• Non ci sono risultati.

First branching fraction measurement of the suppressed decay Ξ

N/A
N/A
Protected

Academic year: 2021

Condividi "First branching fraction measurement of the suppressed decay Ξ"

Copied!
11
0
0

Testo completo

(1)

First branching fraction measurement of the suppressed decay Ξ

0c

→ π

Λ

c+

R. Aaijet al.* (LHCb Collaboration)

(Received 23 July 2020; accepted 11 September 2020; published 12 October 2020) TheΞ0c baryon is unstable and usually decays into charmless final states by the c → su ¯d transition.

It can, however, also disintegrate into aπmeson and aΛþc baryon via s quark decay or via cs → dc weak scattering. The interplay between the latter two processes governs the size of the branching fraction BðΞ0c→ πΛþcÞ, first measured here to be ð0.55  0.02  0.18Þ%, where the first uncertainty is statistical and second systematic. This result is compatible with the larger of the theoretical predictions that connect models of hyperon decays using partially conserved axial currents and SU(3) symmetry with those involving the heavy-quark expansion and heavy-quark symmetry. In addition, the branching fraction of the normalization channel,BðΞþc → pKπþÞ ¼ ð1.135  0.002  0.387Þ% is measured.

DOI:10.1103/PhysRevD.102.071101

Baryons containing both an s quark and a heavy c or b quark, denoted as Q, usually decay via the disintegration of the heavy quark. There is, however, the possibility of s quark decay causing the transformation. Theoretical pre- dictions concerning the decay widths of ΞQ→ πΛQ tran- sitions are based on the size of the s quark decay amplitude s → uð ¯udÞ (SUUD) and the weak scattering (WS) ampli- tude Qs → dQ [1]. Feynman diagrams corresponding to these amplitudes are shown in Fig. 1forΞ0c decay.

Studies of theseΞQbaryon decays provide a connection to theories concerning hyperon decays with those for the heavy b and c quarks. The former use partially conserved axial currents (PCAC) and SU(3) symmetry [2], whereas the latter apply more modern approaches using four-quark operators, including the heavy quark expansion, and heavy- quark symmetry (HQS). As theΞb baryon consists of b, s, and d quarks, the WS amplitude is not present in Ξb → πΛ0bdecays, so the measurement of that decay rate can be used to determine the SUUD amplitude. This information can be used to predict theΞ0c decay rate that, in principle, involves both amplitudes. Whenever a specific final state is mentioned additional use of the charge-conjugated state is implied.

The well-known Ξ0c baryon consists of the c, s, and d quarks, and has a lifetime of 154.5  1.7  1.6  1.0 fs [3]. The branching fraction BðΞ0c → πΛþcÞ has not been previously measured. Several authors have made predic- tions using the measured SUUD amplitude and the

measured lifetimes of the SU(3) triplet baryons Ξ0c, Λþc, andΞþc, as input for determining the WS amplitude. This method was pioneered by Voloshin [1] where he used SU(3) symmetry, PCAC and the heavy-quark limit to determine an upper limit on ΓðΞb → πΛ0bÞ. In a sub- sequent paper, he uses the input from the LHCb measure- ment of BðΞb→πΛ0bÞ¼ð0.600.18Þ%[4] and updated values for the charmed baryon lifetimes to find the SUUD rate and then calculates the WS amplitude. He predicts BðΞ0c → πΛþcÞ⪆ ð0.25  0.15Þ × 10−3[5], assuming neg- ative interference between the two strangeness-changing amplitudes.

Gronau and Rosner, using the same approach as Voloshin, predict two possible branching fractions for Ξ0c→ πΛþc decay, depending on the sign of the interfer- ence between the two decay amplitudes[6]. Based on the measuredBðΞb → πΛ0b) [4], and using charmed-baryon lifetimes available at that time, they predict BðΞ0c → πΛþcÞ ¼ ð0.19  0.07Þ% for constructive interference and BðΞ0c → πΛþcÞ ⪅ 0.01% for destructive interference between the SUUD and WS contributions. We have redone their calculation using updated lifetime measurements [3,7], finding BðΞ0c→ πΛþcÞ ¼ ð0.14  0.07Þ% for con- structive interference and BðΞ0c → πΛþcÞ ⪅ ð0.018  0.015Þ% for destructive interference. Faller and Mannel, on the other hand, predictBðΞ0c→ πΛþcÞ < 0.3%, an upper limit obtained by assuming constructive interference [8].

Finally, Cheng et al. predict BðΞ0c → πΛþcÞ ∼ 0.0087%, assuming negative interference[9]. We have not updated these last predictions; the effect would be to lower Faller and Mannel’s positive interference prediction and raise the Cheng et al. negative one, giving somewhat better agree- ment with Gronau and Rosner’s predictions.

In this paper we measure BðΞ0c→ πΛþcÞ using data collected by the LHCb detector, corresponding to3.8 fb−1

*Full author list given at the end of the article.

Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license.

Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI. Funded by SCOAP3.

(2)

of integrated luminosity in 13 TeV center-of-mass energy pp collisions taken in 2017 and 2018. Natural units are used in this paper with c ¼ ℏ ¼ 1. The LHCb detector is a single-arm forward spectrometer covering the pseudora- pidity range2 < η < 5, described in detail in Refs.[10,11].

