• Non ci sono risultati.

2 sec sr MeV/nuc) particle /(m

N/A
N/A
Protected

Academic year: 2021

Condividi "2 sec sr MeV/nuc) particle /(m"

Copied!
28
0
0

Testo completo

(1)

Acceleration and Transport of Galactic Cosmic Rays

Vladimir Ptuskin

IZMIRAN, Moscow, Russia

“AMS days at CERN”, April 15-17, 2015

(2)

ultrafast pulsar

Sun

close binary

Galactic disk pulsar,

PWN

SNR stellar

wind

AGN GRB

interacting galaxies

Ncr = 10-10 cm-3 - total number density in the Galaxy wcr = 1.5 eV/cm3 - energy density

Emax = 3x1020 eV - max. detected energy

Qcr = 1041 erg/s – power of Galactic CR sources A1 ~ 10-3 – dipole anisotropy at 1 – 100 TeV

rg ~ 1×E/(Z×3×1015 eV) pc - Larmor radius at B=3x10-6 G

Fermi bubble

GC

WMAP haze

cosmic ray halo, Galactic wind

cosmological shocks

109 eV 1020 eV

JxE2 extragalactic

1/km2/century

E-2.7

LHC

CR spectrum at Earth

(3)

direct measurements of interstellar CR spectra at low energies

Voyager 1 at the edge of interstellar space

after E. Stone 2013

energy, MeV/nuc

100 101 102 103 104 105

particle /(m2 sec sr MeV/nuc)

10-5 10-4 10-3 10-2 10-1 100 101 102 103

low energies:

Voyager 1

Stone et al. 2013

high energies:

BESSPamela

Sparvoli et al 2012

H He

launched in 1977, 70 kb, 22 w

(4)

M51

J

cr

(E) = Q

cr

(E)×T

e

(E)

source

power escape time of CR from the Galaxy;

~ 108 yr at 1 GeV

~ 15% of SN kinetic energy transfer to cosmic rays

Ginzburg & Syrovatsky 1964 sn -1

ν = (30 yr)

cosmic ray intensity

traversed matter thickness (escape length) Xe = m<nism>Te ~ 12 g/cm2 at 1 GeV/nuc

(surface gas density of galactic disk ~ 2.5 10-3 g/cm2)

E-2.7 E-2.2 E-0.5

after Moskalenko

(5)

basic empirical diffusion model

Ginzburg & Ptuskin 1976, Berezinskii et al. 1990, Strong & Moskalenko 1998(GALPROP),

Donato et al 2002, Ptuskin et al. 2006, Strong et al. 2007, Vladimirov et al. 2010, Bernardo et al. 2010, Maurin et al 2010, Putze et al 2010, Trotta et al 2011

28 2

~ 3 10 cm / s 1 GeV/nat

1 pc

e 2 D

l

X vH D

empirical diffusion coefficient

H = 4 kpc, R = 20 kpc

diffusion mean free path

NGC4631

escape length

(6)

diffusion-convection transport equation for cosmic rays

Ginzburg & Syrovatsky 1964, Skilling 1975, Berezinskii et al. 1990 (loaded in GALPROP code)

2 2

2 2

,

1 3

1 v .

i i i

i i i i

i

i i i i ij

i ion i j i

f f f

f f p p K

t p p p p

f

p dp f n f q S

p p dt

     

 

D u u

2

2 2

( , , ) - phase-space density (isotropic part);

( , ) 4 - total cosmic-ray number density;

( , , ) 4 ( ) / v - spectrum on kinetic energy;

( , , ) 4 ( ) - cosmic ray intensity.

