• Non ci sono risultati.

Koutroumbas “Pattern Recognition” Elsevier, 2003

N/A
N/A
Protected

Academic year: 2021

Condividi "Koutroumbas “Pattern Recognition” Elsevier, 2003"

Copied!
4
0
0

Testo completo

(1)

Bibliografia

115

Bibliografia

[1] V.N. Vapnik. “The nature of statistical learning theory” New York, Springer-Verlag,1995.

[2] S. Haykin. “Neural Networks-a comprehensive foundation”. Pearson Education,1999.

[3] S. Theodoridis, K. Koutroumbas “Pattern Recognition” Elsevier, 2003.

[4] J.C. Burges. “A tutorial on Support Vector Machines for Pattern Recognition”. Data Mining and Knowledge Discovery 2, 121-167, 1998.

[5] Li Ying, Ren Yong, Shan Xiuming. “Radar HRRP Classification with Support Vector Machines” .IEEE Proceedings Info-tech and Info-net. 2001, 218-226.

[6] Wang Xiao-dan, Wang Ji-qin. “Support Vector Machines for HRRP Classification.IEEE”

Proceedings on Signal processing and its application. 2003, 337-340.

[7] Xiao-Dan Wang, Chong-Ming Wu. “Using improved SVM decision tree to classify HRRP”. IEEE Proceedings on Machine learning and Cybernetics. 2005,4432-4436.

[8] Xiao Huaitie, Guo Lei, Fu Qiang. “Radar Target Recognition method using Improved Support Vector Machines based on Polarized HRRP”. Proceedings on Computational Inteligence and Security. 2006, 702-707.

[9] S.R Cloude, “Uniquess of Target Decomposition Theorem in Radar Polarimetry” direct and inverse methods in radar polarimetry, NATO ASI series, vol. 1,pp 267-296,1992.

[10] Jeng-Kuang Hwang, Kun-Yo Lin, Yu-Lun Chiu,and Juinn_Horng Deng. “Automatic Target Recognition based on High Resolution Range Profiles with Unknown Circular Range Shift”. IEEE International Symposium on Signal Processing and Information Technology2006.

[11] R. Soleti, L.Cantini, F. Berizzi, A.Capria, D. Calugi. “Neural Networks for Polarimetric Radar Target Classification”. Proc. USIPCO 2006 Florence Italy.

(2)

Bibliografia

116 [12] R.A Mitchell, J Westerkamp. “Robust Statistical Fetaure Based Aircraft Identification”.

IEEE Transaction on Aerospace Electronics Systems, 1999.

[13] F. Berizzi, M. Martorella, A. Capria, R. Paladini. “H/α Polarimetric Features for Man Made Target Classification”. Proc. IEEE RADARCONF 08, Roma, May 2008.

[14] S.R. Cloude, E. Pottier. “An Entropy Based Classification Scheme for Polarimetric SAR”. IEEE Transaction on Geoscience and Remote Sensing. Vol. 35 n°1, January 2007.

[15] D.Giuli “Polarization Diversity in Radar” Proc. The IEE 1986.

[16] G. Galati, F. Mazzenga, M. Naldi. “Elementi di sistemi radar”. Aracne 1996.

[17] M. Skolnik. “Radar Handbook”. McGraw-Hill 1990.

[18] M. Novak, J.Owirka, S.Browser, L. Weaver. “The Automatic Target Recognition System in SAIP”. The Lincoln Laboratoatory Journal, Vol. 10 n° 2, 1997.

[19] F. Sadjadi. “Improved Target Classification Using Optimum Polarimetric SAR signatures”. IEEE Transaction on Aerospace and Electronic Systems. January 2002.

[20] Jeng Kuang Hwang, Kun-Yo Lin, Yu-Lun Chiu. “Automatic Target Recognition based on High Resolution Range Profile with Unknown Circular Range Shifth”. Symposium on Signal Processing and Information Technology. 2006.

[21] Qun Zhao, C. Principe. “Support Vector Machines for SAR Automatic Target Recognition”, IEEE Transaction on Aerospace and Electronic Systems. Vol. 37 n° 2, April 2001.

