This paper uses the language of hypo geometry to construct 6-manifolds with holonomy contained in SU(3).
Testo completo
(2) α ψ2
α = V (ω 1 , ψ 2 ) −1 α ψ2
(3) V (ω 1 , ψ 2 ) = hα, X ω1
(4) V (ω 1 , ψ 2 ) = hα ψ2
α 2 = V −1 (ω 1 , ψ 2 )α ψ2
Proof. By construction X ω1
Lemma 5. The skew gradient of the functional H defined in (6) is (7) (X H ) (ω1
dH (ω1
s 0 t s −1 t = −Q Pt
By (7), the time derivative of α ψ3
α 0 ψ3
α 0 ψ3
α 3 (t) = V (ψ 3 , υ) −1 α ψ3
V 2 (ψ 3 , υ) V (ψ 3 , υ) 0 α ψ3
α ψ 02
X(t) = V −1 (ω 1 , ψ 2 )X ω1
X ω 01
V (ω 1 , ψ 2 ) 2 V (ψ 3 , υ) 0 X ω1
Proof of Theorem 6. We work at a point x ∈ M . Let u ∈ P x . The map Q P0
[u, Q P0
−(f + g)α − J 1 β = [us t (u), Q Pt
α 0 (t) x = [u, s t (u) 0 e 5 )] = [u, −Q Pt
g t 0 (X, Y ) = g t (Q Pt
where W is the Weingarten tensor of the hypersurface N × {t}, with orientations chosen so that ∂t ∂ is the positively oriented normal. Thus, Q Pt
The functoriality guarantees that X (g,u) = X (g,ft
(g · Y ) x = µ(g)Y µ(g−1
Let v(0) = (u(0) −1 ) T . Theorem 6 gives a one-parameter family of adapted frames v(t) = v(0)s t , s 0 t s −1 t = −Q Pt
Q Pt
where d 1 is connected by an arrow to d 2 if the closure of the GL(5, R)-orbit of d 1 contains d 2 , and the arrow has a double head if H d1
Documenti correlati
Per calcolare l'area possiamo considere come base il lato AC e come altezza la distanza tra il lato AC e il vertice B che si può
[r]
[r]
[r]
L’espressione logica SOMMA DI PRODOTTI (prima forma canonica) 2.. Dire se la copertura minima trovata
NOTE: In the solution of a given exercise you must (briefly) explain the line of your argument and show the main points of your calculations1. Solutions without adequate
Neuberger, A minmax principle, index of the critical point, and existence of sign-changing solutions to elliptic boundary value problems, ElectronJ. Neuberger, On multiple solutions
Sia ABC un triangolo isoscele sulla base BC (ricorda che un triangolo si denisce isoscele se esiste un asse di simmetria che lo trasforma in se stesso).. Sia D un punto interno