• Non ci sono risultati.

[5] J. A. Miller, C. T. Bowman, Prog. Energy Combust. Sci. 15 (1989) 287-338.

N/A
N/A
Protected

Academic year: 2021

Condividi "[5] J. A. Miller, C. T. Bowman, Prog. Energy Combust. Sci. 15 (1989) 287-338."

Copied!
5
0
0

Testo completo

(1)

[1] R. P. Wayne, Chemistry of atmospheres, 2nd ed. New York, Oxford University Press, 1991.

[2] P. J. Crutzen, Nobel Lecture, Oslo, December, 8 1995.

[3] U.S. Environmental Protection Agency, Health and Environmental Impacts of NOx (2008).

[4] R. K. Hanson, S. Salimian, Survey of Rate Constants in H/N/O Systems, Combustion Chemistry 361 (1984).

[5] J. A. Miller, C. T. Bowman, Prog. Energy Combust. Sci. 15 (1989) 287-338.

[6] A. A. Westenberg, Kinetics of NO and CO in lean, premixed hydrocarbon- air flames, Combustion Science and Technology 4 (1971) 59–64.

[7] J. Warnatz, U. Maas, R. W. Dibble, Combustion. Physical and chemical fundamentals, modeling and simulation, experiments, pollutant formation, Springer, Berlin, 2001.

[8] C. P. Fenimore, Formation of nitric oxide in premixed hydrocarbon flames, Proceedings of the Combustion Institute 13 (1971) 373-380.

[9] F. Bachmeier, K. H. Eberius, T. Just, Combust. Sci. Technol. 7,77 (1973).

[10] J. A. Miller, T. C. Bowman, Mechanism and modeling of nitrogen chemistry in combustion, Progress Energy Combustion Science 15 (1989) 287–338.

[11] G. G. D. Soete, Overall Reaction Rates of NO and N

2

Formation from Fuel Nitrogen, Proceedings of the Combustion Institute 15 (1974) 1093- 1102.

[12] F. Backmier, K. H. Eberius, T. Just, The Formation of Nitric Oxide and the

Detection of HCN in Premixed Hydrocarbon-Air Flames at 1 Atmosphere,

Combustion Science and Technology 7 (1973) 77-84.

(2)

[13] P. C. Melte, D. T. Pratt, Measurement of Atomic Oxygen and Nitrogen Oxides in Jet Stirred Combustion, In 15th Symposium on Combustion, The Combus- tion Institute, (1974) 1061-1070.

[14] J. W. Bozzelli, A. M. Dean, O + NNH - A Possible New Route for NO

x

Formation in Flames, International Journal of Chemical Kinetics 27 (1995) 1097-1109.

[15] A. N. Hayhurst, E. M. Hutchinson, Evidence for a New Way of Producing NO via NNH in Fuel-Rich Flames at Atmospheric Pressure, Combustion and Flame 114 (1998) 274-279.

[16] G. J. Rørtveit, J. E. Hustad, S. C. Li, F. A. Williams, Effects of diluents on NO

x

formation in hydrogen counterflow flames, Combustion and Flame 130 (2002) 48-61.

[17] A. A. Konnov, G. Colson, J. D. Ruyck, The New Route Forming NO Via NNH, Combustion and Flame 121 (2000) 548–550.

[18] G. Löffler, R. Sieber, M. Harasek, H. Hofbauer, R. Hauss, J. Landauf, NOx for- mation in natural gas combustion: Evaluation of simplified reaction schemes for CFD calculations, Fuel 85 (2006) 513-523.

[19] P. Glarborg, M. Alzueta, K. Dam-Johansen, J. Miller, Kinetic modelling of hy- drocarbon/nitric oxide interactions in a flow reactor, Combustion and Flame 115 (1998) 1–27.

[20] E. Mastorakos, A. M. Taylor, J. H. Whitelaw, Turbulent Counterflow Flames with Reactants Diluted by Hot Products, T. C. Institute (Ed.), Joint Meeting of the British and German Sections, 1993.

[21] C. E. Baukal, Handbook of Industrial Burners, CRC Press, Boca Raton, FL:

2004.