[22] S.P Jacobs, J. O’Sullivan. “Automatic Target Recognition Using Sequence of High Resolution Radar Range Profiles”. IEEE Transaction on Aerospace and Electronic Systems 2000.

(3)

Bibliografia

117 [23] E. Ertin, L.C. Potter. “Polarimetric Classification of Scattering Centers Using M-ary Bayesian decision Rules”. IEEE Transaction on Aerospace and Electronic Systems. July 2000.

[24] Kuo Chu Chang, Yi Chuan Lu. “High Resolution Polarimetric SAR Target Classification with Neural Networks”. IEEE 1995.

[25] M.T. Hagan, M.B. Menhaj, "Training feedforward networks with the Marquardt algorithm,'' IEEE Transactions on Neural Networks, vol. 5, no. 6, pp. 989–993, November 1994.

[26] C.Daqing, B. Zheng, “High range radar Target Identification Using Multilayer Feedforward Neural Network, 1996 CIE Radar Coneference, Oct.1996, vol2, pp.215-218.

[27] Z.Xun, S. Ronghui, G, Guirong, “Automatic HRR target recognittion based on Prony model, Wavelet and Probability Neural Network” Radar, 1996 CIE International Conference of radar, 8-10 Oct. 1996 pp. 143-146.

[28] C.T.Chen, K.S. Chen, J.S. Lee, “The use of Fully polarimetric Information for the Fuzzy Neural classification of SAR images, “Tr on GRS, Vol.41, No.9, Sept, 2003, pp. 2089-2100.

[29] M.A. khabou, P.D. Gader, “Automatic target detection using entropy optimized Share- Weight Neural Network”, Tr.on Neural Networks, Vol.11, No.1m Jan, 2000, pp.186-193.

[30] L. Devroye, L. Gyorfi, G. Lugosi “A probabilistic Theory of Pattern Recognition, Springer-Verlag 1996.

[31] R. Duda, P. Hart “Pattern Clòassification and Scene Analysis, John Wiley, 1973.

[32] J.P. Marques”Pattern Recognition” Springer Verlag, 2001.

(4)

Bibliografia

118 [33] B.Bhanu, Y.Lin, K. Krawiec “Evolutionary Syntesis of Pattern Recognition Systems”, Springer Verlag, 2005.

[34] P.R. Runkle, P.K. Bharadwaj, L. Couchman, L. Carin, “Hidden Markow Models for Multiaspect Target Identification”, IEEE Trans. On Signal Processin, vol. 47 n°7, pp. 2035- 2040, July 1999.

[35] N. F. Chanberlain, “Syntactic Classification of Radar Target using Polarimetric Signatures” System Engineering, 1990, IEEE international conference, pp. 490-494.

[36] F.Berizzi, M.Martorella, A. Cacciamano. “Synthetic Range Profile Focusing via Contrast Optimization” Proc. Igarss Barcellona 2007.

Riferimenti

Documenti correlati

And, determining accurate stellar parameters for planetary systems is a mandatory step to constrain the scenarios of planet formation and to determine under which initial conditions

Gardella, Il nuovo edificio della Facoltà di architettura di Genova. Dialogo tra Ignazio Gardella e Daniele Vitale, in

La raffigurazione di semplici scene di vita quotidiana che l’impera- tore designato ci consegna in questo breve frammento sono in qualche modo sufficienti per permettere al lettore

Evaluation of the time required respectively for creating the weighted graph (first column) and for performing a single segmentation on an object (second column).. Both the

‘‘Invariants of Distance k-Graphs for Graph Embedding’’ by Czech presents new graph features based on the degrees of dis- tance k-graphs, axillary structures representing

È invece sfiorato appena un versante ancora degno di approfondimento, l’atteggiamento pressoché spiazzante di vari grandi direttori – il Frassati della “Stampa”,

 ] ̣τε: sul bordo di frattura tracce di una ver- ticale declinante a sinistra: ν, α oppure λ; π ̣ρ[ ̣]γ[ ̣]: dopo π è visibile l’estremità inferiore della dia-