• Non ci sono risultati.

Bibliografia [1]:

N/A
N/A
Protected

Academic year: 2021

Condividi "Bibliografia [1]:"

Copied!
4
0
0

Testo completo

(1)

Bibliografia  

90  

Bibliografia

[1]: A.Cavaliere, M.de Joannon; MILD combustion; Pr. Energy Comb. Sc. 30; 2004.

[2]: C.Galletti, A.Parente, L.Tognotti; Numerical and experimental investigation of a MILD

combustion burner; Combustion and Flame 151; 2007.

[3]: S.Kumar, P.J.Paul, H.S.Makunda; Studies on a new high intensity low-emission

burner; Proc. Combus. Institute 29; 2002.

[4]: F.C.Christo, B.B.Dally; Modeling turbulent reacting jets issuing into a hot and diluted

coflow; Combustion and Flame 142; 2005.

[5]: A. Milani, J.Wünning; What are the stability limits of flameless oxidation?; IFRF online combustion handbook, combustion file No 173; 2002.

[6]: A.Parente, C.Galletti, L.Tognotti; Effect of the model and kinetic mechanism on the

MILD combustion in an industrial burner fed with hydrogen enriched fuels; Inter. Journal of

Hydrogen Energy 33; 2008.

[7]: M.Oberlack, R.Arlitt, N.Peters; On stochastic Damköhler number variations in a

homogeneous flow reactor; Combustion Theory Modell 495-509; 2000.

[8]: N.Peters; Principles and potential of HiCOT combustion; Proceedings of the Forum on High Temperature Air Combustion Technology; 2001.

[9]: R.Weber, M.Mancini; Recent developments in flameless combustion technology; [10]: A. Milani; Industrial furnace; Clean Industrial Fuel Conversion; 2008.

[11]: A.Milani, A.Saponaro; Tecnologie di combustione senza fiamma; La Termotecnica; 2000.

[12]: B.B.Dally, E.Reismeir, N.Peters; Effect of fuel mixture on moderate and intense low

oxygen (MILD) combustion; Combustion and Flame 137; 2004.

[13]: J.A.Wünning, J.G.Wünning; Flameless oxidation to reduce thermal NOx formation;

Pr. Energy Comb. Sc, 23; 1997.

[14]: P.R.Medwell, P.A.M.Kalt, B.B.Dally; Imaging of diluted turbulent ethylene flames

stabilized on a Jet in Hot Coflow (JHC) burner; Combustion and Flame 152; 2008.

[15]: C.Galletti, A.Parente, M.Derudi, R.Rota, L.Tognotti; Numerical and experimental

analysis of NO emissions from a lab-scale burner fed with hydrogen-enriched fuels and operating in MILD combustion; Inter. Journal of Hydrogen Energy 34; 2009.

[16]: P.R.Medwell, P.A.M.Kalt, B.B.Dally; Simultaneous imaging of OH, formaldehyde,

and temperature of turbulent nonpremixed jet flames in a heated and diluted coflow;

(2)

Bibliografia  

91  

[17]: M.Derudi, A.Villani, R.Rota; MILD combustion of industrial hydrogen-containing

byproducts; Ind. Eng. Chem. Res. 46; 2007.

[18]: P.Sabia, M.de Joannon, S.Fierro, A.Tregrossi, A.Cavaliere; Hydrogen-enriched

methane MILD combustion in a well stirred reactor; Exp. Therm. Fluid Sci. 31; 2007.

[19]: R.Weber, J.P.Smart. W.vd Kamp; On the (MILD) combustion of gaseous.liquid and

solid fuels in high temperature preheated air; Proc. Combus. Institute 30; 2005.

[20]: L.Tognotti; Dispense per gli studenti; 2009.

[21]: P.J.Coelho, N.Peters; Numerical Simulation of a MILD combustion burner; Combustion and Flame 124; 2001.

[22]: N.Peters; Laminar diffusion flamelet models in non-premixed turbulent combustion; Progress in Energy and Combustion Science 10; 1984.

[23]: T.Plessing, N.Peters, J.G.Wünning; Laseroptical investigation of higly preheated

combustion with strong exhaust gas recirculation; The Combustion Institute;1998.

[24]: I.B.Ödzemir, N.Peters; Characteristics of the reaction zone in a combustor operating

at MILD combustion; Experiments in Fluids 30; 2001.

[25]: B.F.Magnussen; On the structure of turbulence and a generalized eddy dissipation

concept for chemical reaction in turbulent flow; 19th AIAA aerospace science meeting, St.Louis, Missouri. 1981.

[26]: B.B.Dally, A.N.Karpetis, R.S.Barlow; Structure of turbulent non-premixed jet flames

in a diluted hot coflow; Proceedings of the Combustion Institute 29; 2002.

[27]: A.Parente, J.C.Sutherland, B.B.Dally, L.Tognotti, P:J:Smith; Investigation of the

MILD combustion regime via Principal Component Analysis; Proceedins of the Combustion

Institute; 2010.