The trigger [12] consists of a hardware stage, based on information from the calorimeter and muon systems, followed by a software stage, which reconstructs charged particles.

Simulation is required to model the effects of the detector acceptance and selection requirements. We generate pp collisions using PYTHIA [13] with a specific LHCb con- figuration[14]. Decays of unstable particles are described by EVTGEN [15], where final-state radiation is generated usingPHOTOS[16]. The interaction of the particles with the detector, and its response, are implemented using the

GEANT4 toolkit[17]as described in Ref.[18].

In our analysis we use the prompt Ξ0c sample, i.e., baryons, and their excitations, produced directly in the pp collisions. Measurement ofBðΞ0c→ πΛþcÞ is hampered by the lack of accurately measuredΞ0c branching fractions[7]

to be used for normalization. A measurement of BðΞ0c→ πþΞÞ with a 29% uncertainty exists [19], but the effi- ciency for reconstructing Ξ baryons is low in LHCb, in particular without a dedicated trigger line, so using this mode would lead to an unacceptably large error. We overcome this difficulty by using two indirect methods, described below, that require additional measurements of promptΛþc andΞþc yields, both reconstructed in the pKπþ decay mode. The same decay mode is also used to reconstructΛþc from theΞ0c → πΛþc decays.

We use a two-step process to maximize the statistical significance of our signal channel, as well as the two normalization channels. First, we apply a set of loose selection criteria to obtain samples with large signal efficiencies and suppressed background. Subsequently, we use three different boosted decision trees (BDT) [20,21], one for each baryon decay, implemented in the TMVA toolkit [22], to further separate signal from background.

The loose selection criteria for the pKπþ final states include requirements on the tracks to have sufficient transverse momenta (pT), be separated from the primary pp collision vertex (PV), form a three-track vertex, and be identified as the hypothesized particle species. For the Ξ0c → πΛþc decay we require, in addition, that the pKπþ

has a mass within 20 MeV of the Λþc mass peak; that there is an additional π meson, which when combined with the Λþc candidate, has an invariant mass from

−85 MeV below the known Ξ0c mass [7] to 115 MeV above; and that the pT of the Ξ0c candidate is greater than 5 GeV.

The BDTs are trained with background samples from data and simulated signal samples. Background training samples for theΛþc andΞþc candidates are taken from the sideband regions on both sides of the mass peaks. For the Λþc baryon background the intervals are 40–65 MeV away from the knownΛþc mass[7]. For theΞþc baryon training the lower and higher sidebands are taken 40–58 MeV and 40–72 MeV from the known Ξþc mass[7], respectively. The Ξ0c background is constructed from like-signπþΛþc candi- dates within 5 MeV of the known Ξ0c baryon mass [7].

For the Λþc and Ξþc candidates, we compute the pKπþ invariant mass after constraining the three decay particles to form a common vertex and the summed momentum vector to point to the PV; this fitter is referred to as the“decay tree fitter” (DTF)[23]. In the case of theΞ0c baryon we add the additionalπ meson before performing the fit. Only1=10 of the available Λþc → pKπþ data sample is used to measure the Λþc yield due to the large samples available relative to the other channels.

The variables used in the Λþc and Ξþc BDTs are the particle identification probabilities; theχ2IP of the pKπþ with respect to the primary vertex, whereχ2IPis defined as the difference in the vertex fitχ2 with and without the p, K, and πþ tracks; the angle between the particle’s momentum vector and the vector from the original PV before the DTF refitting to the particle’s decay vertex; the decay distance from the PV, and the DTF χ2. The Ξ0c candidates are selected by a separate BDT using the same criteria used for theΛþc by adding similar extra variables associated with the additional pion.

The BDT selections are optimized by maximizing the ratio of signal efficiency to the square root of the number of candidates in the regions where we expect signal peaks. We show the resulting mass spectra in Fig.2; the data are fitted using the signal and background shapes described in the figure caption. The fit yields are 6320  230 Ξ0c, 2667200  3300 Λþc, and 1613000  3500 Ξþc signal decays. To take into account the efficiency variation we perform the fits in four bins, two in pT and two inη, and apply efficiencies calculated in each bin.

W -

s c

u d

{

d

Ξ c

0 d u c

} } Λ π c

+

-

W

- s

c

{

d

Ξ c

0

d

d c u u

} π -

} Λ c

+

(a) (b)

FIG. 1. Decay diagrams forΞ0c→ πΛþc transitions. (a) The SUUD amplitude, and (b) the WS amplitude.

(3)

Trigger efficiencies are estimated from data, using the technique described in Ref.[25]. Selection efficiencies are determined using simulated events, which are weighted to reproduce the resonance structures in the pKπþfinal states visible in theΛþc andΞþc signal samples.

The overall detection efficiencies are ð0.11  0.02Þ%,

½ð0.35  0.01Þ=10%, and ð1.18  0.03Þ% for Ξ0c, Λþc, and Ξþc decays, respectively, where the factor of 10 is the prescale.

The first normalization method uses the LHCb meas- urement of the relative production fractions of theΞb and Λ0b beauty baryons, fΞb=fΛ0

b ¼ ð8.2  0.7  2.6Þ% [26].

