMPLE : char(K ) = 0, X = P

r

× P

s

⊂ P

n

. Then:

cd(U) = n − 3.

dim(X ) = r + s, so the characteristic 0 analog of the theorem of Peskine-Szpiro fails as soon as dim(X ) > 2.

What if dim(X ) ≤ 2?

(76)

COHOMOLOGICAL DIMENSION AND DEPTH

I n t r o d u c t i o n t o t h e p r o b l e m

(Peskine-Szpiro, 1973): char(K ) > 0, X ⊂ P

n

d -dimensional arithmetically Cohen-Macaulay scheme, U = P

n

\ X . Then

cd(U) = n − d − 1

The above result fails in characteristic 0.

EXAMPLE : char(K ) = 0, X = P

r

× P

s

⊂ P

n

. Then:

cd(U) = n − 3.

dim(X ) = r + s, so the characteristic 0 analog of the theorem of Peskine-Szpiro fails as soon as dim(X ) > 2.

What if dim(X ) ≤ 2?

(77)

COHOMOLOGICAL DIMENSION AND DEPTH

I n t r o d u c t i o n t o t h e p r o b l e m

(Peskine-Szpiro , 1973): char(K ) > 0, X ⊂ P

n

d -dimensional arithmetically Cohen-Macaulay scheme, U = P

n

\ X . Then

cd(U) = n − d − 1

The above result fails in characteristic 0.

EXAMPLE: char(K ) = 0, X = P

r

× P

s

⊂ P

n

. Then:

cd(U) = n − 3.

dim(X ) = r + s, so the characteristic 0 analog of the theorem of Peskine-Szpiro fails as soon as dim(X ) > 2.

What if dim(X ) ≤ 2?

(78)

COHOMOLOGICAL DIMENSION AND DEPTH

I n t r o d u c t i o n t o t h e p r o b l e m

(Peskine-Szpiro , 1973): char(K ) > 0, X ⊂ P

n

d -dimensional arithmetically Cohen-Macaulay scheme, U = P

n

\ X . Then

cd(U) = n − d − 1

The above result fails in characteristic 0.

EXAMPLE: char(K ) = 0, X = P

r

× P

s

⊂ P

n

. Then:

cd(U) = n − 3.

dim(X ) = r + s, so the characteristic 0 analog of the theorem of Peskine-Szpiro fails as soon as dim(X ) > 2.

What if dim(X ) ≤ 2?

(79)

COHOMOLOGICAL DIMENSION AND DEPTH

I n t r o d u c t i o n t o t h e p r o b l e m

(Peskine-Szpiro , 1973): char(K ) > 0, X ⊂ P

n

d -dimensional arithmetically Cohen-Macaulay scheme, U = P

n

\ X . Then

cd(U) = n − d − 1

The above result fails in characteristic 0.

EXAMPLE: char(K ) = 0, X = P

r

× P

s

⊂ P

n

. Then:

cd(U) = n − 3.

dim(X ) = r + s, so the characteristic 0 analog of the theorem of Peskine-Szpiro fails as soon as dim(X ) > 2.

What if dim(X ) ≤ 2?

(80)

COHOMOLOGICAL DIMENSION AND DEPTH

I n t r o d u c t i o n t o t h e p r o b l e m

(Peskine-Szpiro , 1973): char(K ) > 0, X ⊂ P

n

d -dimensional arithmetically Cohen-Macaulay scheme, U = P

n

\ X . Then

cd(U) = n − d − 1

The above result fails in characteristic 0.

EXAMPLE: char(K ) = 0, X = P

r

× P

s

⊂ P

n

. Then:

cd(U) = n − 3.

dim(X ) = r + s, so the characteristic 0 analog of the theorem of Peskine-Szpiro fails as soon as dim(X ) > 2.

What if dim(X ) ≤ 2?

(81)

COHOMOLOGICAL DIMENSION AND DEPTH

I n t r o d u c t i o n t o t h e p r o b l e m

(Peskine-Szpiro , 1973): char(K ) > 0, X ⊂ P

n

d -dimensional arithmetically Cohen-Macaulay scheme, U = P

n

\ X . Then

cd(U) = n − d − 1

The above result fails in characteristic 0.

EXAMPLE: char(K ) = 0, X = P

r

× P

s

⊂ P

n

. Then:

cd(U) = n − 3.

dim(X ) = r + s, so the characteristic 0 analog of the theorem of Peskine-Szpiro fails as soon as dim(X ) > 2.

