• Non ci sono risultati.

0, then Z 1 0 (f′′(x))2dx ≥ 320 Z 1 0 f (x) dx 2

N/A
N/A
Protected

Academic year: 2021

Condividi "0, then Z 1 0 (f′′(x))2dx ≥ 320 Z 1 0 f (x) dx 2 "

Copied!
1
0
0

Testo completo

(1)

Problem 11884

(American Mathematical Monthly, Vol.123, January 2016) Proposed by C. Lupu and T. Lupu (Romania).

Let f be a real-valued function on [0, 1] such that f and its first two derivatives are continuous.

Prove that iff (1/2) = 0, then Z 1

0

(f′′(x))2dx ≥ 320

Z 1

0

f (x) dx

2 .

Solution proposed by Roberto Tauraso, Dipartimento di Matematica, Universit`a di Roma “Tor Vergata”, via della Ricerca Scientifica, 00133 Roma, Italy.

Remark: this problem is a particular case of Problem 11756 with [−1, 1] replaced with [0, 1].

By the integral form of the remainder in the Taylor’s Theorem we have that if x ∈ [0, 1] then f (x) = f (1/2) + f(1/2)(x − 1/2) +

Z x 1/2

f′′(t) (x − t) dt.

Since f (1/2) = 0, it follows that Z 1

0

f (x) dx = Z 1

0

Z x 1/2

f′′(t) (x − t) dt

! dx

= Z 1/2

x=0

Z 1/2 t=x

f′′(t) (t − x) dt dx + Z 1

x=1/2

Z x t=1/2

f′′(t) (x − t) dt dx

= Z 1/2

t=0

Z t x=0

f′′(t) (t − x) dx dt + Z 1

t=1/2

Z 1

x=t

f′′(t) (x − t) dx dt

= Z 1/2

t=0

f′′(t)



−(t − x)2 2

t

x=0

dt + Z 1

t=0

f′′(t) (x − t)2 2

1

x=t

dt

=1 2

Z 1/2 t=0

f′′(t)t2dt +1 2

Z 1

t=0

f′′(t)(1 − t)2dt

=1 2

Z 1

0

f′′(t) h(t) dt, where

h(t) =

 t2 if t ∈ [0, 1/2]

(1 − t)2 if t ∈ [1/2, 1] . Hence, by the Cauchy-Schwarz inequality,

Z 1

0

f (x) dx

2

≤ 1 4

Z 1

0

(h(t))2dt · Z 1

0

(f′′(t))2dt = 1 320

Z 1

0

(f′′(t))2dt

which is equivalent to the desired inequality. 

Riferimenti

Documenti correlati

Un sottoinsieme di uno spazio vettoriale V ´e un sottospazio vettoriale se: a Contiene lo zero; b `e diverso da zero; c non contiene lo zero; d nessuna delle

Dimostreremo in seguito che questo limite esiste ed `e +∞... Ora l’armonicit`a di u implica che la

Usando il teorema della convergenza dominata risulta che la funzione F `e ben definita e continua.. Verifichiamo ora che possiamo derivare F (s) sotto il segno dell’integrale in ogni

[r]

[r]

(American Mathematical Monthly, Vol.118, January 2011) Proposed by Cezar Lupu (Romania) and Tudorel Lupu (Romania). Let f be a twice-differentiable real-valued function with

[r]

Let f and g be continuous real valued functions on