Using HQS we equate the unmeasured production ratio of Ξ0c to Λþc baryons, fΞ0c=fΛþc, toC · fΞb=fΛ0

b, whereC is a correction factor for feed-downs of excitedΞbbaryons that do not have equal rates toΞb andΞ0bfinal states. This feed- down is not symmetric primarily because the Ξ0bð5935Þ0 state always decays toπ0(orγ) Ξ0b[27], since its mass is too low to decay intoπþΞb. On the other hand, both theΞ0−b andΞ−b states are seen to decay into bothπΞ0bandπ0Ξb final states[28]. Any not yet observed higher mass states would be isospin symmetric in their decays. Accounting for all the known excited states, and the associated phase-space

corrections, results in C ¼ 1.18  0.04, where the uncer- tainty arises from the errors on the relative branching fraction measurements.

The second method uses the recent Belle measurement BðΞþc → pKπþÞ ¼ ð0.45  0.21  0.07Þ%[29]. Here we take the production ofΞ0c baryons equal to that of Ξþc by isospin symmetry, e.g., fΞ0c=fΞþc ¼ 1.00  0.01 [30]. As the final state particles in theΞþc decay are the same as in theΛþc decay, many systematic uncertainties cancel.

We determine BðΞ0c→ πΛþcÞ using the two measured ratios

R1≡NðΞ0cÞ NðΛþcÞ¼ fΞ0c

fΛþc ·BðΞ0c→ πΛþcÞ

¼ ð0.095  0.003  0.012Þ%;

R2≡NðΞ0cÞ NðΞþcÞ¼fΞ0c

fΞþc ·BðΛþc → pKπþÞ

BðΞþc → pKπþÞ·BðΞ0c → πΛþcÞ

¼ ð5.70  0.19  0.77Þ%;

where NðiÞ indicates the efficiency corrected number of signal events for baryon i, fi indicates the fraction of particle production with respect to all c- or b-quark

2440 2450 2460 2470 2480 2490 2500 2510

[MeV]

+) Λc

m(

+

+)

π m(pK -

) π π+

m(pK 0

0.5 1 1.5 2 2.5 3 3.5 4

103

×

Candidates / (0.5 MeV)

Data Total fit

0

Ξc

Signal Background

LHCb (a)

2240 2260 2280 2300 2320 2340

[MeV]

+)

π m(pK

0 10 20 30 40 50 60 70 80 90

103

×

Candidates / (0.5 MeV)

Data Total fit

+c

Λ Signal Background

LHCb (b)

2420 2440 2460 2480 2500 2520

[MeV]

+)

π m(pK

0 10 20 30 40 50 60

103

×

Candidates / (0.5 MeV)

Data Total fit

+c

Ξ Signal Background

LHCb (c)

FIG. 2. Reconstructed invariant-mass distributions and signal fits of (a) mðpKπþπÞ showing a large Σ0csignal with a smallerΞ0c

signal, (b) mðpKπþÞ showing the Λþc signal, and (c) mðpKπþÞ showing the Ξþc signal. For (a) the signal shape is a Crystal Ball function[24]with a high-mass tail, and the background shape is linear. For (b) and (c) the signal shapes are double-sided Crystal Ball plus single Gaussian functions, while the background shapes are second-order polynomials. The data in (b) only use 1=10 of the available sample.

(4)

production, and the uncertainties are statistical and sys- tematic, respectively, a convention used in the rest of this paper. As discussed above, fΞ0c=fΛþc ¼ C · fΞ

b=fΛ0

b ¼ ð9.7  0.9  3.1Þ%, where we have added a 5% relative systematic uncertainty, explained later, to account for our assumption of HQS.

We also determineBðΞþc → pKπþÞ using R3≡NðΞþcÞ

NðΛþcÞ¼fΞþc

fΛþc ·BðΞþc → pKπþÞ BðΛþc → pKπþÞ

¼ ð1.753  0.003  0.107Þ%;

where BðΛþc → pKπþÞ ¼ ð6.23  0.33Þ% [7]. The cor- relation matrix for these three results is

0 BB B@

R1 R2 R3 R1 1 0.71 0.15

R2 … 1 −0.18

R3 … … 1

1 CC CA

The derived branching fractions are

B1≡ BðΞ0c → πΛþcÞ ¼ ð0.98  0.04  0.35Þ%;

B2≡ BðΞ0c → πΛþcÞ ¼ ð0.41  0.01  0.21Þ%;

B3≡ BðΞþc → pKπþÞ ¼ ð1.135  0.002  0.387Þ%:

Their correlation matrix is 0

BB B@

B1 B2 B3

B1 1 0.07 0.92

B2 … 1 −0.02

B3 … … 1

1 CC CA:

The weighted average value of B1 and B2, taking into account their correlated error, is

BðΞ0c → πΛþcÞ ¼ ð0.55  0.02  0.18Þ%:

Systematic uncertainties dominate these results due to our reliance on external inputs. Our assumption of HQS to relate fΞ0c=fΛþc to fΞb=fΛ0

b is justified by considering the analogous ratios of production fractions between charm and beauty states in 13 TeV pp collisions, f fs

D0þf and

fB0s

fB0þf. The beauty ratio is measured using semimuonic decays into a charmed meson, determined in the kinematic range 4 < pT< 25 GeV, and is equal to 0.122  0.006 [31]. Using the total charm cross sections reported for 0 < pT< 15 GeV in Ref. [32], we find f fs

D0þf≈ 0.121, where the statistical uncertainty is negligible. The system- atic uncertainties in the charm-meson ratio including tracking, particle identification, luminosity, etc., mostly cancel. The uncertainties in the charm meson branching

fractions cancel in the comparison with the B meson ratio, because the same values are used in both. Thus we are left with a few percent uncertainty in the comparison of the charm and beauty meson ratios. The pTdistributions of the ratios are somewhat different; they fall linearly in the beauty case [31] and are flatter in the charm case [32].