What if dim(X ) ≤ 2?

(82)

COHOMOLOGICAL DIMENSION AND DEPTH

I n t r o d u c t i o n t o t h e p r o b l e m

(Peskine-Szpiro , 1973): char(K ) > 0, X ⊂ P

n

d -dimensional arithmetically Cohen-Macaulay scheme, U = P

n

\ X . Then

cd(U) = n − d − 1

The above result fails in characteristic 0.

EXAMPLE: char(K ) = 0, X = P

r

× P

s

⊂ P

n

. Then:

cd(U) = n − 3.

dim(X ) = r + s, so the characteristic 0 analog of the theorem of Peskine-Szpiro fails as soon as dim(X ) > 2.

What if dim(X ) ≤ 2?

(83)

COHOMOLOGICAL DIMENSION AND DEPTH

I n t r o d u c t i o n t o t h e p r o b l e m

(Peskine-Szpiro , 1973): char(K ) > 0, X ⊂ P

n

d -dimensional arithmetically Cohen-Macaulay scheme, U = P

n

\ X . Then

cd(U) = n − d − 1

The above result fails in characteristic 0.

EXAMPLE : char(K ) = 0, X = P

r

× P

s

⊂ P

n

. Then:

cd(U) = n − 3.

dim(X ) = r + s, so the characteristic 0 analog of the theorem of Peskine-Szpiro fails as soon as dim(X ) > 2.

What if dim(X ) ≤ 2?

(84)

COHOMOLOGICAL DIMENSION AND DEPTH

I n t r o d u c t i o n t o t h e p r o b l e m

(Peskine-Szpiro , 1973): char(K ) > 0, X ⊂ P

n

d -dimensional arithmetically Cohen-Macaulay scheme, U = P

n

\ X . Then

cd(U) = n − d − 1

The above result fails in characteristic 0.

EXAMPLE : char(K ) = 0, X = P

r

× P

s

⊂ P

n

. Then:

cd(U) = n − 3.

dim(X ) = r + s, so the characteristic 0 analog of the theorem of Peskine-Szpiro fails as soon as dim(X ) > 2.

What if dim(X ) ≤ 2?

(85)

COHOMOLOGICAL DIMENSION AND DEPTH

I n t r o d u c t i o n t o t h e p r o b l e m

(Peskine-Szpiro , 1973): char(K ) > 0, X ⊂ P

n

d -dimensional arithmetically Cohen-Macaulay scheme, U = P

n

\ X . Then

cd(U) = n − d − 1

The above result fails in characteristic 0.

EXAMPLE : char(K ) = 0, X = P

r

× P

s

⊂ P

n

. Then:

cd(U) = n − 3.

dim(X ) = r + s, so the characteristic 0 analog of the theorem of Peskine-Szpiro fails as soon as dim(X ) > 2.

What if dim(X ) ≤ 2?

(86)

COHOMOLOGICAL DIMENSION AND DEPTH

I n t r o d u c t i o n t o t h e p r o b l e m

(Peskine-Szpiro , 1973): char(K ) > 0, X ⊂ P

n

d -dimensional arithmetically Cohen-Macaulay scheme, U = P

n

\ X . Then

cd(U) = n − d − 1

The above result fails in characteristic 0.

EXAMPLE : char(K ) = 0, X = P

r

× P

s

⊂ P

n

. Then:

cd(U) = n − 3.

dim(X ) = r + s, so the characteristic 0 analog of the theorem of Peskine-Szpiro fails as soon as dim(X ) > 2.

What if dim(X ) ≤ 2?

(87)

COHOMOLOGICAL DIMENSION AND DEPTH

I n t r o d u c t i o n t o t h e p r o b l e m

(Peskine-Szpiro , 1973): char(K ) > 0, X ⊂ P

n

d -dimensional arithmetically Cohen-Macaulay scheme, U = P

n

\ X . Then

cd(U) = n − d − 1

The above result fails in characteristic 0.

EXAMPLE : char(K ) = 0, X = P

r

× P

s

⊂ P

n

. Then:

cd(U) = n − 3.

dim(X ) = r + s, so the characteristic 0 analog of the theorem of Peskine-Szpiro fails as soon as dim(X ) > 2.

What if dim(X ) ≤ 2?

