• Non ci sono risultati.

LEIR ring

N/A
N/A
Protected

Academic year: 2021

Condividi "LEIR ring"

Copied!
69
0
0

Testo completo

(1)

D.Manglunki - BE/OP

The LHC injection chain

D.Manglunki - BE/OP

(2)

The LHC injector chain 2 D.Manglunki - BE/OP

Outline

● Accelerators

Cycles & supercycles

CERN’s accelerator complex, quick virtual tour

● Production of the LHC proton beam

Linac: intensity PSB: emittance

PS: bunch structure

SPS: bunch placement in the LHC

● A word on the ion injection chain

Linac 3 LEIR

(3)

The LHC injector chain 3 D.Manglunki - BE/OP

Cycles & Supercycles

● Cycle:

Injection plateau or flat bottom acceleration ramp

ejection plateau or flat top

field decrease ramp

B IP

(4)

The LHC injector chain 4 D.Manglunki - BE/OP

PS Supercycle

Energy, Intensity, Destination…

(5)

The LHC injector chain 5 D.Manglunki - BE/OP

SPS supercycle

(6)

The LHC injector chain 6 D.Manglunki - BE/OP

Cycles & Supercycles

SPS

CPS

PSB

(7)

The LHC injector chain 7 D.Manglunki - BE/OP

Cycles & Supercycles

(8)

The LHC injector chain 8 D.Manglunki - BE/OP

(9)

The LHC injector chain 9 D.Manglunki - BE/OP

PSB

PS

p

TT2

LINAC 2

Proton beam production for LHC

–Linac2 (50MeV)

–PSB (1.4GeV) 4+2 bunches –PS (25GeV) 72 bunches

–SPS (450 GeV) 4 x 72 bunches

–LHC (7 TeV) 2 x 2808 bunches

(10)

The LHC injector chain 10 D.Manglunki - BE/OP

Duoplasmatron

Duoplasmatron proton sourceproton source 90keV ; 500mA

90keV ; 500mA

Radio Frequency

Radio Frequency QuadrupoleQuadrupole (RFQ)(RFQ)

~1m ; 750keV

~1m ; 750keV

(11)

The LHC injector chain 11 D.Manglunki - BE/OP

The accelerator complex at CERN

● PSB, PS, SPS

Radio Frequency

Radio Frequency Quadrupole Quadrupole (RFQ) (RFQ)

~1m ; 750keV

~1m ; 750keV

(12)

The LHC injector chain 12 D.Manglunki - BE/OP

Linac Linac 2 2

30m ; 50MeV ; 180mA

30m ; 50MeV ; 180mA

(13)

The LHC injector chain 13 D.Manglunki - BE/OP

Linac Linac 2 2

30m ; 50MeV ; 180mA

30m ; 50MeV ; 180mA

(14)

The LHC injector chain 14 D.Manglunki - BE/OP

PSB distributor PSB distributor

Transfer line from

Transfer line from LinacLinac 2 to Proton Synchrotron Booster (PSB)2 to Proton Synchrotron Booster (PSB)

(15)

The LHC injector chain 15 D.Manglunki - BE/OP

Proton Synchrotron Booster Proton Synchrotron Booster 4 rings ; 157m each

4 rings ; 157m each 1.4GeV ; 10

1.4GeV ; 101313 pp++/ring/ring

(16)

The LHC injector chain 16 D.Manglunki - BE/OP

Individual extraction lines Individual extraction lines from each ring of the PSB from each ring of the PSB

Recombinations Recombinations 1+2 & 3+4

1+2 & 3+4

Extraction line from PSB to Extraction line from PSB to Proton Synchrotron (PS) Proton Synchrotron (PS)

&

& IsoldeIsolde

Recombinations Recombinations (1(1--2) + (32) + (3--4)4)

(17)

The LHC injector chain 17 D.Manglunki - BE/OP

Proton Synchrotron (1959) Proton Synchrotron (1959) 628 m

628 m

25 25 GeVGeV ; 3x10; 3x101313 pp++ [5.9

[5.9 GeV/uGeV/u PbPb54+54+]]

(18)

The LHC injector chain 18 Mov09155.mpgD.Manglunki - BE/OP

TT2 transfer line from PS to SPS,

TT2 transfer line from PS to SPS,

AD, AD, nTOF nTOF , and D3 dump , and D3 dump

(19)

The LHC injector chain 19 Mov09155.mpgD.Manglunki - BE/OP

Super Proton Synchrotron (SPS) Super Proton Synchrotron (SPS)

6.9 km 6.9 km

450 450 GeV GeV ; 5x10 ; 5x10

1313

p p

++

[177

[177 GeV/u GeV/u Pb Pb

82+82+

] ]