Taking this into account, a 5% relative uncertainty due to the HQS assumption appears reasonable. Contamination of the charm baryons from b-decay sources is estimated in simulation and subtracted. The resultant systematic uncer- tainties in the ratios are small. Table I summarizes the sources of systematic uncertainty.

In conclusion, we perform the first measurement of the branching fraction of the suppressed Ξ0c→ πΛþc decays, givingBðΞ0c→ πΛþcÞ ¼ ð0.55  0.02  0.18Þ%. We com- pare with the theoretical predictions in Fig. 3; while our measurements are somewhat larger, we are in agreement with Gronau and Rosner’s constructive interference prediction.

Our result is also consistent with the Faller and Mannel upper limit arrived at by assuming constructive interference[8]. We

TABLE I. Systematic uncertainties in the branching fraction measurements. Ghost tracks refers to uncertainties from falsely reconstructed tracks. PID refers to particle identification effi- ciencies. Intermediate decays refers to the uncertainties caused by inexact modeling of the resonant structures in the charmed- baryon decays. The b-decay sources refer to charmed baryons originating from b-baryon decays included in our primarily prompt samples. Relative R

L refers to minor differences in the accumulated luminosities of the data samples for each of the three decays. The summed uncertainties are obtained by adding the individual components in quadrature.

Estimate (%)

BðΞ0c→ πΛþcÞ BðΞþc → pKπþÞ

Source B1 B2 B3

fΞb=fΛ0b 32    32

fΞ0c=fΛþc ¼ C · fΞb=fΛ0b 6    6

fΞ0c=fΞþc ¼ 1    1 1

BðΞþc → pKπþÞ    49   

BðΛþc → pKπþÞ    5 5

Simulation statistics 4 3 2

Trigger efficiency 7 8 2

Ghost tracks 2 2 0

PID 1 1 1

Tracking efficiencies 2 2 0

Fit yields 6 6 3

Intermediate decays 2 2 2

b-decay sources 2 0 2

Lifetimes 3 3 2

RelativeR

L    1 1

Sum of external 33 49 33

Sum of intrinsic 12 13 6

Sum of all 35 51 34

(5)

disagree, however, with Cheng’s prediction of BðΞ0c→ πΛþcÞ assuming negative interference[9]. In addition, the branching fraction of the normalization channel is found to beBðΞþc → pKπþÞ ¼ ð1.135  0.002  0.387Þ%, that is somewhat larger than, but in agreement with a previous Belle measurement[29], and has a better relative precision.

We express our gratitude to our colleagues in the CERN accelerator departments for the excellent performance of the LHC. We thank the technical and administrative staff at the LHCb institutes. We acknowledge support from CERN and from the national agencies: CAPES, CNPq, FAPERJ and FINEP (Brazil); MOST and NSFC (China); CNRS/

IN2P3 (France); BMBF, DFG and MPG (Germany); INFN (Italy); NWO (Netherlands); MNiSW and NCN (Poland);

MEN/IFA (Romania); MSHE (Russia); MinECo (Spain);

SNSF and SER (Switzerland); NASU (Ukraine); STFC (United Kingdom); DOE NP and NSF (USA). We acknowledge the computing resources that are provided by CERN, IN2P3 (France), KIT and DESY (Germany), INFN (Italy), SURF (Netherlands), PIC (Spain), GridPP (United Kingdom), RRCKI and Yandex LLC (Russia), CSCS (Switzerland), IFIN-HH (Romania), CBPF (Brazil), PL-GRID (Poland) and OSC (USA). We are indebted to the communities behind the multiple open-source software packages on which we depend. Individual groups or members have received support from AvH Foundation (Germany); EPLANET, Marie Skłodowska-Curie Actions and ERC (European Union); A*MIDEX, ANR, Labex P2IO and OCEVU, and R´egion Auvergne-Rhône-Alpes (France); Key Research Program of Frontier Sciences of CAS, CAS PIFI, and the Thousand Talents Program (China); RFBR, RSF and Yandex LLC (Russia); GVA, XuntaGal and GENCAT (Spain); the Royal Society and the Leverhulme Trust (United Kingdom).

[1] M. B. Voloshin, Weak decaysΞðQÞ → ΛðQÞπ,Phys. Lett.

B 476, 297 (2000).

[2] S. Treiman, Commutator algebra and the PCAC hypothesis, Comments Nucl. Part. Phys. 1, 13 (1967).

[3] R. Aaij et al. (LHCb Collaboration), Precision measurement of theΛþcþc andΞ0cbaryon lifetimes,Phys. Rev. D 100, 032001 (2019).

[4] R. Aaij et al. (LHCb Collaboration), Evidence for the Strangeness-Changing Weak Decay Ξb → Λ0bπ, Phys.

Rev. Lett. 115, 241801 (2015).