[22] J. Chomiak, Combustion: A Study in Theory, Fact and Application, Abacus Press, 1990.

[23] J. A. Wünning, J. G. Wünning, Flameless oxidation to reduce thermal NO- formation, Progress in Energy and Combustion Science 23 (1997) 81–94.

[24] A. Cavaliere, M. de Joannon, Mild Combustion, Progress in Energy and Com-

bustion Science 30 (2004) 329–366.

(3)

[25] A. K. Gupta, Thermal characteristics of gaseous fuel flames using high tem- perature air, Journal of Engineering for Gas Turbines and Power 126 (2004) 9–19.

[26] M. G. Zabetakis, Flammability Characteristics of Combustible Gases and Vapours, Tech. Rep. Bulletin 627, U.S.Department of the Interior, Bureau of Mines, 1965.

[27] R. K Lyon, US Patent 3900, 554, 1975.

[28] J. A. Miller, M. C. Branch, R. J. Kee, Combust. Flame 43,81 (1981).

[29] P. Glarborg, K. Dam-Johansen, J. A. Miller, R. J. Kee and M. E. Coltrin, Int.

J. Chem. Kin. 26,421 (1994).

[30] C. Galletti, A. Parente, L. Tognotti, Numerical and experimental investigation of a mild combustion burner, Combust. Flame 151 (2007) 649-664.

[31] T. Hasegawa, S. Mochida, A. K. Gupta, Development of advanced industrial furnace using highly preheated air combustion, J. Propul. Power 18 (2002) 233-239.

[32] P. Sabia, M. de Joannon, S. Fierro, A. Tregrossi, A. Cavaliere, Hydrogen- enriched methane mild combustion in a well stirred reactor, Exp. Therm.

Fluid Sci. 31 (2007) 469-475.

[33] M. Derudi, A. Villani, R. Rota, Sustainability of mild combustion of hydrogen- containing hybrid fuels, Proc. Combust. Inst. 31 (2007) 3393-3400.

[34] C. Duwig, D. Stankovic, L. Fuchs, G. Li, E. Gutmark, Experimental and numerical study of flameless combustion in a model gas turbine combustor, Combust. Sci. Tech. 180 (2008) 279-295.

[35] B. B. Dally, A. N. Karpetis, R. S. Barlow, Structure of turbulent non-premixed jet flames in a diluted hot coflow, Proc. Combust. Inst. 29 (2002) 1147-1154.

[36] S. H. Kim, K. Y. Huh, B. B. Dally, Conditional moment closure modeling of turbulent nonpremixed combustion in diluted hot coflow, Proc. Combust.

Inst. 30 (2005) 751-757.

[37] F. C. Christo, B. B. Dally, Modeling turbulent reacting jets issuing into a hot

and diluted coflow, Combust. Flame 142 (2005) 117-129.

(4)

[38] A. Frassoldati, P. Sharma, A. Cuoci, T. Faravelli, E. Ranzi, Kinetic and fluid dynamics modeling of methane/hydrogen jet flames in diluted coflow, Appl.

Thermal Eng. 30 (2010) 376-383.

[39] J. Aminian, C. Galletti, S. Shahhosseini, L. Tognotti, Key modeling issues in prediction of minor species in diluted-preheated combustion conditions, Applied Thermal Engineering 31 (2011) 3287-3300.

[40] J. Aminian, C. Galletti, S. Shahhosseini, L. Tognotti, Numerical Investigation of a MILD Combustion Burner: Analysis of Mixing Field, Chemical Kinet- ics and Turbulence-Chemistry Interaction, Flow Turbulence Combustion 88 (2012) 597-623.

[41] A. Cuoci, A. Frassoldati, T. Faravelli, E. Ranzi, OpenSMOKE: Numerical modeling of reacting systems with detailed kinetic mechanisms, XXXIV Meet- ing of the Italian Section of the Combustion Institute (2011).

[42] A. Cuoci, A. Frassoldati, T. Faravelli, E. Ranzi, Formation of soot and ni- trogen oxides in unsteady counterflow diffusion flames, Combust. Flame 156 (2009) 2010-2022.