(88)

COHOMOLOGICAL DIMENSION AND DEPTH

T h e r e s u l t

(-,2012): char(K ) = 0, S = K [x

1

, . . . , x

N

], I ⊂ S graded ideal such that depth(S /I ) ≥ 3. Then, for any S -module M:

H

IN−2

(M) = H

IN−1

(M) = H

IN

(M) = 0.

REMARK : If F is a q-c sheaf over P

n

and S = K [x

0

, . . . , x

n

], let M = L

k∈Z

Γ(X , F (k)) be the associated S -module. If X ⊂ P

n

, I ⊂ S such that X ∼ = Proj(S /I ) and U = P

n

\ X , then:

H

Ii

(M) = M

k∈Z

H

i −1

(U, F (k)) ∀i ≥ 2.

So the above theorem implies that, , if X is an ACM surface, then:

cd(U) = n − 3.

(89)

COHOMOLOGICAL DIMENSION AND DEPTH

T h e r e s u l t

(-,2012): char(K ) = 0, S = K [x

1

, . . . , x

N

], I ⊂ S graded ideal such that depth(S /I ) ≥ 3. Then, for any S -module M:

H

IN−2

(M) = H

IN−1

(M) = H

IN

(M) = 0.

REMARK : If F is a q-c sheaf over P

n

and S = K [x

0

, . . . , x

n

], let M = L

k∈Z

Γ(X , F (k)) be the associated S -module. If X ⊂ P

n

, I ⊂ S such that X ∼ = Proj(S /I ) and U = P

n

\ X , then:

H

Ii

(M) = M

k∈Z

H

i −1

(U, F (k)) ∀i ≥ 2.

So the above theorem implies that, , if X is an ACM surface, then:

cd(U) = n − 3.

(90)

COHOMOLOGICAL DIMENSION AND DEPTH

T h e r e s u l t

(-,2012): char(K ) = 0, S = K [x

1

, . . . , x

N

], I ⊂ S graded ideal such that depth(S /I ) ≥ 3. Then, for any S -module M:

H

IN−2

(M) = H

IN−1

(M) = H

IN

(M) = 0.

REMARK : If F is a q-c sheaf over P

n

and S = K [x

0

, . . . , x

n

], let M = L

k∈Z

Γ(X , F (k)) be the associated S -module. If X ⊂ P

n

, I ⊂ S such that X ∼ = Proj(S /I ) and U = P

n

\ X , then:

H

Ii

(M) = M

k∈Z

H

i −1

(U, F (k)) ∀i ≥ 2.

So the above theorem implies that, , if X is an ACM surface, then:

cd(U) = n − 3.

(91)

COHOMOLOGICAL DIMENSION AND DEPTH

T h e r e s u l t

(-,2012): char(K ) = 0, S = K [x

1

, . . . , x

N

], I ⊂ S graded ideal such that depth(S /I ) ≥ 3. Then, for any S -module M:

H

IN−2

(M) = H

IN−1

(M) = H

IN

(M) = 0.

REMARK : If F is a q-c sheaf over P

n

and S = K [x

0

, . . . , x

n

], let M = L

k∈Z

Γ(X , F (k)) be the associated S -module. If X ⊂ P

n

, I ⊂ S such that X ∼ = Proj(S /I ) and U = P

n

\ X , then:

H

Ii

(M) = M

k∈Z

H

i −1

(U, F (k)) ∀i ≥ 2.

So the above theorem implies that, , if X is an ACM surface, then:

cd(U) = n − 3.

(92)

COHOMOLOGICAL DIMENSION AND DEPTH

T h e r e s u l t

(-,2012): char(K ) = 0, S = K [x

1

, . . . , x

N

], I ⊂ S graded ideal such that depth(S /I ) ≥ 3. Then, for any S -module M:

H

IN−2

(M) = H

IN−1

(M) = H

IN

(M) = 0.

REMARK : If F is a q-c sheaf over P

n

and S = K [x

0

, . . . , x

n

], let M = L

k∈Z

Γ(X , F (k)) be the associated S -module. If X ⊂ P

n

, I ⊂ S such that X ∼ = Proj(S /I ) and U = P

n

\ X , then:

H

Ii

(M) = M

k∈Z

H

i −1

(U, F (k)) ∀i ≥ 2.

So the above theorem implies that, , if X is an ACM surface, then:

cd(U) = n − 3.

(93)

COHOMOLOGICAL DIMENSION AND DEPTH

T h e r e s u l t

(-,2012): char(K ) = 0, S = K [x

1

, . . . , x

N

], I ⊂ S graded ideal such that depth(S /I ) ≥ 3. Then, for any S -module M:

H

IN−2

(M) = H

IN−1

(M) = H

IN

(M) = 0.