[5] M. B. Voloshin, Update on splitting of lifetimes of c and b hyperons within the heavy quark expansion and decays ΞQ→ ΛQπ, Phys. Rev. D 100, 114030 (2019).

[6] M. Gronau and J. L. Rosner, FromΞb→ Λ0bπ to Ξc→ Λþcπ, Phys. Lett. B 757, 330 (2016).

[7] M. Tanabashi et al. (Particle Data Group), Review of particle physics, Phys. Rev. D 98, 030001 (2018), and 2019 update.

[8] S. Faller and T. Mannel, Light-quark decays in heavy hadrons,Phys. Lett. B 750, 653 (2015).

[9] H.-Y. Cheng, C.-Y. Cheung, G.-L. Lin, Y.-C. Lin, T.-M.

Yan, and H.-L. Yu, Heavy-flavor-conserving hadronic weak decays of heavy baryons,J. High Energy Phys. 03 (2016)

028;Heavy flavor conserving nonleptonic weak decays of heavy baryons,Phys. Rev. D 46, 5060 (1992).

[10] A. A. Alves, Jr.et al. (LHCb Collaboration), The LHCb detector at the LHC, J. Instrum. 3, S08005 (2008).

[11] R. Aaij et al. (LHCb Collaboration), LHCb detector performance,Int. J. Mod. Phys. A 30, 1530022 (2015).

[12] R. Aaij et al., The LHCb trigger and its performance in 2011,J. Instrum. 8, P04022 (2013).

[13] T. Sjöstrand, S. Mrenna, and P. Skands, A brief introduction to PYTHIA 8.1,Comput. Phys. Commun. 178, 852 (2008);

PYTHIA 6.4 physics and manual,J. High Energy Phys. 05 (2006) 026.

[14] I. Belyaev et al., Handling of the generation of primary events in Gauss the LHCb simulation framework,J. Phys.

Conf. Ser. 331, 032047 (2011).

[15] D. J. Lange, The EvtGen particle decay simulation package, Nucl. Instrum. Methods Phys. Res., Sect. A 462, 152 (2001).

[16] P. Golonka and Z. Was, PHOTOS Monte Carlo: A precision tool for QED corrections in Z and W decays,Eur. Phys. J. C 45, 97 (2006).

[17] J. Allison et al. (Geant4 Collaboration), Geant4 develop- ments and applications, IEEE Trans. Nucl. Sci. 53, 270

4

10

3

10

2

10

)

+ c

Λ

-

π →

0 c

Ξ( B

LHCb

+) Λc

Exp. (

+) Ξc

Exp. ( Exp. (mean) FM (+) GR (+) GR (-) V (-) C (-)

FIG. 3. Comparison of our two measurements of BðΞ0c→ πΛþcÞ, and their average, with the lower limit of Voloshin (V) [5], the upper limit of Faller and Mannel [8]

(FM), updated predictions of Gronau and Rosner[6](GR), and Cheng et al.[9](C). The (þ or −) indicates if positive or negative interference between the SUUD and WS amplitudes is assumed.

(6)

(2006); S. Agostinelli et al. (Geant4 Collaboration), Geant4:

A simulation toolkit,Nucl. Instrum. Methods Phys. Res., Sect. A 506, 250 (2003).

[18] M. Clemencic, G. Corti, S. Easo, C. R. Jones, S. Miglioranzi, M. Pappagallo, and P. Robbe, The LHCb simulation application, Gauss: Design, evolution and experience, J. Phys. Conf. Ser. 331, 032023 (2011).

[19] Y. B. Li et al. (Belle Collaboration), First Measurements of Absolute Branching Fractions of theΞ0c Baryon at Belle, Phys. Rev. Lett. 122, 082001 (2019).

[20] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J.

Stone, Classification and Regression Trees (Wadsworth International Group, Belmont, CA, 1984).

[21] R. E. Schapire and Y. Freund, A decision-theoretic gener- alization of on-line learning and an application to boosting, J. Comput. Syst. Sci. 55, 119 (1997).

[22] A. Hoecker et al., TMVA: Toolkit for multivariate data analysis, Proc. Sci. ACAT2007 (2007) 040 [arXiv:physics/

0703039]; J. Stelzer, A. Hocker, P. Speckmayer, and H.

Voss, Current developments in TMVA: An outlook to TMVA4,Proc. Sci. ACAT08 (2008) 063.

[23] W. D. Hulsbergen, Decay chain fitting with a Kalman filter, Nucl. Instrum. Methods Phys. Res., Sect. A 552, 566 (2005).

[24] T. Skwarnicki, A study of the radiative cascade transitions between the Upsilon-prime and Upsilon resonances, Ph.D. thesis, Institute of Nuclear Physics, 1986, Report No. DESY-F31-86-02.

[25] S. Tolk, J. Albrecht, F. Dettori, and A. Pellegrino, Data driven trigger efficiency determination at LHCb, CERN Reports No. LHCb-PUB-2014-039 and No. CERN-LHCb- PUB-2014-039, 2014.

[26] R. Aaij et al. (LHCb Collaboration), Measurement of the mass and production rate ofΞb baryons,Phys. Rev. D 99, 052006 (2019).

[27] R. Aaij et al. (LHCb Collaboration), Measurement of the properties of the Ξ0b baryon, J. High Energy Phys. 05 (2016) 161.

