Bibliografia
90
Bibliografia
[1]: A.Cavaliere, M.de Joannon; MILD combustion; Pr. Energy Comb. Sc. 30; 2004.
[2]: C.Galletti, A.Parente, L.Tognotti; Numerical and experimental investigation of a MILD
combustion burner; Combustion and Flame 151; 2007.
[3]: S.Kumar, P.J.Paul, H.S.Makunda; Studies on a new high intensity low-emission
burner; Proc. Combus. Institute 29; 2002.
[4]: F.C.Christo, B.B.Dally; Modeling turbulent reacting jets issuing into a hot and diluted
coflow; Combustion and Flame 142; 2005.
[5]: A. Milani, J.Wünning; What are the stability limits of flameless oxidation?; IFRF online combustion handbook, combustion file No 173; 2002.
[6]: A.Parente, C.Galletti, L.Tognotti; Effect of the model and kinetic mechanism on the
MILD combustion in an industrial burner fed with hydrogen enriched fuels; Inter. Journal of
Hydrogen Energy 33; 2008.
[7]: M.Oberlack, R.Arlitt, N.Peters; On stochastic Damköhler number variations in a
homogeneous flow reactor; Combustion Theory Modell 495-509; 2000.
[8]: N.Peters; Principles and potential of HiCOT combustion; Proceedings of the Forum on High Temperature Air Combustion Technology; 2001.
[9]: R.Weber, M.Mancini; Recent developments in flameless combustion technology; [10]: A. Milani; Industrial furnace; Clean Industrial Fuel Conversion; 2008.
[11]: A.Milani, A.Saponaro; Tecnologie di combustione senza fiamma; La Termotecnica; 2000.
[12]: B.B.Dally, E.Reismeir, N.Peters; Effect of fuel mixture on moderate and intense low
oxygen (MILD) combustion; Combustion and Flame 137; 2004.
[13]: J.A.Wünning, J.G.Wünning; Flameless oxidation to reduce thermal NOx formation;
Pr. Energy Comb. Sc, 23; 1997.
[14]: P.R.Medwell, P.A.M.Kalt, B.B.Dally; Imaging of diluted turbulent ethylene flames
stabilized on a Jet in Hot Coflow (JHC) burner; Combustion and Flame 152; 2008.
[15]: C.Galletti, A.Parente, M.Derudi, R.Rota, L.Tognotti; Numerical and experimental
analysis of NO emissions from a lab-scale burner fed with hydrogen-enriched fuels and operating in MILD combustion; Inter. Journal of Hydrogen Energy 34; 2009.
[16]: P.R.Medwell, P.A.M.Kalt, B.B.Dally; Simultaneous imaging of OH, formaldehyde,
and temperature of turbulent nonpremixed jet flames in a heated and diluted coflow;
Bibliografia
91
[17]: M.Derudi, A.Villani, R.Rota; MILD combustion of industrial hydrogen-containing
byproducts; Ind. Eng. Chem. Res. 46; 2007.
[18]: P.Sabia, M.de Joannon, S.Fierro, A.Tregrossi, A.Cavaliere; Hydrogen-enriched
methane MILD combustion in a well stirred reactor; Exp. Therm. Fluid Sci. 31; 2007.
[19]: R.Weber, J.P.Smart. W.vd Kamp; On the (MILD) combustion of gaseous.liquid and
solid fuels in high temperature preheated air; Proc. Combus. Institute 30; 2005.
[20]: L.Tognotti; Dispense per gli studenti; 2009.
[21]: P.J.Coelho, N.Peters; Numerical Simulation of a MILD combustion burner; Combustion and Flame 124; 2001.
[22]: N.Peters; Laminar diffusion flamelet models in non-premixed turbulent combustion; Progress in Energy and Combustion Science 10; 1984.
[23]: T.Plessing, N.Peters, J.G.Wünning; Laseroptical investigation of higly preheated
combustion with strong exhaust gas recirculation; The Combustion Institute;1998.
[24]: I.B.Ödzemir, N.Peters; Characteristics of the reaction zone in a combustor operating
at MILD combustion; Experiments in Fluids 30; 2001.
[25]: B.F.Magnussen; On the structure of turbulence and a generalized eddy dissipation
concept for chemical reaction in turbulent flow; 19th AIAA aerospace science meeting, St.Louis, Missouri. 1981.