cr

cr kin

f t p

N t dpp f

N t E p f p

J t E p f p

r r r r

spatial diffusion advection stochastic acceleration

ionization energy loss fragmentation radioactive

decay source contribution of fragmentations and decays

(7)

rg = 1/k - resonance condition

2 2

v 3

g tot

res

r B D B

cosmic ray particles are strongly magnetized but large-scale random magnetic field (Lmax ~ 100 pc) makes diffusion close to isotropic

mechanism of cosmic ray diffusion

2res

kres

B = w(k)dk

Jokipii 1966, …

spectrum of turbulence

(8)

interstellar turbulence

Armstrong et al 1995

w(k) ~ k-5/3… k-3/2 Kolmogorov

Kraichnan

109eV 1017 eV

max

1/3

27 2 17

GV

1/ 2

Kolmogorov-type spectrum 100 pc, 3 G, ( / ) 1,

4 10 cm /s, 10 eV

Kraichnan type spectrum 0.3,

L L

L

L B

A B B

D p E Z

Z

A D p

Z

    

 

   

 

Lin et al. 2015

(9)

flat component of secondary nuclei produced by strong SNR shocks Wandel et al. 1987, Berezhko et al. 2003

Berezhko et al. 2003

production by primaries inside SNRs reacceleration in ISM by strong shocks 02

. 0

~

~

ISM SNR stand

, 2

flat , 2

X X N

N ~ SNR ~ 0.2

SNR ISM stand

, 2

flat ,

2 f

X X N

N

volume filling factor of SNRs grammage gained in SNR

grammage gained in interstellar gas

standard plain diff.

reacceleration

plain diff.

reacceleration nism = 0.003…1 cm-3 Bohm diffusion TSNR = 105yr

RUNJOB 2003 preliminary

(10)

regimes of cosmic ray diffusion

Kolmogorov spectrum: D ~ vR1/3 + reacceleration

- may be valid up to 1017Z eV

- source spectrum R-2.4 at high energies – too soft to be produced in SNRs ? (dispersion of SNR parameters may help); considerable flattening at < 3 GV - anisotropy – acceptable

- peak of B/C ratio at 1 GeV/n – explained by distributed reacceleration - underpredicts antiproton flux below few GeV

- in contradiction with theory of MHD turbulence (Alfven wave distribution in k-space)

Kraichnan spectrum: D ~ vR1/2 + wave damping

- may be valid up to 1016Z eV only

- source spectrum R-2.2 – consistent with shock acceleration in SNRs - anisotropy – too high

- peak of B/C ratio at 1 GeV/n – qualitatively explained by turbulence dissipation on CR - not in contradiction with theory of MHD turbulence (fast magnetosonic waves)

(11)

1 1.1

27 2

1 2 0.55

~ v 10 cm / ,

(3 1) / 2 2.7, at 2.1

~ ~ ~

s

s

cr p p

s s

ef

p

B p p

D s

q Zm c Zm c

H p p

X D Zm c Z

 

 

 

diffusion-convection model: galactic wind driven by CR

Zirakashvili et al. 1996, 2002, 2005, VP et al. 1997, 2000, Ipavich 1975, Breitschwerdt et al. 1991, 1993,

Everett et al.2008, 2010, Salem & Bryen 2014

+ cosmic ray streaming instability with nonlinear saturation

CR scale height is larger then the

scale height of thermal gas. CR pressure gradient drives the wind.

Hef(p/Z) uinf= 500km/s Rsh= 300 kpc

(12)

sh sh

u R > 10 D(p)

,

s

s

σ + 2

J ~ p γ = = 2

σ -1

sh  

max sh

E 0.3 Ze u B R c

- D(р) should be anomalously small both upstream and downstream; CR streaming creates turbulence in shock precursor

Bell 1978; Lagage & Cesarsky 1983; McKenzie & Vőlk 1982 …

diffusive shock acceleration

Fermi 1949, Krymsky 1977, Bell 1978, …

“Bohm” limit DB=vrg/3:

Emax,ism = 1013…1014Z eV

SNR

ush

shock

compression ratio = 4

-condition of CR acceleration and confinement

for Bism = 5 10-6 G

for test particles !