(20)

The LHC injector chain 20 D.Manglunki - BE/OP

TI8 counter

TI8 counter - - clockwise transfer line from SPS to LHC clockwise transfer line from SPS to LHC

(21)

The LHC injector chain 21 D.Manglunki - BE/OP

Large

Large HadronHadron Collider (LHC)Collider (LHC) 2 interleaved rings; 26.7 km 2 interleaved rings; 26.7 km 7 7 TeVTeV ; 3x10; 3x101414 pp++/ring/ring

[2.8

[2.8 TeV/uTeV/u PbPb82+82+]]

(22)

The LHC injector chain 22 D.Manglunki - BE/OP

Double batch injection from PSB to PS

[M.Lindroos]

(23)

The LHC injector chain 23 D.Manglunki - BE/OP

(24)

The LHC injector chain 24 D.Manglunki - BE/OP

(25)

The LHC injector chain 25 D.Manglunki - BE/OP

(26)

The LHC injector chain 26 D.Manglunki - BE/OP

(27)

The LHC injector chain 27 D.Manglunki - BE/OP

(28)

The LHC injector chain 28 D.Manglunki - BE/OP

(29)

The LHC injector chain 29 D.Manglunki - BE/OP

(30)

The LHC injector chain 30 D.Manglunki - BE/OP

(31)

The LHC injector chain 31 D.Manglunki - BE/OP

(32)

The LHC injector chain 32 D.Manglunki - BE/OP

Triple bunch splitting in PS

time

position

“Waterfall” representation: V=time, H=position, colour=density

(33)

The LHC injector chain 33 D.Manglunki - BE/OP

Two more bunch splittings in PS

(34)

The LHC injector chain 34 D.Manglunki - BE/OP

(35)

The LHC injector chain 35 D.Manglunki - BE/OP

(36)

The LHC injector chain 36 D.Manglunki - BE/OP

(37)

The LHC injector chain 37 D.Manglunki - BE/OP

(38)

The LHC injector chain 38 D.Manglunki - BE/OP

(39)

The LHC injector chain 39 D.Manglunki - BE/OP

(40)

The LHC injector chain 40 D.Manglunki - BE/OP

(41)

The LHC injector chain 41 D.Manglunki - BE/OP

(42)

The LHC injector chain 42 D.Manglunki - BE/OP

(43)

The LHC injector chain 43 D.Manglunki - BE/OP

(44)

The LHC injector chain 44 D.Manglunki - BE/OP

(45)

The LHC injector chain 45 D.Manglunki - BE/OP

72-bunch train ready to be sent to SPS

(46)

The LHC injector chain 46 D.Manglunki - BE/OP

4 bunch trains from PS to SPS

(47)

D.Manglunki - BE/OP

1.2 s

3.6 s

(48)

The LHC injector chain 48 D.Manglunki - BE/OP

12 injections from SPS to LHC

The gaps between trains

are necessary to make

room for rise/fall times of

injection/ejection/abort

kicker magnets.

(49)

The LHC injector chain 49 D.Manglunki - BE/OP

Ion beam production for LHC

– Linac3 – LEIR – PS – SPS – LHC

p Pb ions LEIR

LINAC 2

LINA C 3

PSB

PS

TT2

(50)

The LHC injector chain 50 D.Manglunki - BE/OP

Lead ion injector chain

● ECR ion source (2005)

Provide highest possible intensity of Pb29+

● RFQ + Linac 3

Adapt to LEIR injection energy strip to Pb54+

● LEIR (2005)

Accumulate and cool Linac 3 beam Prepare bunch structure for PS

● PS (2006)

Define LHC bunch structure Strip to Pb82+

● SPS (2007)

Define filling scheme

*

COMPASS

TT 10

East Area

LINAC 3

LINAC2 LINAC3 p Pb ions

E2

NorthArea

TT2 E0

PSB

ISOLDE

E1

pbar

AD

neutrinos

CNGS

T12

T18

n-TOF

*

CT CTF3

*

SPS

LHC

LEIR

PS

(51)

The LHC injector chain 51 D.Manglunki - BE/OP

(52)

The LHC injector chain 52 D.Manglunki - BE/OP

ECR ion source, RFQ, Linac 3

● Re-designed after Fixed Target programme (1990’s)

● Injection into PS Booster insufficient performance for I-LHC

Source upgrade (still ongoing)

Increase of Linac3 repetition rate to 5Hz Injection into a new storage ring: LEIR

(53)

The LHC injector chain 53 D.Manglunki - BE/OP

(54)

The LHC injector chain 54 D.Manglunki - BE/OP

The 3 roles of LEIR

● Accumulate enough ions for LHC bunches

● Keep their H, V and // emittances small

● Bring Linac3 ion beam to PS injection energy

3 plane stacking

Cooling

Acceleration

(55)