[28]: J.W.Bozzelli, A.M.Dean; NNH – a possible new route for NOx formation in flames; Int.

Journal Chemicl Kinetics 27; 1995.

[29]: A.N.Hayhurst, E.M.Hutchinson; Evidence for a new way of producing NOx via NNH

in fuel-rich flames at atmospheric pressure; Combustion and Flame 114; 1995.

[30]: A.A. Konnov, G.Colson, J.de Ruick; NO formation rates for hydrogen combustion in

stirred reactors; Fuel 80; 2001.

[31]: G.J.Rørtveit, J.E.Hustad, S.C.Li, F.A.Williams; Effects of diluents on NOx formation

in hydrogen counterflow flames; Combustion and Flam 130; 2002.

[32]: H.Guo, G.J.Smallwood, F.Liu, Y.Ju, Ö.L.Gülder; The effect of hydrogen addiction on

flammability limit and NOx formation in ultra-lean counterflow CH4/air premixed flames;

(3)

Bibliografia  

92  

[33]: S.Gauthier, A.Nicolle, D.Ballis; Investigation of flame structure and nitrogen oxides

formation in lean porous premixed combustion of natural gas/hydrogen blends; Inter. Journal

of Hydrogen Energy 33;2008.

[34]: A.Parente, C.Galletti, L.Tognotti; A simplified approach for predicting NO formation

in MILD combustion of CH4-H2 mixtures; Proceedings of the Combustion Institute; 2010.

[35]: G.G.Szegö, B.B.Dally, G.J.Nathan; Scaling of NOx emissions from a laboratory scale

MILD combustion furnace; Combustion and Flame 154; 2008.

[36]: A.Frassoldati, P.Sharma, A.Cuoci, T.Faravelli, E.Ranzi; Kinetic and fluid dynamics

modeling of methane/hydrogen jet flames in diluted coflow; Applied Thermal Engineering 30;

2010.

[37]: M.Ihme, Y.C.See; LES flamelet modeling of a three-stream MILD combustor: analysis

of flame sensitivity to scalar inflow conditions; Proceedings of the Combustion Institute;

2010.

[38]: A.P.Morse; Axisymmetric turbulent shear flows with and without swirl; PhD thesis, England London University; 1997.

[39]: Fluent 6.3 User’s guide

[40]: R.W.Bilger, S.H.Starner, R.J.Kee; On reduced mechanism for methan-air combustion

in non-premixed flames; Combustion and Flame 80; 1990.

[41]: H.P.Mallampalli, T.H.Fletcher, J.Y.Chen; Evalution of CH4/NOx reduced mechanism

used for modeling lean premixed turbulent combustion of natural gas; Journal of Engineering

for Gas Turbine and Power 120; 1998.

[42]: H.A.McGee; Molecular engineering; New York: McGraw-Hill; 1991. [43]: S.P.Wilke; A viscosity equation for gas mixtures; J Comp Phys 18; 1950.

[44]: T.F.Smith, Z.F.Chen, J.N.Friedman; Evaluation of coefficients for the Weighted Sum

of Grey Gases Model; Journl of Heat Transfer 104; 1982.

[45]: J.Aminian, C.Galletti, S.Shahhosseini, L.Tognotti; Evaluation of the Eddy

Dissipation Concept for numerical modeling of MILD combustion; Combustion and Flame;

2010.

[46]: D.Veynante, L.Vervisch; Turbulent combustion; Progress in Energy and Combustion Science 28; 2002.

[47]: K.K.Kuo, Priciples of Combustion; Wiley Interscience, New York; 1986

[48]: M.Rehm, P.Seifert, B.Meyer; Theoretical and numerical investigation on the

EDC-model for turbulence-chemistry interaction at gasification conditions; Computers and

(4)

Bibliografia  

93  

[49]: A.Parente; Experimental and Numerical Investigation of Advanced Systems for

Riferimenti

Documenti correlati

Indeed, many of the univariate unit root test procedures commonly used in testing for cointegration (e.g. DF and ADF tests) impose common factors, and thus lack power 6In

Ancora, nella poesia innodica, la divinità solare figura come padre del cosmo: kósmou páter (Hymn.. Appare opportuno dunque ritenere che Seneca, probabilmente

Tognotti, Numerical Investigation of a MILD Combustion Burner: Analysis of Mixing Field, Chemical Kinet- ics and Turbulence-Chemistry Interaction, Flow Turbulence Combustion 88

The thickened amelet sheet area S is controlled mainly by small scale turbulence (by contrast to the amelets sheet dispersion that is controlled by large scale turbulent di usion and

The present test case has been found particularly difficult to solve. Any attempt of using EBU model did fail in achieving physically consistent results. Simulations

A quantitative description of the coupling between turbulence and chemistry by the amelet mechanism is proposed, based on the generalized Kolmogorov concept of small-scale

Effect of waste glycerin addition on NO and CO concentration changes in burning products versus time of reactants residence in a reaction chamber.. Effect of waste glycerin addition