• Non ci sono risultati.

diagramma di Goodman-smith Il

N/A
N/A
Protected

Academic year: 2021

Condividi "diagramma di Goodman-smith Il"

Copied!
18
0
0

Testo completo

(1)

Meccanica, Macchine ed Energia – articolazione Energia 2 – Giuseppe Anzalone, Paolo Bassignana, Giuseppe Brafa Musicoro • Copyright © Ulrico Hoepli Editore S.p.A.

diagramma di Goodman-smith

Il diagramma di Goodman-Smith è il diagramma più utilizzato per a vere una chiara rappresentazione dei risultati delle prove di fatica con- dotte sui materiali. Esso consente di ricavare, per un qualunque valore della tensione media σm, i corrispondenti valori delle tensioni limite per i va ri tipi di sollecitazione.

Considerando una serie di provette, sottoposte per esempio a cicli di trazione-compressione (sollecitazione assiale) di differente tensione me dia, il corrispondente diagramma di Goodman-Smith che si ricava è rappresentato nella figura 1.17.

Fig. 1.17

Diagramma di Goodman-Smith di un acciaio, riferito a cicli di trazione-compressione con differente tensione media.

'

Sull’asse delle ordinate si riportano i valori del carico di rottura statico Rm, del carico di snervamento ReL, del limite di resistenza a fatica pulsan- te dallo zero σ 'Fa e del limite di resistenza a fatica alternata σFa. Sul l’asse delle ascisse, invece, si riportano le corrispondenti tensioni medie σm. Collegando i punti C, A, E, H, si ottiene la linea σLFmax delle tensioni limi- te massime di fatica; congiungendo i punti D, B, F, K, G, si ricava la linea σLFmin delle tensioni limite minime di fatica. Infine, le due linee σLFmax e σLFmin sono limitate all’altezza della tensione di snervamento.

Nel la figura 1.17, pertanto, si può osservare che:

— il segmento AB rappresenta un ciclo alterno asimmetrico;

— il segmento CD rappresenta un ciclo alterno simmetrico;

— il segmento EF rappresenta un ciclo pulsante dallo zero;

— il segmento HG è la linea della deformazione plastica, corrisponden- te al raggiungimento della tensione di snervamento ReL.

Il diagramma di Goodman-Smith, quindi, consente di leggere, per un va lo re qualunque della tensione media, i rispettivi valori delle tensioni li mi te di fatica, corrispondenti ai diversi tipi di sollecitazione.

(2)

Meccanica, Macchine ed Energia – articolazione Energia 2 – Giuseppe Anzalone, Paolo Bassignana, Giuseppe Brafa Musicoro • Copyright © Ulrico Hoepli Editore S.p.A.

Si noti che il diagramma di Goodman-Smith non è simmetrico ri spetto al- l’origine degli assi, bensì è più ampio e quindi più favorevole alla re si stenza nella parte dove la compressione prevale sulla trazione (σm < 0). Ciò va le in particolar modo per la ghisa; invece, nel caso dell’acciaio che presenta u guali carichi di rottura a trazione e a compressione, quindi uguale resi- stenza a trazione e a compressione, il diagramma è simmetrico.

I diagrammi di Goodman-Smith per i cicli di fatica a flessione e a torsione hanno forma simile a quello per i cicli di trazione-compressione (4Fig. 1.18).

Fig. 1.18

Diagrammi di Goodman-Smith per flessione, trazione-compressione e torsione.

tensioni ammissibili e verifica a fatica

Il valore del limite di resistenza a fatica, relativo al materiale considera- to e al tipo di sollecitazione agente, essendo ottenuto con prove fatte su provette standard (diametro di circa 10 mm, superfici lucidate e sen za intagli), non trova esatto riscontro se si opera sugli organi meccanici con differenti caratteristiche rispetto alle provette; questi organi, infatti, ri- sentono di alcune influenze che ne diminuiscono la resistenza a fatica, come spiegato di seguito in riferimento ai cicli alterni simmetrici.

Influenza delle dimensioni geometriche

Eseguendo le prove su provette di diametro crescente, si nota che i limiti di fatica, nel caso di flessione e di torsione, decrescono proporzionalmente al coefficiente dimensionale C1 (4Fig. 1.19), che decresce all’aumentare

(3)

Meccanica, Macchine ed Energia – articolazione Energia 2 – Giuseppe Anzalone, Paolo Bassignana, Giuseppe Brafa Musicoro • Copyright © Ulrico Hoepli Editore S.p.A.

delle dimensioni trasversali dell’organo in esame (per esempio il dia- metro).

Fig. 1.19

Diagramma del coefficiente dimensionale C1 in funzione del diametro d dell’organo in esame, per sollecitazioni di flessione e torsione.

Osservazione: nel caso di trazione-compressione non si ha l’effetto di- men sionale, per cui si considera C1 = 1.

Influenza della finitura superficiale

La rugosità superficiale costituisce un innesco al formarsi di “cricche”

(fessure) per fatica; l’influenza è tanto più grave quanto maggiore è la rugosità e quanto più duro è il materiale.

Nella figura 1.20 è rappresentato il coefficiente di finitura su per- ficiale C2 in funzione dello stato della superficie e del carico unitario di rottura Rm del materiale.

Osservazione: la ghisa e il rame non risentono della rugosità, perciò per essi si considera C2 = 1.

Fig. 1.20

Diagramma del coefficiente di finitura superficiale C2 per le diverse lavorazioni: superfinitura, con rugosità 0,25 Ra (1); rettifica fine, con rugosità 0,4÷0,5 Ra (2);

rettifica normale, con rugosità 0,6÷1,6 Ra (3); tornitura, fresatura e simili, con rugosità 1,6÷4 Ra (4);

sgrossatura, con rugosità 12 Ra (5);

greggio di laminazione (6); con corrosione in acqua pura (7);

con corrosione in acqua salata (8).

