• Non ci sono risultati.

Alexoff DL, Fowler JS and Gatley SJ (1991) Removal of the 2.2.2 cryptands (kryptofix 2.2.2) from 18FDG by cation exchange. Appl.

N/A
N/A
Protected

Academic year: 2021

Condividi " Alexoff DL, Fowler JS and Gatley SJ (1991) Removal of the 2.2.2 cryptands (kryptofix 2.2.2) from 18FDG by cation exchange. Appl. "

Copied!
10
0
0

Testo completo

(1)

Aknowledgements

 Adamson J, Foster AB, Hall LD, Johnson RN and Hesse RH. (1970) Fluorinated carbohydrates. Part III. 2-Deoxy-2-fluoro-D-glucose and 2-deoxy-2-fluoro-D-mannose. Carbohydrate Res., 15, 351-359.

 Alexoff DL, Fowler JS and Gatley SJ (1991) Removal of the 2.2.2 cryptands (kryptofix 2.2.2) from 18FDG by cation exchange. Appl.

Radiat. Isot., 42, 1189-1193.

 Alexoff DL, Casati R, Fowler JS, Wolf AP, Shea C, Schlyer DJ and Shiue C-Y (1992) Ion chromatographic analysis of high specific activity 18FDG preparations and detection of the chemical impurity in 2-deoxy-2-chloro-D-glucose. App!. Radiat. Isot., 43, 1313-1322.

 Barrio JR, MacDonald NS, Robinson GD, Najafi A, Cook JS and Kuhl DE (1981) Remote, semiautomated production of F-18 labeled 2- deoxy-2-fluoro-D-glucose. J. Nucl. Med., 22, 372-375.

 Beeley PA, Szarek WA, Hay GW, et al. A synthesis od 2-deoxy-2- [18F] fluoro-D-glucose using accelerator-produced 18F-fluoride ion generated in a water target. Can J Chem 1984;62:2709-11.

 Berger G, Maziere M, Knipper R and Comar D(1979)Automated synthesis of carbon-11labeled radiopharmaceuticals: imipramine, chlorpromazine, nicotin and methionine. Intl. J. Appl. Rad.[sot.,30, 393-399.

 Bessell EM, Foster AB and Westwood JH (1972) The use of deoxyfluoro-D-glucopyranoses and related compounds in a study of yeast hexokinase specificity. Biochem. J., 128, 199-204.

 Bida GT, Satyamurthy N and Barrio J (1984) The synthesis of 2- [18F]fluoro-2-deoxy-D-glucose using glycals: a reexamination. J.

Nucl. Med., 25, 1327-1334.

 Blessing G, Coenen HH, Hennes M and Lipperts H (1982) A computer controlled automatic apparatus for radiochemical separation of

75

Br and synthesis of

75

Br-labelled radiopharmaceuticals. J. Label. Comp. Radiopharm., 19. 1333-1335.

 Brodack JW, Dence CS, Kilbourn MR and Welch MJ (1988) Robotic

production of 2-deoxy-2-[

18

F]fluoro-D-glucose: a routine method of

(2)

synthesis using tetrabutylammonium [

18

F]fluoride. App!. Radiat.

Isot., 39, 699-703

 Carl K. Hoh, Clinical use of FDG PET, 2007 Carl K. Hoh, Clinical use of FDG PET, 2007 Carl K. Hoh, Clinical use of FDG PET, 2007.

 Casella V, Ido T, Wolf AP, Fowler JS, MacGregor RR and Ruth TR (1980) Anhydrous F-18 labeled elemental fluorine for radiopharmaceutical preparation. J. Nucl. Med., 21, 750-757.

 Chaly T and Dahl JR (1989) Thin layer chromatographic detection of kryptofix 2.2.2 in the routine synthesis of [18F]2-fluoro-2-deoxy-D- glucose. Nucl. Med. Biol., 16, 385-387.

 Chyng Yann Sciue, Piero A. Salvadori, Alfred P. Wolf, Joanna S.

Fowler, Robert R. Mac Gregor, A new improved synthesis of 2-deoxy- 2-(

18

F)fluoro-D-glucose from

18

F-labeled acetyl hypofluorite, J.

Nuclear Med 23: 899-903, 1982.

 Z.H. Cho, J.K. Chan, L. Ericksson, M. Singh, S. Graham, N.S.