[26]: B.B.Dally, A.N.Karpetis, R.S.Barlow; Structure of turbulent non-premixed jet flames
in a diluted hot coflow; Proceedings of the Combustion Institute 29; 2002.
[27]: A.Parente, J.C.Sutherland, B.B.Dally, L.Tognotti, P:J:Smith; Investigation of the
MILD combustion regime via Principal Component Analysis; Proceedins of the Combustion
Institute; 2010.
[28]: J.W.Bozzelli, A.M.Dean; NNH – a possible new route for NOx formation in flames; Int.
Journal Chemicl Kinetics 27; 1995.
[29]: A.N.Hayhurst, E.M.Hutchinson; Evidence for a new way of producing NOx via NNH
in fuel-rich flames at atmospheric pressure; Combustion and Flame 114; 1995.
[30]: A.A. Konnov, G.Colson, J.de Ruick; NO formation rates for hydrogen combustion in
stirred reactors; Fuel 80; 2001.
[31]: G.J.Rørtveit, J.E.Hustad, S.C.Li, F.A.Williams; Effects of diluents on NOx formation
in hydrogen counterflow flames; Combustion and Flam 130; 2002.
[32]: H.Guo, G.J.Smallwood, F.Liu, Y.Ju, Ö.L.Gülder; The effect of hydrogen addiction on
flammability limit and NOx formation in ultra-lean counterflow CH4/air premixed flames;
Bibliografia
92
[33]: S.Gauthier, A.Nicolle, D.Ballis; Investigation of flame structure and nitrogen oxides
formation in lean porous premixed combustion of natural gas/hydrogen blends; Inter. Journal
of Hydrogen Energy 33;2008.
[34]: A.Parente, C.Galletti, L.Tognotti; A simplified approach for predicting NO formation
in MILD combustion of CH4-H2 mixtures; Proceedings of the Combustion Institute; 2010.
[35]: G.G.Szegö, B.B.Dally, G.J.Nathan; Scaling of NOx emissions from a laboratory scale
MILD combustion furnace; Combustion and Flame 154; 2008.
[36]: A.Frassoldati, P.Sharma, A.Cuoci, T.Faravelli, E.Ranzi; Kinetic and fluid dynamics
modeling of methane/hydrogen jet flames in diluted coflow; Applied Thermal Engineering 30;
2010.
[37]: M.Ihme, Y.C.See; LES flamelet modeling of a three-stream MILD combustor: analysis
of flame sensitivity to scalar inflow conditions; Proceedings of the Combustion Institute;
2010.
[38]: A.P.Morse; Axisymmetric turbulent shear flows with and without swirl; PhD thesis, England London University; 1997.
[39]: Fluent 6.3 User’s guide
[40]: R.W.Bilger, S.H.Starner, R.J.Kee; On reduced mechanism for methan-air combustion
in non-premixed flames; Combustion and Flame 80; 1990.
[41]: H.P.Mallampalli, T.H.Fletcher, J.Y.Chen; Evalution of CH4/NOx reduced mechanism
used for modeling lean premixed turbulent combustion of natural gas; Journal of Engineering
for Gas Turbine and Power 120; 1998.
[42]: H.A.McGee; Molecular engineering; New York: McGraw-Hill; 1991. [43]: S.P.Wilke; A viscosity equation for gas mixtures; J Comp Phys 18; 1950.
[44]: T.F.Smith, Z.F.Chen, J.N.Friedman; Evaluation of coefficients for the Weighted Sum
of Grey Gases Model; Journl of Heat Transfer 104; 1982.
[45]: J.Aminian, C.Galletti, S.Shahhosseini, L.Tognotti; Evaluation of the Eddy
Dissipation Concept for numerical modeling of MILD combustion; Combustion and Flame;
2010.
[46]: D.Veynante, L.Vervisch; Turbulent combustion; Progress in Energy and Combustion Science 28; 2002.
[47]: K.K.Kuo, Priciples of Combustion; Wiley Interscience, New York; 1986
[48]: M.Rehm, P.Seifert, B.Meyer; Theoretical and numerical investigation on the
EDC-model for turbulence-chemistry interaction at gasification conditions; Computers and
Bibliografia
93
[49]: A.Parente; Experimental and Numerical Investigation of Advanced Systems for