The LHC injector chain 55 D.Manglunki - BE/OP

LEIR layout

● Square shaped “circular machine”

● Circumference = 78.54m

= PS/8 = SPS/88

● Operated below transition γt≈2.87

● 4x90º bending magnets

● 2 SS’s with Q doublets, 2 SS’s with Q triplets,

● Common injection/ejection

● Electron coolingline

RF

E-Cooling Ejection

D=0

Ejection kickers

Quadrupole doublet

dipole

RF

D=0

Inje ctio

n

Quadrupole triplet

D=10m D=10m

(M.Chanel)

(56)

The LHC injector chain 56 D.Manglunki - BE/OP

Injection and ejection lines

Part of the line is used for injection at 4.2 MeV/u and extraction at 72 MeV/u:

-> laminated, pulsed magnets

-> Complicated behaviour for the power converters

Linac 3

Bi-directional ETL line PS ring

Injection Ejection

LEIR ring

ITE loop

(57)

The LHC injector chain 57 D.Manglunki - BE/OP

LEIR’s 3-plane stacking

• Multiturn injection with additional stacking in vertical phase space

• Needs:

- inclined electrostatic injection septum

(complicated geometry of the injection line) - a horizontal bump

- momentum ramping cavity in injection line

• Efficiency on paper ≈70 % for ≈70 turns injected up to 50% achieved

(58)

The LHC injector chain 58 D.Manglunki - BE/OP

Electron Cooling

● Principle: an electron beam with same velocitysame velocity as the ion beam is merged with it over a fraction of the circumference (~3%)

● In the moving frame, collisions between electrons and ions correspond to the mixture of a hot ion gas with a cool electron gas

● The heat exchange leads to cooling, i.e. emittance reduction, in all 3 planes (H,V, //) of the ion beam

(G.Tranquille)

(59)

The LHC injector chain 59 D.Manglunki - BE/OP

PS

● Transformation of antiproton ejection line and elements (to LEAR)

for ion injection from LEIR: SMH26, KFH28, BSW26

● Design of complicated RF gymnastics

● Low intensity challenge for beam diagnostics

(60)

The LHC injector chain 60 D.Manglunki - BE/OP

TT2

● 1mm Al stripper foil converts Pb54+ to Pb82+

● Low beta insertion around stripper

To minimize emittance blowup

βH=5.5 m βV=5.7 m

(M.Martini)

(61)

The LHC injector chain 61 D.Manglunki - BE/OP

Parameters for Nominal Luminosity

~10’fill/ring

~50 3.6

3.6 0.2-0.4

0.2-0.4 Repetition time [s]

0.0005 0.0063

0.14 1.75

2.6 30

ε (phys., rms) [μm]

1.5 1.2

1.0 0.7

0.25 0.07

ε(norm. rms) [μm]

100 100

100 bunch spacing [ns]

7 107 9 107

1.2 108 2.25 108

1.45 109 1.1 1010.

ions/LHC bunch

4.1 1010 4.7 109

4.8 108 9 108

1.15 109 9 109

ions/pulse

592 52

4 2 (1/8 of PS)

bunches/ring

23350 1500

86.7 Î57.3 4.80

2.12 Î1.14 Output Bρ [Tm]

82+

82+

54+ Î82+

54+

29+ Î54+

29+

208Pb charge state

2.76 TeV/u 177 GeV/u

5.9 GeV/u 72.2 MeV/u

4.2 MeV/u 2.5 KeV/u

Output energy

LHC SPS

PS LEIR

Linac 3 SourceECR

(62)

The LHC injector chain 62 D.Manglunki - BE/OP

Nominal scheme

LEIR

PS after splitting

SPS at injection (43.7 s flat-bot),

after 13 (12, 8) transfers from PS

SPS at extraction,

after 13 (12, 8) transfers from PS

LHC at injection,

after 12 transfers from SPS

(9 108 Pb ions / 3.6 s)

2.25 108 Pb ions /

(future) LHC bunch

9 107 7 107

β* = 0.5 m -> L =1027 cm-2s-1

Harmonic number / Frequency

2

24-21 -169-423 16–14-12-24

200 MHz 200 MHz 400 MHz

4 injections

12 107

(J.P.Riunaud)

(63)

The LHC injector chain 63 D.Manglunki - BE/OP

Nominal scheme: PS RF gymnastics

● Two bunches from LEIR injected in PS straight section 26

● Accelerated to intermediate plateau

● Batch expansion (H16->H14->H12)

● Splitting (H12 -> H24)

● Batch expansion (H24->H21)