MacDonald and Y. Yano, Positron ranges obtained from biomedically important positron-emitting radionuclides. J. Nucl. Med. 16 (1975), pp. 1174–1176.

 Coleman RE (2000) FDG imaging. Nucl. Med. Biology, 27, 689-690.

 Comar D, Zarifian E, Verhas M, Soussaline F, Maziere M, Berger G, Loo H, Cuche H, Kellershohn Cand Deniker P (1979) Brain distribution and kinetics of 11C-chlorpromazine in schizophrenics:

positron emission tomography studies. Psychiatry Research, 1, 23- 29.

 Crane PD, Pardridge WM, Braun LD, Nyerges AM, Oldendorf WH.

The interaction of transport and metabolism on brain glucose utilization: a reevaluation of the lumped constant. J Neurochem 1981; 36: 1601-1604.

 Crouzel C, Clark JC, Brihaye C, Langstrom B, Lamaire C, Meyer GJ, Nebeling B and Stone-Elander S (1993) Radiochemistry automation for PET. In Radiopharmaceuticals for Positron Emission Tomography Methodological Aspects, Stocklin G and Pike VW (eds), Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 45-89.

 M. Dahlbom and E. J. Hoffman, “An Evaluation of a Two- Dimensional Array Detector for High Resolution PET,” IEEE Trans.

Med. Ima,.vol. 7, pp. 264-272, 1988.

(3)

 Dannals RF, Ravert HT, Wilson AA and Wagner HN (1991) Special problems associated with the synthesis of high specific activity carbon-11 labeled radiotracers. In New Trends in Radiopharmaceutical Synthesis, Quality Assurance, and Regulatory Control, Emran A, (ed), Plenum Press, New York, pp. 21-30.

 Dembowski B and Gonzalez-Lepera C (1994) Control of radioactive material pneumatic transport system using an inexpensive programmable logic controller. In Proceedings of the 5h Workshop on Targetry and Target Chemistry, Dahl JR, Ferrieri R, Finn R and Schlyer DJ (eds), Upton, New York, pp. 323 329.

 E.F. de Vries, A. van Waarde, M.C. Harmsen, N.H. Mulder, W.

Vaalburg and G.A. Hospers Nucl. Med. Biol. 27 (2000), pp. 113–119.

 Fowler IS, MacGregor RR, Wolf AP, Farrell AA, Karlstrom KI and Ruth TJ (1981) A shielded synthesis system for production of 2- dexoy-2-[

18

F]fluoro-D-glucose. J. Nucl. Med., 22, 376-380.

 Fowler IS, Volkow ND, Wang G-J, Ding Y-S and Dewey S (1999) PET and drug research and development. J. Nucl. Med., 40, 1154-1163.

 Fowler JS, Ido T. Initial and subsequent approach for the synthesis of

18

FDG. Semin Nucl Med 2002;32(1):6-12.

 Gallagher BM, Fowler JS, Gutterson NI, MacGregor RR, Wan C-N and Wolf AP (1978) Metabolic trapping as a principle of radiopharmaceutical design: some factors responsible for the biodistribution of [18F]2-deoxy-2-fluoro-D-glucose. J. Nucl. Med., 19, 1154-1161.

 Philip H. Elsinga, Radiopharmaceutical chemistry for positron emission tomography.

 Ferrieri RA, Schlyer DJ, Alexoff DL, Fowler JS and Wolf AP (1993) Direct analysis of kryptofix 2.2.2 in

18

FDG by gas chromatography using a nitrogen-selective detector. Nucl..Med. Biol., 20, 367-369.

 Firouzbakht ML, Schlyer DJ and Fowler JS (1999b) Cryogenic target design considerations for the production of [

18

F]fluoride from enriched [

18

O]carbon dioxide. Nucl. Med. & Biol., 26, 749-753.

 Fowler JS and Wolf AP (1982) The Synthesis of Carbon-11, Fluorine-

18, and Nitrogen-13 Labeled Radiotracers for Biomedical

(4)

Applications. Nuclear Science Series National Technical Information Services NAS-NS-3201, U.S. Department of Energy.

 Frisbee AR, Nantz MH, Kramer GW and Fuchs PL (1984) Robotic orchestration of organic reactions:yield optimization via an automated system with operator-specific reaction sequences. J. Am.

