• Non ci sono risultati.

We will show the more general inequality kvk2kwk2− (v · w)2 kuk2≥ k(w, u)v − (v, u)wk2 where u ∈ Rn

N/A
N/A
Protected

Academic year: 2021

Condividi "We will show the more general inequality kvk2kwk2− (v · w)2 kuk2≥ k(w, u)v − (v, u)wk2 where u ∈ Rn"

Copied!
1
0
0

Testo completo

(1)

Problem 12163

(American Mathematical Monthly, Vol.127, February 2020) Proposed by T. Speckhofer (Austria).

Let Rnhave the usual dot product and norm. When v= (x1, . . . , xn) ∈ Rn, let Σv = x1+ · · · + xn. Prove

kvk2kwk2≥ (v · w)2+(kvk |Σw| − kwk |Σv|)2 n

for all v, w∈ Rn.

Solution proposed by Roberto Tauraso, Dipartimento di Matematica, Universit`a di Roma “Tor Vergata”, via della Ricerca Scientifica, 00133 Roma, Italy.

Solution. We will show the more general inequality

kvk2kwk2− (v · w)2 kuk2≥ k(w, u)v − (v, u)wk2 where u ∈ Rn.

By letting u = (1, . . . , 1), we have kuk2= n, (v, u) =P v, and (w, u) = P w and we find (kvk2kwk2− (v · w)2) n ≥ k(Σw)v − (Σv)wk2≥ (|Σw| kvk − |Σv| kwk)2 which is equivalent to the given inequality.

If v and w are linearly dependent then kvk2kwk2 = (v · w)2 the inequality holds. We assume now that v and w are linearly independent. Then

u= αv + βw + z where z ⊥ v, z ⊥ w and α, β ∈ R. Moreover

((v, u) = αkvk2+ β(v, w) (w, u) = α(v, w) + βkwk2 . and by solving the linear system we find

α=(v, u)kwk2− (w, u)(v, w)

kvk2kwk2− (v, w)2 and β = (w, u)kvk2− (v, u)(v, w) kvk2kwk2− (v, w)2 . Hence

kvk2kwk2− (v · w)2 kuk2= kvk2kwk2− (v · w)2 (kαv + βwk2+ kzk2)

≥ kvk2kwk2− (v · w)2 (kαv + βwk2)

= kvk2kwk2− (v · w)2 (α2kvk2+ β2kwk2+ 2αβ(v, w))

= (w, u)2kvk2+ (v, u)2kwk2− 2(w, u)(v, u)(v, w)

= k(w, u)v − (v, u)wk2.



Riferimenti

Documenti correlati

In particolare, si richiede lo studio della convessit` a e di dimostrare che la derivata prima f 0 si annulla in un unico punto. Per ognuno dei casi trovati, determinare poi una

[r]

[r]

Si determini, per ciascuno dei seguenti insiemi di vettori {v 1 ,.. (1) Determinare il nucleo di f, una sua base e la

Si determini, per ciascuno dei seguenti insiemi di vettori {v

An easy computation (for example with determinants) shows that this happens if and only if t 6= 4 and s 6=

We know from the theory that the points of minimum (resp. maximum) are the intersections of the eigenspaces with S, that is the eigenvectors whose norm equals 1.. Therefore we need

To answer the last question, we first need to find an orthogonal basis of W.. Find all eigenvalues of T and the corresponding eigenspaces. Specify which eigenspaces are