● Acceleration on H21 through transition

● Synchronisation on SPS RF

● Rebucketing on H169 (80MHz)

● Fast extracted in Section 16

● Stripped in TT2 (new low-beta optics)

(J.L.Vallet)

(64)

The LHC injector chain 64 D.Manglunki - BE/OP

Problems of the nominal scheme

● EM interactions in LHC may limit luminosity to 4x

10

26

cm

-2

s

-1

(to be checked)

● Complex RF gymnastics in the PS

Multiple harmonic change

● Space charge tune shift and intra beam scattering on SPS front porch

Long front porch for up to 13 PS batches: 12*3.6+0.5 = 43.7 s Several alternatives being studied

● First ion operation: “EARLY SCHEME” with L = 5x1025 cm-2s-1

(65)

The LHC injector chain 65 D.Manglunki - BE/OP

The Early Scheme

● Early Luminosity = Nominal Luminosity/20 = 5x1025 cm-2s-1

2 x Larger β* (0.5m -> 1m) 10 times less bunches

~60 instead of ~600

but of same intensity 7x107 ions/bunch for LHC BPMs Longer luminosity lifetime

● Only one injection in LEIR

Shorter LEIR/PS cycle: 2.4 s instead of 3.6 s

Electron cooler on

0 time (s) 2.4

Injection

Bunching h=1

Extraction

Electron cooler on

0 time (s) 3.6

momentum (or field)

Injection s

Bunching h=2 Extraction

Acceleratio n

Acceleratio n

(C.Carli)

(66)

The LHC injector chain 66 D.Manglunki - BE/OP

The Early Scheme

● No complex RF gymnastics in the PS

Only one bunch injected, accelerated on same harmonic 16

(J.L.Vallet)

(67)

The LHC injector chain 67 D.Manglunki - BE/OP

The Early Scheme

● Shorter SPS front porch:

3-4 PS batches instead of 12-13

Shorter LEIR cycle 2.4s instead of 3.6s

Front porch length = 3*2.4+0.5 = 7.7s (for Nominal: 12*3.6+0.5 = 43.7s)

Less harmful Space charge tune shift, RF noise and Intrabeam scattering

● Shorter LHC filling time (5’ instead of 11’)

(68)

The LHC injector chain 68 D.Manglunki - BE/OP

Early scheme (L=5E25cm

-2

s

-1

)

LEIR

PS at injection and acceleration

TT2 after stripper

SPS at injection (7.7 s flat- bottom),

after 3 (4) transfers from PS

SPS at extraction,

after 3 (4) transfers from PS

LHC at injection,

after 16 transfers from SPS

(2.5 108 Pb ions / 2.4 s)

1 1

Nb of bunches

1 3 (4)

3 (4)

about 60

β* = 1 m -> L = 5 1025 cm-2 s-1

Harmonic number / Frequenc y 1

16 + 169 16

200 MHz 200 MHz 400 MHz

Pb ions /

(future) LHC bunch 2.5 108

1.2 108

9 107 7 107

PS at extraction

1 injection

(J.P.Riunaud)

(69)

The LHC injector chain 69 D.Manglunki - BE/OP

Thanks for your attention!

Riferimenti

Documenti correlati

Statistical analysis on 255 observed geckos, aimed at testing the association between background substrate (wall, trunk and others) and phenotype (pale, dark and

DEVELOPMENT OF SSR MARKERS AND ASSESSMENT OF POLYMORPHISM BY HIGH RESOLUTION MELTING ANALYSIS IN POPULATIONS OF CHESTNUT NUT ROT AGENT GNOMONIOPSIS CASTANEA.. Department

In particular, the bimodular oligonucleotides RE31 7 and NU172 8 , which have been obtained by addition of a duplex motif to the HD1 quadruplex module, show higher affinity

Ho compreso i benefici ed i rischi della vaccinazione, le modalità e le alternative terapeutiche, nonché le conseguenze di un eventuale rifiuto o di una rinuncia alla dose

The longitudinal spin transfer D LL to Λ and ¯Λ hyperons produced in high-energy polarized proton- proton collisions is expected to be sensitive to the helicity distribution

● In the moving frame, collisions between electrons and ions correspond to the mixture of a hot ion gas with a cool electron gas. ● The heat exchange leads to

If the output cavity is placed at the right place, the electrons will bunch up at the output cavity which will excite a high intensity RF field in the output cavity. Klystrons need

GENERA IONI NEGATIVI CHE ELIMINANO LE CARICHE ELETTROSTATICHE, CONVERTE L'ENERGIA TERMICA IN INFRAROSSI A BASSISSIMA FREQUENZA (FAR INFRARED) - DA INTERPORRE TRA CAVO DI