Chem. Soc., 106,7143-7145.

 S.S. Gambhir, J.R. Barrio, L. Wu, M. Iyer, M. Namavari, N.

Satyamurthy, E. Bauer, C. Parrish, D.C. MacLaren, A.R. Borghei, L.A. Green, S. Sharfstein, A.J. Berk, S.R. Cherry, M.E. Phelps and H.R. Herschman J. Nucl. Med. 39 (1998), pp. 2003–2011.

 Hamacher K, Coenen HH, Stocklin G. Efficient stereospecific synthesis of no-carrier-added 2-[18F]-fluoro-2-deoxy-D-glucose using aminopolyether supported nucleophilic substitution. J Nucl Med 1986;27(2):235-8.

 Hamacher K, Blessing G and Nebeling B (1990) Computer-aided syntheis (CAS) of no-carrier-added 2-(18F]fluoro-2-deoxy-D-glucose:

An efficient automated system for the aminopolyether-supported nucleophilic fluorination. Appl. Rod. Isot., 41, 49-55.

 Hawkins RA, Phelps ME, Huang S-C, Kuhl DE. Effect of ischemia on quantitation of local cerebral glucose metabolic rate in man. J Cereb Blood Flow Metab 1981; 1: 37-51.

 K. Herholz and W.D. Heiss, Positron emission tomography in clinical neurology, Mol Imaging Biol 6 (2004), pp. 239–269.

 H. Herzog, Methods and applications of positron-based medical imaging, 2006.

 Hichwa R (2000) Radiopharmaceutical automation: Sensors and technology vs the human experience. In Proceedings of the 8`h Workshop on Targetry and Target Chemistry, McCarthy TJ (ed), St Louis, pp. 59-60.

 T. Ido, C.N. Wan, V. Casella, J.S. Fowler, A.P. Wolf and M. Reivich et al., Labeled 2-deoxy-d-glucose analogs: 18F-labeled 2-deoxy-2- fluoro-d-glucose, 2-deoxy-2-fluoro-d-mannose and 14C-2-deoxy-2- fluoro-d-glucose, J Label Compd Radiopharm 24 (1978), pp. 174–

183.

(5)

 Ido T, Wan C-N, Fowler JS and Wolf AP (1977) Fluorination with F,.

A convenient synthesis of 2-deoxy-2-fluoro-D-glucose. J. Org. Chem., 42, 2341-2342.

 Ido T, Wan C-N, Casella V, Fowler JS, Wolf AP, Reivich M and Kuhl DE (1978) Labeled 2-deoxy-D-glucose analogs, BF-labeled 2-deoxy-2- fluoro-D-glucose, 2-deoxy-2-fluoro-D-mannose and 14C-2-deoxy-2- fluoro-glucose. J. Labelled Cpd. and Radiopharm., 14, 171-183.

 Ido T and Iwata R (1981) Fully automated synthesis of 13NH3. J.

Label. Comp. Radiopharm., 18, 244-246.Iwata R, Takashashi M, Shinohara M and Ido T (1982) Fully automated synthesis system of [

18

F]-2-deoxy-2- fluoro-D-glucose. J. Label. Comp. Radiopharm., 19, 1350-1351.

 Ishiwata K, Monma M, Iwata R and Ido T (1982) Automated photosynthesis of

11

C-glucose. J. Label. Comp. Radiopharm., 19, 1347-1349.

 Iwata R, Ido T, Takahashi T and Monma M (1984) Automated synthesis system for production of 2-deoxy-[

18

F]fluoro-D-glucose with computer control. Appl. Rad. Isot., 35, 445-454.Iwata R, Ido T and Yamazaki S (1990) Intelligent control of liquid transfer. In Proceedings of the 3rd Workshop on Targetry and Target Chemistry, Ruth T (ed), Vancouver, Canada, pp. 137-139.

 Jackson M (2000) Developments in FDG synthesis and production.

In Proceedings of the 8rh Workshop on Targetry and Target Chemistry, McCarthy TJ (ed), St Louis, pp. 73-74.