[28] R. Aaij et al. (LHCb Collaboration), Observation of Two NewΞb Baryon Resonances,Phys. Rev. Lett. 114, 062004 (2015).

[29] Y. B. Li et al. (Belle Collaboration), First measurements of absolute branching fractions of the Ξþc baryon at Belle, Phys. Rev. D 100, 031101 (2019).

[30] M. Tanabashi et al. (Particle Data Group), Review of particle physics, Phys. Rev. D 98, 030001 (2018), and 2019 update; see section 84.2.

[31] R. Aaij et al. (LHCb Collaboration), Measurement of b-hadron fractions in 13 TeV pp collisions,Phys. Rev. D 100, 031102 (2019).

[32] R. Aaij et al. (LHCb Collaboration), Measurements of prompt charm production cross-sections in pp collisions at ffiffiffi

ps

¼ 13 TeV, J. High Energy Phys. 03 (2016) 159;

Erratum,J. High Energy Phys. 09 (2016) 013(E);Erratum, J. High Energy Phys. 05 (2017) 074(E).

R. Aaij,31 C. Abellán Beteta,49T. Ackernley,59 B. Adeva,45 M. Adinolfi,53 H. Afsharnia,9 C. A. Aidala,84S. Aiola,25 Z. Ajaltouni,9S. Akar,64J. Albrecht,14F. Alessio,47M. Alexander,58A. Alfonso Albero,44Z. Aliouche,61G. Alkhazov,37 P. Alvarez Cartelle,47S. Amato,2 Y. Amhis,11L. An,21L. Anderlini,21G. Andreassi,48A. Andreianov,37M. Andreotti,20 F. Archilli,16A. Artamonov,43M. Artuso,67K. Arzymatov,41E. Aslanides,10M. Atzeni,49B. Audurier,11S. Bachmann,16 M. Bachmayer,48J. J. Back,55S. Baker,60P. Baladron Rodriguez,45 V. Balagura,11,bW. Baldini,20J. Baptista Leite,1 R. J. Barlow,61S. Barsuk,11W. Barter,60M. Bartolini,23,47,hF. Baryshnikov,80J. M. Basels,13G. Bassi,28V. Batozskaya,35 B. Batsukh,67A. Battig,14A. Bay,48M. Becker,14F. Bedeschi,28I. Bediaga,1A. Beiter,67V. Belavin,41S. Belin,26V. Bellee,48

K. Belous,43I. Belyaev,38G. Bencivenni,22E. Ben-Haim,12A. Berezhnoy,39R. Bernet,49D. Berninghoff,16 H. C. Bernstein,67C. Bertella,47E. Bertholet,12A. Bertolin,27C. Betancourt,49F. Betti,19,eM. O. Bettler,54Ia. Bezshyiko,49

S. Bhasin,53J. Bhom,33 L. Bian,72M. S. Bieker,14S. Bifani,52P. Billoir,12 M. Birch,60 F. C. R. Bishop,54A. Bizzeti,21,s M. Bjørn,62M. P. Blago,47T. Blake,55F. Blanc,48S. Blusk,67D. Bobulska,58V. Bocci,30J. A. Boelhauve,14 O. Boente Garcia,45T. Boettcher,63A. Boldyrev,81A. Bondar,42,vN. Bondar,37,47S. Borghi,61M. Borisyak,41M. Borsato,16

J. T. Borsuk,33S. A. Bouchiba,48T. J. V. Bowcock,59A. Boyer,47C. Bozzi,20M. J. Bradley,60S. Braun,65 A. Brea Rodriguez,45M. Brodski,47J. Brodzicka,33A. Brossa Gonzalo,55D. Brundu,26A. Buonaura,49C. Burr,47 A. Bursche,26A. Butkevich,40 J. S. Butter,31J. Buytaert,47W. Byczynski,47S. Cadeddu,26H. Cai,72R. Calabrese,20,g L. Calero Diaz,22S. Cali,22R. Calladine,52M. Calvi,24,iM. Calvo Gomez,83P. Camargo Magalhaes,53A. Camboni,44

P. Campana,22D. H. Campora Perez,47A. F. Campoverde Quezada,5 S. Capelli,24,iL. Capriotti,19,e A. Carbone,19,e G. Carboni,29R. Cardinale,23,h A. Cardini,26I. Carli,6P. Carniti,24,iK. Carvalho Akiba,31A. Casais Vidal,45G. Casse,59 M. Cattaneo,47G. Cavallero,47S. Celani,48R. Cenci,28J. Cerasoli,10A. J. Chadwick,59M. G. Chapman,53M. Charles,12

Ph. Charpentier,47G. Chatzikonstantinidis,52M. Chefdeville,8 C. Chen,3 S. Chen,26A. Chernov,33S.-G. Chitic,47 V. Chobanova,45S. Cholak,48M. Chrzaszcz,33A. Chubykin,37V. Chulikov,37P. Ciambrone,22M. F. Cicala,55X. Cid Vidal,45 G. Ciezarek,47P. E. L. Clarke,57M. Clemencic,47H. V. Cliff,54J. Closier,47J. L. Cobbledick,61V. Coco,47J. A. B. Coelho,11 J. Cogan,10E. Cogneras,9 L. Cojocariu,36P. Collins,47T. Colombo,47A. Contu,26N. Cooke,52G. Coombs,58G. Corti,47

