Problem 11819
(American Mathematical Monthly, Vol.122, February 2015) Proposed by C. Lupu (USA).
Let f be a continuous, nonnegative function on [0, 1]. Show that Z 1
0
f3(x) dx ≥ 4
Z 1 0
x2f (x) dx
Z 1 0
xf2(x) dx
.
Solution proposed by Roberto Tauraso, Dipartimento di Matematica, Universit`a di Roma “Tor Vergata”, via della Ricerca Scientifica, 00133 Roma, Italy.
We will show a more general result.
Let f and g be continuous, nonnegative functions on [0, 1] and let a and b be nonnegative real numbers. Then
Z 1 0
fa+b(x) dx
Z 1 0
ga+b(x) dx
≥
Z 1 0
fa(x)gb(x) dx
Z 1 0
fb(x)ga(x) dx
.
The required inequality follows by taking g(x) = x, a = 2, and b = 1.
Let A, B be nonnegative real numbers then
(Aa− Ba)(Ab− Bb) ≥ 0 which implies that
Aa+b+ Ba+b≥ AaBb+ AbBa.
Let A = f (x)g(y) and B = f (y)g(x) then by integrating over [0, 1] × [0, 1] we obtain Z 1
x=0
Z 1 y=0
(f (x)g(y))a+bdx dy + Z 1
x=0
Z 1 y=0
(f (y)g(x))a+bdx dy
≥ Z 1
x=0
Z 1 y=0
(f (x)g(y))a(f (y)g(x))bdx dy + Z 1
x=0
Z 1 y=0
(f (x)g(y))b(f (y)g(x))adx dy
that is
Z 1 0
fa+b(x) dx
Z 1 0
ga+b(y) dy
+
Z 1 0
fa+b(y) dy
Z 1 0
ga+b(x) dx
≥
Z 1 0
fa(x)gb(x) dx
Z 1 0
fb(y)ga(y) dy
+
Z 1 0
fa(y)gb(y) dy
Z 1 0
fb(x)ga(x) dx
,
and the proof is complete.