REMARK : If F is a q-c sheaf over P

n

and S = K [x

0

, . . . , x

n

], let M = L

k∈Z

Γ(X , F (k)) be the associated S -module. If X ⊂ P

n

, I ⊂ S such that X ∼ = Proj(S /I ) and U = P

n

\ X , then:

H

Ii

(M) = M

k∈Z

H

i −1

(U, F (k)) ∀i ≥ 2.

So the above theorem implies that, , if X is an ACM surface, then:

cd(U) = n − 3.

(94)

COHOMOLOGICAL DIMENSION AND DEPTH

T h e r e s u l t

(-,2012): char(K ) = 0, S = K [x

1

, . . . , x

N

], I ⊂ S graded ideal such that depth(S /I ) ≥ 3. Then, for any S -module M:

H

IN−2

(M) = H

IN−1

(M) = H

IN

(M) = 0.

REMARK: If F is a q-c sheaf over P

n

and S = K [x

0

, . . . , x

n

], let M = L

k∈Z

Γ(X , F (k)) be the associated S -module. If X ⊂ P

n

, I ⊂ S such that X ∼ = Proj(S /I ) and U = P

n

\ X , then:

H

Ii

(M) = M

k∈Z

H

i −1

(U, F (k)) ∀i ≥ 2.

So the above theorem implies that, , if X is an ACM surface, then:

cd(U) = n − 3.

(95)

COHOMOLOGICAL DIMENSION AND DEPTH

T h e r e s u l t

(-,2012): char(K ) = 0, S = K [x

1

, . . . , x

N

], I ⊂ S graded ideal such that depth(S /I ) ≥ 3. Then, for any S -module M:

H

IN−2

(M) = H

IN−1

(M) = H

IN

(M) = 0.

REMARK: If F is a q-c sheaf over P

n

and S = K [x

0

, . . . , x

n

], let M = L

k∈Z

Γ(X , F (k)) be the associated S -module. If X ⊂ P

n

, I ⊂ S such that X ∼ = Proj(S /I ) and U = P

n

\ X , then:

H

Ii

(M) = M

k∈Z

H

i −1

(U, F (k)) ∀i ≥ 2.

So the above theorem implies that, , if X is an ACM surface, then:

cd(U) = n − 3.

(96)

COHOMOLOGICAL DIMENSION AND DEPTH

T h e r e s u l t

(-,2012): char(K ) = 0, S = K [x

1

, . . . , x

N

], I ⊂ S graded ideal such that depth(S /I ) ≥ 3. Then, for any S -module M:

H

IN−2

(M) = H

IN−1

(M) = H

IN

(M) = 0.

REMARK: If F is a q-c sheaf over P

n

and S = K [x

0

, . . . , x

n

], let M = L

k∈Z

Γ(X , F (k)) be the associated S -module. If X ⊂ P

n

, I ⊂ S such that X ∼ = Proj(S /I ) and U = P

n

\ X , then:

H

Ii

(M) = M

k∈Z

H

i −1

(U, F (k)) ∀i ≥ 2.

So the above theorem implies that, , if X is an ACM surface, then:

cd(U) = n − 3.

(97)

COHOMOLOGICAL DIMENSION AND DEPTH

T h e r e s u l t

(-,2012): char(K ) = 0, S = K [x

1

, . . . , x

N

], I ⊂ S graded ideal such that depth(S /I ) ≥ 3. Then, for any S -module M:

H

IN−2

(M) = H

IN−1

(M) = H

IN

(M) = 0.

REMARK: If F is a q-c sheaf over P

n

and S = K [x

0

, . . . , x

n

], let M = L

k∈Z

Γ(X , F (k)) be the associated S -module. If X ⊂ P

n

, I ⊂ S such that X ∼ = Proj(S /I ) and U = P

n

\ X , then:

H

Ii

(M) = M

k∈Z

H

i −1

(U, F (k)) ∀i ≥ 2.

So the above theorem implies that, , if X is an ACM surface, then:

cd(U) = n − 3.

(98)

COHOMOLOGICAL DIMENSION AND DEPTH

T h e r e s u l t

(-,2012): char(K ) = 0, S = K [x

1

, . . . , x

N

], I ⊂ S graded ideal such that depth(S /I ) ≥ 3. Then, for any S -module M:

H

IN−2

(M) = H

IN−1

(M) = H

IN

(M) = 0.