(7)

C. M. Costa Sobral,55B. Couturier,47D. C. Craik,63J. Crkovská,66M. Cruz Torres,1 R. Currie,57C. L. Da Silva,66 E. Dall’Occo,14J. Dalseno,45C. D’Ambrosio,47 A. Danilina,38P. d’Argent,47A. Davis,61O. De Aguiar Francisco,47

K. De Bruyn,77S. De Capua,61 M. De Cian,48J. M. De Miranda,1 L. De Paula,2 M. De Serio,18,dD. De Simone,49 P. De Simone,22J. A. de Vries,78C. T. Dean,66W. Dean,84D. Decamp,8L. Del Buono,12B. Delaney,54H.-P. Dembinski,14 A. Dendek,34X. Denis,72V. Denysenko,49D. Derkach,81O. Deschamps,9F. Desse,11F. Dettori,26,fB. Dey,72P. Di Nezza,22 S. Didenko,80H. Dijkstra,47V. Dobishuk,51A. M. Donohoe,17F. Dordei,26M. Dorigo,28,wA. C. dos Reis,1L. Douglas,58 A. Dovbnya,50A. G. Downes,8 K. Dreimanis,59M. W. Dudek,33L. Dufour,47V. Duk,76P. Durante,47J. M. Durham,66

D. Dutta,61M. Dziewiecki,16A. Dziurda,33 A. Dzyuba,37S. Easo,56U. Egede,69V. Egorychev,38S. Eidelman,42,v S. Eisenhardt,57S. Ek-In,48 L. Eklund,58S. Ely,67 A. Ene,36E. Epple,66S. Escher,13J. Eschle,49S. Esen,31T. Evans,47

A. Falabella,19 J. Fan,3 Y. Fan,5 B. Fang,72N. Farley,52S. Farry,59D. Fazzini,24,iP. Fedin,38M. F´eo,47

P. Fernandez Declara,47A. Fernandez Prieto,45F. Ferrari,19,eL. Ferreira Lopes,48F. Ferreira Rodrigues,2S. Ferreres Sole,31 M. Ferrillo,49M. Ferro-Luzzi,47S. Filippov,40R. A. Fini,18M. Fiorini,20,gM. Firlej,34K. M. Fischer,62C. Fitzpatrick,61 T. Fiutowski,34F. Fleuret,11,bM. Fontana,47F. Fontanelli,23,hR. Forty,47V. Franco Lima,59M. Franco Sevilla,65M. Frank,47 E. Franzoso,20G. Frau,16C. Frei,47D. A. Friday,58J. Fu,25,o Q. Fuehring,14W. Funk,47E. Gabriel,31 T. Gaintseva,41 A. Gallas Torreira,45D. Galli,19,eS. Gallorini,27S. Gambetta,57Y. Gan,3M. Gandelman,2P. Gandini,25Y. Gao,4M. Garau,26 L. M. Garcia Martin,46P. Garcia Moreno,44J. García Pardiñas,49B. Garcia Plana,45F. A. Garcia Rosales,11L. Garrido,44 D. Gascon,44C. Gaspar,47R. E. Geertsema,31D. Gerick,16L. L. Gerken,14E. Gersabeck,61M. Gersabeck,61T. Gershon,55 D. Gerstel,10Ph. Ghez,8V. Gibson,54A. Gioventù,45P. Gironella Gironell,44L. Giubega,36C. Giugliano,20,gK. Gizdov,57 V. V. Gligorov,12C. Göbel,70E. Golobardes,83D. Golubkov,38 A. Golutvin,60,80A. Gomes,1,a S. Gomez Fernandez,44

M. Goncerz,33P. Gorbounov,38 I. V. Gorelov,39C. Gotti,24E. Govorkova,31J. P. Grabowski,16R. Graciani Diaz,44 T. Grammatico,12L. A. Granado Cardoso,47E. Graug´es,44E. Graverini,48G. Graziani,21A. Grecu,36L. M. Greeven,31

P. Griffith,20L. Grillo,61L. Gruber,47B. R. Gruberg Cazon,62C. Gu,3 M. Guarise,20 P. A. Günther,16E. Gushchin,40 A. Guth,13Yu. Guz,43,47T. Gys,47T. Hadavizadeh,69G. Haefeli,48C. Haen,47S. C. Haines,54P. M. Hamilton,65Q. Han,7

X. Han,16T. H. Hancock,62S. Hansmann-Menzemer,16N. Harnew,62T. Harrison,59R. Hart,31C. Hasse,47 M. Hatch,47 J. He,5 M. Hecker,60K. Heijhoff,31K. Heinicke,14A. M. Hennequin,47K. Hennessy,59L. Henry,25,46J. Heuel,13 A. Hicheur,68D. Hill,62M. Hilton,61S. E. Hollitt,14P. H. Hopchev,48J. Hu,16J. Hu,71W. Hu,7W. Huang,5W. Hulsbergen,31

