• Non ci sono risultati.

Prove Z 1 0 xk−1f(1 − x) dx ≤ (k − 1)!k! (2k − 1)! Z 1 0 f(x) dx

N/A
N/A
Protected

Academic year: 2021

Condividi "Prove Z 1 0 xk−1f(1 − x) dx ≤ (k − 1)!k! (2k − 1)! Z 1 0 f(x) dx"

Copied!
1
0
0

Testo completo

(1)

Problem 12088

(American Mathematical Monthly, Vol.126, January 2019) Proposed by F. Stanescu (Romania).

Let k be a positive integer with k≥ 2, and let f : [0, 1] → R be a function with continuous k-th derivative. Suppose f(k)(x) ≥ 0 for all x ∈ [0, 1], and suppose f(i)(0) = 0 for all i ∈ {0, 1, . . . , k − 2}.

Prove

Z 1 0

xk−1f(1 − x) dx ≤ (k − 1)!k!

(2k − 1)!

Z 1 0

f(x) dx.

Solution proposed by Roberto Tauraso, Dipartimento di Matematica, Universit`a di Roma “Tor Vergata”, via della Ricerca Scientifica, 00133 Roma, Italy.

Solution. Since f(i)(0) = 0 for i = 0, 1, . . . , k − 2, by integration by parts, Z 1

0

xk−1f(1 − x) dx = xk

k f(1 − x)

1

0

+ Z 1

0

xk

k f(1)(1 − x) dx = Z 1

0

xk

k f(1)(1 − x) dx

=

 xk+1

k(k + 1)f(1)(1 − x)

1

0

+ Z 1

0

xk+1

k(k + 1)f(2)(1 − x) dx = Z 1

0

xk+1

k(k + 1)f(2)(1 − x) dx

=

 x2k−1

k(k + 1) · · · (2k − 1)f(k−1)(1 − x)

1

0

+ Z 1

0

x2k−1

k(k + 1) · · · (2k − 1)f(k)(1 − x) dx

= (k − 1)!

(2k − 1)!



f(k−1)(0) + Z 1

0

x2k−1f(k)(1 − x) dx

 .

On the other hand, by the integral form of the remainder in Taylor’s Theorem, we have that for x∈ [0, 1],

f(x) = f (0) + f(0)x + · · · +f(k−1)(0) (k − 1)! xk−1+

Z x

0

(x − t)k−1

(k − 1)! f(k)(t) dt

=f(k−1)(0) (k − 1)! xk−1+

Z x

0

(x − t)k−1

(k − 1)! f(k)(t) dt, which implies

Z 1 0

f(x) dx =f(k−1)(0) (k − 1)!

Z 1 0

xk−1dx+ Z 1

0

Z x

0

(x − t)k−1

(k − 1)! f(k)(t) dt

 dx

=f(k−1)(0)

k! +

Z 1 0

f(k)(t)

Z 1 t

(x − t)k−1 (k − 1)! dx

 dt

= 1 k!



f(k−1)(0) + Z 1

0

(1 − t)kf(k)(t) dt



= 1 k!



f(k−1)(0) + Z 1

0

xkf(k)(1 − x) dx

 .

Hence, the given inequality is equivalent to (k − 1)!

(2k − 1)!



f(k−1)(0) + Z 1

0

x2k−1f(k)(1 − x) dx



≤ (k − 1)!

(2k − 1)!



f(k−1)(0) + Z 1

0

xkf(k)(1 − x) dx



that is

Z 1 0

x2k−1f(k)(1 − x) dx ≤ Z 1

0

xkf(k)(1 − x) dx

which holds because f(k)(x) ≥ 0 and x2k−1≤ xk for x ∈ [0, 1]. 

Riferimenti