~ Bsht-1/5 at Sedov stage

(13)

more detailed investigation:

- streaming instability gives B >> Bism in young SNR

Bell & Lucek 2000, Bell 2004, Pelletier et al 2006; Amato & Blasi 2006;

Zirakashvili & VP 2008; Vladimirov et al 2009; Gargate & Spitkovsky 2011, Bell 2013, Caprioli & Spitkovsky 2014

confirmed by X-ray observations

under extreme conditions (e.g. SN1998 bw):

Emax ~ 1017Z eV, Bmax ~ 10-3 G

-wave dissipation in shock precursor leads to rapid decrease

of Emax with time VP & VZ 2003

- finite Va leads to

steeper CR spectrum t = 103yr Alfv. drift downstream Jxp2

1 ,1

2 ,2

a a

u V u V

B2/8π = 0.035 ρu2 /2 Voelk et al. 2005

from Caprioly 2012

(14)

effect of cosmic ray pressure

2

cr cr sh cr

P ξ ρu , ξ 0.5

- back reaction of cosmic-ray pressure modifies the shock and produces concave particle spectrum

Axford 1977, 1981; Eichler 1984; Berezhko et al. 1996, Malkov et al. 2000; Blasi 2005

sub

σ 2.5

approximate modified spectrum

-2

cr kin kin

N (E ) E- Eichler spectrum

(15)

equations for numerical modeling

Zirakashvili & VP 2008- 2012,

(16)

particle acceleration and radiation in SNR

radio polarization in red(VLA), X-rays in green(CHANDRA), optical in blue(HST)

Cas A

Zirakashvili et al 2014 Zirakashvili & VP 2012 Berezhko et al. 1994-2006, Kang & Jones 2006

Zirakashvili & VP 2006-2012,

semianalytic models Blasi et al.(2005), Ellison et al. (2010) )

(17)

- Bohm diffusion in amplified magnetic field B2/8π = 0.035 ρu2/2

( Voelk et al. 2005empirical; Bell 2004, Zirakashvili & VP 2008theoretical) - account for Alfvenic drift w = u + Va

upstream and downstream

- relative SNR rates: SN Ia : IIP : Ib/c : IIb

= 0.32 : 0.44 : 0.22 : 0.02 Chevalier 2004, Leaman 2008, Smart et al 2009

15 1/6 -2/ 3

knee sn,51 ej

15 -1

knee sn,51 -5 w,6 ej

E Z = 1.1×10 W n M eV,

E Z = 8.4×10 W M u M eV

«knee» is formed at the beginning of Sedov stage

protons only

E-3

VP, Zirakashvili, Seo 2010

cosmic ray spectrum injected in ISM during SNR life time

JxE2

(18)

calculated spectrum of Galactic cosmic rays

(normalized at 103 GeV; ISM diffusion )

data from HEAO 3, AMS, BESS TeV, ATIC 2,

TRACER experiments data from ATIC 1/2, Sokol, JACEE, Tibet, HEGRA, Tunka, KASCADE, HiRes and Auger experiments

interstellar spectrum of all particles

solar modulation extragalactic

component

JxE2.75

 

pc 0.54

D Ze VP, Zirakashvili, Seo 2010

(19)

spectra of p and He are different hardening above 200 GeV/nucleon

superposition of sources Vladimirov et al 2012

new source Zatsepin & Sokolskaya 2006

reacceleration in local bubble Erlykin & Wolfendale 2011

streeming instability below 200 GV Blasi et al. 2012

shock goes through material enriched in He:

- helium wind VP et al. 2010,

- bubble Ohira & Ioka 2011

effect of injection Malkov et al 2011

features to explain:

possible explanation of both features:

concave spectrum and contribution of reversed SNR shock

VP et al 2013

JxE2.7

(20)

positrons in cosmic rays

collection of data Mitchell 2013

electrons positrons

AMS, 2014

(21)

- pulasar/PWN origin Harding, Ramaty 1987, Aharonian et al. 1995, Hooper et al. 2008, Malyshev et al. 2009, Blasi, Amato 2011, Di Mauro et al. 2014

- e+ production and acceleration in shell SNRs Blasi 2009, Mertsch & Sarkar 2014

- reverse shock in radioactive ejecta Ellison et al 1990, Zirakashvili, Aharonian 2011