 Krohn KA, Muzi M, Spence AM. What is in a number? The FDG lumped constant in the rat brain. J Nucl Med 2007; 48(1): 5-7

 Kuhl DE, Hoffman EJ, Phelps ME, Ricci AR and Reivich M (1977) Design and application of the Mark IV scanning system for radionuclide computed tomography of the brain. In Medical Radionuclide Imaging, Vol 1, International Atomic Energy Agency Symposium on Medical Radionuclide Imaging, Los Angeles, CA, Oct 25-29, 1976, IAEA, Vienna, 309-320.

 J. Krivokapich, S.C. Huang, C.E. Selin and M.E. Phelps Am. J.

Physiol 252 (1987), pp. H777–H787.

 Lambrecht R and Wolf AP (1973) Cyclotron and short-lived halogen

isotopes for radiopharmaceutical applications. In

(6)

Radiopharmaceuticals and Labeled Compounds, Volume 1, International Atomic Energy Agency, Vienna, 275-290.

 Lambrecht RM (1982) Production and radiochemical process control for short-lived medical radionuclides. In Applications of Nuclear and Radiochemistry, Lambrecht RM and Morcos N (eds), Pergamon Press, New York, pp. 5-14.

 Langstrom B, Clark JC, Lindback S and Welch MJ (1983) Automated synthesis of radiopharmaceuticals labeled with short-lived positron- emitters. In Proceedings of the 3rd World Congress on Advances in Nuclear Medicine and Biology 1982, 3, Raynaud C (ed). Pergamon Press, Paris, pp. 2461-2464.

 Didier Le Bars, Fluorine-18 and medical imaging:

Radiopharmaceuticals for positron emission tomography, 2006.

 Levy S, Elmaleh DR, Livni E. A new method using anhydrous [18F]fluoride to radiolabel 2-[18F]fluoro-2-deoxy-D-glucose. J Nucl Med 1982;23(10):918-22.

 Link J and Clark J (1994) Isotope processing and automation. In Proceedings of the 5`h Workshop on Targetry and Target Chemistry, Dahl JR, Ferrieri R, Finn R and Schlyer DJ (eds), Upton, New York, pp. 245-248.

 MacGregor RR, Fowler IS, Wolf AP, Shiue C-Y, Lade RE and Wan C-N (1981) A synthesis of 11C-2-deoxy-D-glucose for regional metabolic studies. J. Nucl. Med., 22, 800-803.

 Meyer G-J, Matzke KH, Hamacher K, Fuchtner F, Steinbach J, Notohamiprodjo G and Zilstra S (1999) The stability of 2-[18F]fluoro- deoxy-D-glucose towards epimerization under alkaline conditions.

Appl. Radiat. Isot., 51, 37-41.

 Merrifield RB, Stewart JM and Jemberg N (1966) Instrument for automated synthesis of peptides. Anal yr. Chem., 38, 1905-1914.

 Moerlein SM, Brodack JW, Siegel BA and Welch MJ (1989) Elimination of contaminant kryptofix 2.2.2 in the routine production of 2-[

18

F]fluoro-2-deoxy-D-glucose. App!. Radial. Isot., 40, 741-743.

 Mulholland GK (1995) Simple rapid hydrolysis of acetyl protecting groups in the FDG synthesis using cation exchange resins. Nucl.

Med. Biol., 22, 19-23.

(7)

 Pacak J, Tocik Z and Cerny M (1969) Synthesis of 2-deoxy-2-fluoro- D-glucose. J. Chem. Soc. Chem. Comm., 77.

 Padgett HC, Barrio JR, MacDonald NS and Phelps ME (1982) The unit operations approach applied to the synthesis of [1-11C]2-deoxy- D-glucose for routine clinical applications. J. Nucl. Med., 23, 739- 744.

 Palmer BM, Sajjad M and Rottenberg DA (1995) An automated [150]H20 production and injection system for PET imaging. Nucl.

Medi. and Biol., 22, 241-249.

 Patlak CS, Blasberg RG. Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data. Generalizations.

J Cereb Blood Flow Metab 1985; 5:584-590.

 E.K. Pauwels, M.J. Ribeiro, J.H. Stoot, V.R. McCready, M.

Bourguignon and B. Maziere Nucl. Med. Biol. 25 (1998), pp. 317–

322.

 Phelps ME, Huang S-C, Hoffman EJ, Selin C, Sokoloff L, Kuhl DE.

Tomographic measurement of local cerebral glucose metabolic rate in humans with [F-18]2-fluoro-2-deoxy-D-glucose: validation of method. Ann Neurol 1979; 6: 371-388.