R. J. Hunter,55 M. Hushchyn,81 D. Hutchcroft,59 D. Hynds,31P. Ibis,14M. Idzik,34 D. Ilin,37P. Ilten,52A. Inglessi,37 K. Ivshin,37R. Jacobsson,47S. Jakobsen,47 E. Jans,31B. K. Jashal,46A. Jawahery,65V. Jevtic,14F. Jiang,3 M. John,62 D. Johnson,47C. R. Jones,54T. P. Jones,55B. Jost,47N. Jurik,47S. Kandybei,50Y. Kang,3 M. Karacson,47J. M. Kariuki,53 N. Kazeev,81M. Kecke,16F. Keizer,54,47M. Kelsey,67M. Kenzie,55T. Ketel,32B. Khanji,47A. Kharisova,82S. Kholodenko,43 K. E. Kim,67T. Kirn,13V. S. Kirsebom,48O. Kitouni,63S. Klaver,31K. Klimaszewski,35S. Koliiev,51A. Kondybayeva,80

A. Konoplyannikov,38P. Kopciewicz,34R. Kopecna,16P. Koppenburg,31M. Korolev,39 I. Kostiuk,31,51 O. Kot,51 S. Kotriakhova,37,30P. Kravchenko,37L. Kravchuk,40 R. D. Krawczyk,47M. Kreps,55F. Kress,60S. Kretzschmar,13 P. Krokovny,42,vW. Krupa,34W. Krzemien,35W. Kucewicz,86,33,kM. Kucharczyk,33V. Kudryavtsev,42,vH. S. Kuindersma,31

G. J. Kunde,66T. Kvaratskheliya,38D. Lacarrere,47G. Lafferty,61A. Lai,26A. Lampis,26D. Lancierini,49J. J. Lane,61 R. Lane,53 G. Lanfranchi,22C. Langenbruch,13J. Langer,14O. Lantwin,49,80T. Latham,55F. Lazzari,28,tR. Le Gac,10 S. H. Lee,84R. Lef`evre,9 A. Leflat,39,47S. Legotin,80O. Leroy,10T. Lesiak,33B. Leverington,16H. Li,71L. Li,62P. Li,16 X. Li,66Y. Li,6Y. Li,6Z. Li,67X. Liang,67T. Lin,60R. Lindner,47V. Lisovskyi,14R. Litvinov,26G. Liu,71H. Liu,5S. Liu,6 X. Liu,3A. Loi,26J. Lomba Castro,45I. Longstaff,58J. H. Lopes,2 G. Loustau,49G. H. Lovell,54Y. Lu,6D. Lucchesi,27,m S. Luchuk,40M. Lucio Martinez,31V. Lukashenko,31Y. Luo,3 A. Lupato,61E. Luppi,20,gO. Lupton,55A. Lusiani,28,r X. Lyu,5 L. Ma,6S. Maccolini,19,e F. Machefert,11 F. Maciuc,36V. Macko,48 P. Mackowiak,14S. Maddrell-Mander,53 L. R. Madhan Mohan,53O. Maev,37A. Maevskiy,81D. Maisuzenko,37M. W. Majewski,34S. Malde,62B. Malecki,47 A. Malinin,79T. Maltsev,42,v H. Malygina,16G. Manca,26,f G. Mancinelli,10R. Manera Escalero,44D. Manuzzi,19,e D. Marangotto,25,oJ. Maratas,9,uJ. F. Marchand,8 U. Marconi,19S. Mariani,21,47,21 C. Marin Benito,11M. Marinangeli,48

P. Marino,48J. Marks,16P. J. Marshall,59G. Martellotti,30L. Martinazzoli,47M. Martinelli,24,iD. Martinez Santos,45 F. Martinez Vidal,46A. Massafferri,1M. Materok,13R. Matev,47A. Mathad,49Z. Mathe,47V. Matiunin,38C. Matteuzzi,24

K. R. Mattioli,84A. Mauri,31E. Maurice,85,11,bJ. Mauricio,44M. Mazurek,35 M. McCann,60L. Mcconnell,17 T. H. Mcgrath,61 A. McNab,61R. McNulty,17J. V. Mead,59B. Meadows,64C. Meaux,10G. Meier,14N. Meinert,75 D. Melnychuk,35S. Meloni,24,iM. Merk,31,78A. Merli,25L. Meyer Garcia,2M. Mikhasenko,47D. A. Milanes,73E. Millard,55

Riferimenti

Documenti correlati

Le OTA hanno ottenuto una popolarità molto ampia (come d’altronde anche le altre fonti statistiche confermano) da parte dei viaggiatori (il 100% del campione

Starting from these hypothesis, we will build a three stage model where a local politician who is in charge in the first period must choose among three different

Un ulteriore aspetto che bisogna considerare quando si ha a che fare con genitori maltrattanti, abusanti o gravemente trascuranti è che essi sono spesso (ma non sempre)

Uomini primitivi e fanciulli dell’umanità: il recupero di memoria, fantasia e ingegno nello sviluppo della storia universale.. Vico insegnante e Vico filosofo: la nozione di

As reported for CB1r, CB2r selective agonists express an important role in studying either in vitro or in vivo different effects of activation of the two receptors as

Since he is willing to limit the validity of a labour embodied theory of value to the ‘early and rude state of society’ prior to the accumulation of capital

1.1 La causa della violenza di genere: due teorie a confronto 4 1.2 Nascita e sviluppo della società patriarcale 7 1.3 Il corpo femminile: dal debitum

8 1.3 Orientamenti dottirnali e giurisprudenziali della seconda.. metà