- annihilation and decay of dark matter Tylka 1989, Fan et al 2011

electrons positrons

electrons + positrons positron fraction

Di Mauro et al 2014: SNR (electrons), PWN (electrons + positrons), secondary leptons from ISM

anti-matter factory

Lpairs =

20-30% Lpsr

after Amato

(22)

p,He knee 2nd knee

structure above the knee

knee at 3 PeV (light primaries),

hardening at 20 PeV (medium component), 2nd knee at 300 PeV

JxE3

Prosin et al 2013

composition at 1PeV: H 17%, He 46%, CNO 8%, Fe 16%

+ EG component H 75%, He 25% as in Kotera & Lemoine 2008 Sveshnikova et al 2014:

(23)

p,He CNO,Si,Fe

TUNKA KASCADE-G

JxE2.7

p,He CNO,Si,Fe

Iron knee at

8*1016 eV = 26*3*1015 eV light ankle at 1.2*1017 eV - transition to EG component or onset of a new high energy Galactic source population

(24)

other Galactic accelerators at ultra-high energies

• reacceleration by multiple shocks

SNR SNR

SNR

OB

association u=3×103 km/s B=10-5 G

R=30 pc

f ~ 1/p3

ta ~ R/(Fshu) at Di< uR

~ D/(Fshu2) at Di > uR R

u

Emax ~ 1017Z eV

Bykov & Toptygin 1990, 2001, Klepach et al. 2000

newly-born pulsars with ultrarelativistic wind E ~ 1019 Z B13(Ω/3000 rad/s)2 eV

Blasi et al. 2000, Arons 2003, Fang et al. 2013,

(25)

Fermi bubbles

gamma-ray emission Eph = 1 – 100 GeV, 4x1037 erg/s

Je ~ E-2 Su et al 2010

gamma rays, X-rays, radio, WMAP Haze

(26)

•Galactic wind

u

R acceleration at termination shock Jokipii & Morfill 1985, 1991

Zirakashvili & Völk 2004

R = 300 kpc, u = 400 km/s Emax = 1018Z eV

galactic disk SNR

(27)

Kulikov & Kristiansen 1958

from Beatty et al 2013

GZK

suppression?

(28)

Conclusions

Cosmic ray origin scenario where supernova remnants serve as principle accelerators of cosmic rays in the Galaxy is strongly confirmed by numerical simulations. SNRs can provide cosmic ray acceleration up to 5x1018 eV. PWN may be responsible for observed flux of cosmic ray positrons.

Diffusion provides reasonably good description of cosmic ray

propagation in the Galaxy even under simple assumptions on cosmic ray transport coefficients and geometry of propagation region (e.g. as

loaded in GALPROP code).

Riferimenti

Documenti correlati

Sarebbe interazione forte, ma non conserva S (ΔS = -2). ΔS = -1, quindi può avvenire come decadimento mediato da interazione debole Colonna destra dall’alto in basso. 1) Non

16 University of California at Santa Cruz, Institute for Particle Physics, Santa Cruz, California 95064, USA.. 17 California Institute of Technology, Pasadena, California

se invece i magneti sono rivolti con poli omologhi rivolti l’uno verso l’altro: no linee parallele fra i due magneti, ma linee che “si chiudono sullo stesso

Come si possono caratterizzare le curve cilindriche con questi dati?. (1) Determinare il riferimento di Darboux di γ come curva sul

Bin-uncorrelated uncertainties represent statistical uncertainties in the background estimation, trigger efficiencies, and yield correction factors.. Source

Notiamo che, per come è fatto lo spettro rotazionale, abbiamo diverse frequenze emesse, a seconda della coppia di stati rotazionali tra cui avviene la transizione rotazionale

orizz.; ogni soluzione (non stazionaria) presenta due punti di flesso, deducibili dal grafico7. orizz.; ogni soluzione (non stazionaria) presenta due punti di flesso, deducibili

Le soluzioni sono tutte pari.. Le soluzioni sono