[43] W. Bilger, S. H. Starner, R. J. Kee, On reduced mechanisms for methane/air combustion in nonpremixed flames, Combust. Flame 80 (1990) 135-149.

[44] B. F. Magnussen, On the Structure of Turbulence and a Generalized Eddy Dissipation Concept for Chemical Reaction in Turbulent Flow, in: 19th AIAA Aerospace Science Meeting, 1981.

[45] S. B. Pope, Computationally efficient implementation of combustion chemistry using in situ adaptive tabulation, Combust. Theory Model 1 (1997) 41–63.

[46] T. F. Smith, Z. F. Shen, J. N. Friedman, Evaluation of Coefficients for the Weighted Sum of Gray Gases Model, J. Heat Transfer, 104 (1982) 602–608.

[47] E. Biagini, L. Biasci, M. Marcucci, Description of the Isothermal Plug Flow Reactor and the experimental procedures for combustion studies on solid fuels, IFRF Report NG03/y/03, (2010).

[48] E. Giacomazzi, G. Troiani, E. Giulietti, R. Bruschi, Effect of turbulence on flame radiative emission, Exp. Fluids 44 (2008) 557-564.

[49] G. Coraggio, M. Faleni, P. Guagnano P., S. Macchiavello, C. Sbano, L.

(5)

[50] Ansys Inc., Gambit User Guide, 2006.

[51] B. E. Launder, D. B.Spalding, The Numerical Computation of Turbulent Flows, Computer Methods in Applied Mechanics and Engineering 3 (1974) 269–289.

[52] Ansys Inc., Fluent 6.3 User Guide, 2006.

[53] A. N. Kolmogorov, Equations of turbulent motion of an incompressible fluid, Izv Akad Nauk SSR Ser Phys, 6, Vol 1/2, 56, (1942).

[54] D. C. Wilcox, Reassessment of the scale determining equation for advanced turbulence models, AIAA J., Vol.26, No.11, p1299, (1988).

[55] H. K. Versteeg, W. Malalasekera, An Introduction to Computational Fluid Dy- namics, The Finite Volume Method (2nd edition), Pearson Education, 2007.

[56] G. P. Smith, D. M. Golden, M. Frenklach, N. W. Moriarty, B. Eiteneer, M.

Goldenberg, C. T. Bowman, R. K. Hanson, S. Song, W. C. Gardiner, V. V.

Lissianski, Z. Qin URL http://www.me.berkeley.edu/gri-mech/.

[57] A. Coppalle, P. Vervisch, The Total Emissivities of High-Temperature Flames, Combustion and Flame, 49 (1983) 101–108.

[58] B. Martin Linck, K. Ashwani Gupta, G. Bourhis, K. Yu, Combustion Char-

acteristics of Pressurized Swirling Spray Flame and Unsteady Two-Phase Ex-

haust Jet. American Institute of Aeronautics and Astronautics.

Riferimenti

Documenti correlati

A Társadalmi befogadás indikátorai azt vizsgálják, hogy a társadalom különböző csoportjai milyen médiahozzáféréssel rendelkeznek. Az indikátorok mérik, hogy

Indeed, many of the univariate unit root test procedures commonly used in testing for cointegration (e.g. DF and ADF tests) impose common factors, and thus lack power 6In

NT in Figure 1 a) suggests that the volatile profile of untreated pomegranate juices was preserved by non-thermal preservation treatments, while thermal pasteurization led

A comprehensive simulation of the combustion chamber is prepared, which contains the necessary sub- models for the thermo-chemical conversion of straw and for

Effect of waste glycerin addition on NO and CO concentration changes in burning products versus time of reactants residence in a reaction chamber.. Effect of waste glycerin addition

The influence of temperature of fuel, doping of ethylene and mass flow of fuel and air on emissions level (NO X , CO, THC)

The viscosity stratified flow has been analysed performing Direct Numerical Simulation (DNS) of the Navier-Stokes equation coupled with a Phase Field Method (PFM) to track

In the previous section we proposed two new CEGAR-like loops in the context of static analysis of SPLs: CEGPLR (Fig. 8) realizes SPL refinement and de- composition, based on