 Phelps ME, Huang S-C, Mazziotta JC, Hawkins RA. Alternate approach for examining stability of the deoxyglucose model lumped constant. J Cereb Blood Flow Metab 1983; 3(Suppl 1): S13-S14.

 Reivich M, Kuhl D, Wolf A, Greenberg J, Phelps M, Ido T, Casella V, Fowler J, Hoffman E, Alavi A. Som P and Sokoloff L (1979) The [18F]fluorodeoxyglucose method for the measurement of local cerebral glucose utilization in man. Circ. Res., 44, 127-137.

 Ruth TJ and Wolf AP (1979) Absolute cross sections for the production of

18

F via the

18

0(p,n)

18

F reaction. Radiochim. Acta., 26, 21-24.

 Ruth T, Adam M, Jivan S, Morris D and Tyldesley (1991a) An automated system for the synthesis of L-6[

18

F]fluorodopa. J. Label.

Comp. Radiopharm., 30, 304.

 Azeem Saleem, Clinical Research Fellow in Oncology, Eric O.

Aboagye, Postdoctoral Scientist and Patricia M. Price, Reader in

Clinical Oncology, In vivo monitoring of drugs using radiotracer

techniques, 2000.

(8)

 Sasaki H, Kanno I, Murakami M, Shishido F, Uemura K.

Tomographic mapping of kinetic rate constants in the fluorodeoxyglucose model using dynamic positron emission tomography. J Cereb Blood Flow Metab 1986; 6: 447-454.

 Satyamurthy N, Phelps ME and Barrio JR (1999) Electronic generators for the production of positron-emitter labeled radiopharmaceuticals; Where would PET be without them? Clinical Positron Imaging, 2, 233-252.

 Schelbert HR, Henze E and Phelps ME (1980) Emission tomography of the heart. Semi. in Nucl. Medi.. 10, 355-373.

 A.F. Shields, J.R. Grierson, B.M. Dohmen, H.J. Machulla, J.C.

Stayanoff, J.M. Lawhorn-Crews, J.E. Obradovich, O. Muzik and T.J.

Mangner Nat. Med. 4 (1998), pp. 1334–1336.

 Schmidt K, Lucignani G, Moresco RM, Rizzo G, Gilardi MC, Messa C, Colombo F, Fazio F, Sokoloff L. Errors introduced by tissue heterogeneity in estimation of local cerebral glucose utilization with current kinetic models of the [

18

F]fluorodeoxyglucose method. J Cereb Blood Flow Metab 1992; 12: 823-834.

 Severns ML and Hawk GL (1984) Medical laboratory automation using robotics. In NATO ASI Series Robotics and Artificial Intelligence, Brady M, Gerhardt LA and Davdison (eds), Springer- Verlag, The Netherlands, pp. 633-634.

 Silverman M (1970) Specificity of monosaccharide transport in the dog kidney. Am J Physiology, 218. 743-750.

 Sokoloff L, Reivich M, Kennedy C, Des Rosiers MH, Patlak CS, Pettigrew KD, Sakurada O, Shinohara M. J Neurochem 1977;28:897- 916.

 Sols A and Crane RA (1954) Substrate specificity of brain hexokinase. J. Biol. Chem., 210, 581-595.

 Som P, Atkins HL, Bandoypadhyay D, Fowler JS, MacGregor RR, Matsui K, Oster ZH, Sacker DF. Shiue C-Y, Turner H, Wan C-N, Wolf AP and Zabinski SV (1980) A fluorinated glucose analog, 2-fluoro-2- deoxy-D-glucose (F- 18): nontoxic tracer for rapid tumor detection. J.

Nucl. Med., 21. 670-675.

(9)

 Steven R. Meikle, Freek J. Beekman and Stephen E. Rose, Complementary molecular imaging technologies: High resolution SPECT, PET and M, 2006.

 Suzuki K, Tamale K, Nakayama T, Yamazaki T., Kasida Y, Fukushi K, Maruyama Y, Maekawa H and Nakaoko H (1982) Development of an equipment for the automatic production of

13

NH

3

and L-(

13

N)- glutamate. J. Label. Comp. Radiopharm., 19, 1374-1375.

 Tokugawa J, Ravasi L, Nakayama T, Schmidt K, Sokoloff L.