REMARK : If F is a q-c sheaf over P

n

and S = K [x

0

, . . . , x

n

], let M = L

k∈Z

Γ(X , F (k)) be the associated S -module. If X ⊂ P

n

, I ⊂ S such that X ∼ = Proj(S /I ) and U = P

n

\ X , then:

H

Ii

(M) = M

k∈Z

H

i −1

(U, F (k)) ∀i ≥ 2.

So the above theorem implies that, , if X is an ACM surface, then:

cd(U) = n − 3.

(99)

COHOMOLOGICAL DIMENSION AND DEPTH

T h e r e s u l t

(-,2012): char(K ) = 0, S = K [x

1

, . . . , x

N

], I ⊂ S graded ideal such that depth(S /I ) ≥ 3. Then, for any S -module M:

H

IN−2

(M) = H

IN−1

(M) = H

IN

(M) = 0.

REMARK : If F is a q-c sheaf over P

n

and S = K [x

0

, . . . , x

n

], let M = L

k∈Z

Γ(X , F (k)) be the associated S -module. If X ⊂ P

n

, I ⊂ S such that X ∼ = Proj(S /I ) and U = P

n

\ X , then:

H

Ii

(M) = M

k∈Z

H

i −1

(U, F (k)) ∀i ≥ 2.

So the above theorem implies that, , if X is an ACM surface, then:

cd(U) = n − 3.

(100)

COHOMOLOGICAL DIMENSION AND DEPTH

T h e r e s u l t

(-,2012): char(K ) = 0, S = K [x

1

, . . . , x

N

], I ⊂ S graded ideal such that depth(S /I ) ≥ 3. Then, for any S -module M:

H

IN−2

(M) = H

IN−1

(M) = H

IN

(M) = 0.

REMARK : If F is a q-c sheaf over P

n

and S = K [x

0

, . . . , x

n

], let M = L

k∈Z

Γ(X , F (k)) be the associated S -module. If X ⊂ P

n

, I ⊂ S such that X ∼ = Proj(S /I ) and U = P

n

\ X , then:

H

Ii

(M) = M

k∈Z

H

i −1

(U, F (k)) ∀i ≥ 2.

So the above theorem implies that, , if X is an ACM surface, then:

cd(U) = n − 3.

(101)

COHOMOLOGICAL DIMENSION AND DEPTH

T h e r e s u l t

(-,2012): char(K ) = 0, S = K [x

1

, . . . , x

N

], I ⊂ S graded ideal such that depth(S /I ) ≥ 3. Then, for any S -module M:

H

IN−2

(M) = H

IN−1

(M) = H

IN

(M) = 0.

REMARK : If F is a q-c sheaf over P

n

and S = K [x

0

, . . . , x

n

], let M = L

k∈Z

Γ(X , F (k)) be the associated S -module. If X ⊂ P

n

, I ⊂ S such that X ∼ = Proj(S /I ) and U = P

n

\ X , then:

H

Ii

(M) = M

k∈Z

H

i −1

(U, F (k)) ∀i ≥ 2.

So the above theorem implies that, , if X is an ACM surface, then:

cd(U) = n − 3.

Riferimenti

Documenti correlati

The following set out the institutional context that underpin the process of construction of the local welfare focusing on some key issues crucial to understand the connection

In questa fonte vari giurisperiti si espressero intorno alla questione se fosse obbligatorio o meno per gli hospitalia pauperum che seguivano la regola di sant’Agostino nella città

Questo modello sarà diffusamente replicato nella Napoli invaghita del Barocco scenografico e le scale dei palazzi nobiliari dello Spagnuolo, Fernandez e Trabucco ne

unfastening of knotted fibers (T u ’).. The average of the reported values were included in Table 1 in the main text.. Strength and toughness modulus of control raw silk

At regional scale, a new procedure for identifying, within the boundaries of the UNESCO sites, the temporal and spatial evolution over time of ADA, which are Active Deformation

cohomological dimension of an ideal in a local complete ring with connectedness properties of the spectrum of the quotient ring.. Translate this result from complete to

Varbaro, Arithmetical rank of certain Segre embeddings, to appear in Transactions of the American Mathematical Society..

For such an algebra, it is easy to show that the exponential map from the additive group to its multiplicative group of units is surjective... For such an algebra, it is easy to