Operational lumped constant for FDG in normal adult male rats. J Nucl Med 2007; 48(1): 94-99.

 G. Vaidyanathan, D.D. Bigner and M.R. Zalutsky, Fluorine-18 labeled monoclonal antibody fragments: a potential approach for combining radioimmunoscintigraphy and positron emission tomography, J. Nucl.

Med. 33 (1992), pp. 1535–1541.

 Varelis P and Barnes RK (1996) Epimerization of 2-deoxy-2- [18F]fluoro-D-glucose under basic conditions. A convenient method for the preparation of 2-deoxy-2-[18F]fluoro-D-mannose. Appl.

Radiat. Isot., 47. 731-733.

 Welch MJ. Dence CS and Kilbourn MR (1982) Remote systems for the routine production of some carbon-11radiopharmaceuticals. J.

Label. Comp. Radiopharm., 19, 1382.

 Welch Ma, Dence CS, Marshall DR and Kilbourn MR (1983) Remote system for production of carbon-11 labeled palmitic acid. J. Label.

Comp. Radiopharm., 20, 1087-1095.

 H.J. Wester, K. Hamacher and G. Stöcklin, A comparative study of n.c.a. fluorine-18 labeling of proteins via acylation and photochemical conjugation, Nucl. Med. Biol. 23 (1996), pp. 365–372.

 Winicov H, Schainbaum J, Buckley J, Longino G, Hill J and Berkoff CE(1978) Chemical process optimization by computer - a self- directed chemical synthesis system. Analyt. Chim. Acta, 103, 469- 476.

 Wu H-M, Bergsneider M, Glenn TC, Yeh E, Hovda DA, Phelps ME, Huang S-C. Measurement of the global lumped constant for 2-deoxy- 2-[

18

F]fluoro-D-glucose in normal human brain using [

15

O]water and 2-deoxy-2-[

18

F]fluoro-D-glucose positron emission tomography imaging: a method with validation based on multiple methodologies.

Mol Imaging Biol 2003; 5: 32-41.

(10)

 F. Wüst, C. Hultsch, R. Bergmann, B. Johannsen and T. Henle, Radiolabelling of isopeptide N

ε

-(γ-glutamyl)-L-lysine by conjugation with N-succinimidyl-4-[

18

F]fluorobenzoate, Appl. Radiat. Isot. 59 (2003), pp. 43–48.

 S. Zijlstra, J. Gunawan and W. Burchert, Synthesis and evaluation of a

18

F-labelled recombinant annexin-V derivative, for identification and quantification of apoptotic cells with PET, Appl. Radiat. Isot. 58 (2003), pp. 201–207.

 Weber G (1977) Enzymology of cancer cells. N. Eng. J. Med., 296, 541.551.

 Michael J. Welch and Carol S. Redvanly, Handbook of Radiopharmaceuticals, 2003.

 S Yu, Review of

18

F-FDG synthesis and quality control, Biomed Imaging Interv J 2006.

 Yuasa M, Yoshida H and Ham T (1997) Computer-controlled synthesis of [18F]FDG by the tetrabutylammonium method:

achievement of high yield, purity, reproducibility, reliability, and

safety. Appl. Radiat. Isot., 48,201-205.

Riferimenti

Documenti correlati

(a) Per risolvere gli integrali di funzioni razionali, occorre anzitutto che il grado del numeratore sia strettamente inferiore al grado del denominatore... Si tratta dell’integrale

Parlando genericamente, abbiamo imparato che qualunque poligono possiamo ridurlo di un lato fino a farlo diventare un triangolo equivalente, tale triangolo è equivalente ad

A questo punto consideriamo i triangoli AFD e BEC: tali triangoli sono congruenti per il terzo criterio, in quanto AF è congruente a BE perché lati opposti di un parallelogramma,

Si definisce prisma una figura solida formata da due poligoni uguali e paralleli (definite basi), uniti nei vertici corrispondenti da tanti segmenti paralleli

Le soluzioni sono tutte pari.. Le soluzioni sono

[r]

Consideriamo un blocco alla volta, vediamo che forze agiscono su di esso e scriviamo la relazione in base al secondo principio di Newton.. Se pubblicato citare

Si inclina la guidovia verso il magnete (inclinazione massima due giri): si pone una slitta (si possono utilizzare sia la slitta con la molla sia quella con