Influenza della forma del corpo

Nei corpi che presentano rapide variazioni di sezioni, come per esempio barre cilindriche di diametro diverso, con piccolo raggio di curvatura nel- la zona di raccordo, oppure barre che presentano intagli, incavi, fori e altro ancora, la distribuzione delle tensioni non è uniforme, ma presen ta,

(4)

Meccanica, Macchine ed Energia – articolazione Energia 2 – Giuseppe Anzalone, Paolo Bassignana, Giuseppe Brafa Musicoro • Copyright © Ulrico Hoepli Editore S.p.A.

poliglotta

Fattore di intaglio teorico GB: Theoretical notch sensitivity F: Facteur theorique d’entaille D: Theoretische Kerbwirkungszahl

nel campo di validità della legge di Hooke, esaltazioni locali o concen- trazioni di tensione anche notevoli (4Fig. 1.21).

Fig. 1.21

Diagramma delle tensioni, nel tratto a sezione variabile, di un corpo cilindrico con due diametri diversi, sottoposto a trazione.

Si definisce sezione ristretta o principale la sezione minima compresa nel tratto a sezione variabile.

Si definisce tensione normale nominale massima σnmax (o tensione tan genziale nominale massima τnmax) la tensione normale (o tangen- ziale) massima generata in una barra a sezione costante pari alla sezione ristretta, quando è sottoposta alla stessa sollecitazione agente nella se- zione ristretta della barra a sezione variabile.

Al contorno della sezione ristretta, per quanto suddetto, la tensione mas - sima σnmax è maggiore rispetto a quella nominale che si avrebbe con una di stribuzione uniforme della tensione, e vale:

σnmax = Ktσn [1.21]

dove Kt, detto fattore teorico di concentrazione delle tensioni per effetto di intaglio o, semplicemente fattore di intaglio teorico, è un coefficien- te numerico che dipende dalla forma ma non dalle dimensioni del cor po in esame.

Il fattore di intaglio teorico, in alcuni casi, può essere determinato analiticamente, ma in genere si ricorre a misure estensimetriche o foto- elastiche o a calcoli approssimati.

Nei diagrammi rappresentati nella figura 1.22 sono riportati, come esempio, i va lori di Kt per due forme di corpi cilindrici che ricorrono di frequente nelle costruzioni meccaniche.

I materiali fragili, che giungono a rottura senza quasi presentare de- formazioni plastiche, subiscono completamente il fenomeno della con- centrazione delle tensioni; invece, i materiali metallici duttili (anche la ghisa grigia, pur essendo un materiale fragile), nel caso di sollecitazioni sta tiche, non risentono di tale fenomeno e quindi si considera Kt = 1.

La re sistenza a rottura di questi materiali risulta praticamente uguale (mol to spesso è maggiore) a quella che si avrebbe in un solido a sezione co stante: infatti, i materiali duttili, raggiunto lo snervamento nelle zone più sollecitate, presentano deformazioni plastiche locali che hanno l’ef- fetto di ridistribuire la tensione nelle zone vicine.

(5)

Meccanica, Macchine ed Energia – articolazione Energia 2 – Giuseppe Anzalone, Paolo Bassignana, Giuseppe Brafa Musicoro • Copyright © Ulrico Hoepli Editore S.p.A.

Fig. 1.22

Digrammi del fattore di concentrazione delle tensioni Kt per una barra a sezione circolare, rispettivamente con due diamentri (a, c, e) e con scanalature (b, d, f):

a,b) sottoposta alla forza assiale F–;

c,d) a momento flettente M

f; e,f) a momento torcente M

t.

(6)

Meccanica, Macchine ed Energia – articolazione Energia 2 – Giuseppe Anzalone, Paolo Bassignana, Giuseppe Brafa Musicoro • Copyright © Ulrico Hoepli Editore S.p.A.

(7)

Meccanica, Macchine ed Energia – articolazione Energia 2 – Giuseppe Anzalone, Paolo Bassignana, Giuseppe Brafa Musicoro • Copyright © Ulrico Hoepli Editore S.p.A.

Diversamente, nel caso di sollecitazioni di fatica non si ha il benefico ef- fetto della plasticità dei materiali duttili, cosicché i corpi risentono della concentrazione delle tensioni, con conseguente abbassamento della loro capacità di resistenza, ma non tanto quanto lascia prevedere la teoria.

Pertanto il fattore di concentrazione delle tensioni Kt è sostituito con un minore fattore di riduzione della resistenza a fatica, detto fattore di intaglio a fatica o fattore sperimentale di intaglio Kf, il qua le indica il rapporto fra la resistenza a fatica di una provetta non in tagliata e quella di una provetta intagliata.

Una valutazione attendibile di Kf, in funzione di Kt, si ottiene me- diante la formula di Peterson:

K K r

f = rt + +

η

η [1.22]

poliglotta

Fattore sperimentale di intaglio GB: Experimental notch sensitivity F: Facteur expérimental d’entaille D: Experimentale Kerbwirkungszahl

dove r è il raggio di raccordo nella zona dell’intaglio o della variazione di sezione e η è un parametro dipendente dalla sensibilità all’intaglio del ma teriale, detto fattore di sensibilità all’intaglio.

La corrispondenza fra il carico di rottura Rm e il fattore di sensibilità all’intaglio η per gli acciai è riportata nella tabella 1.4. Per le leghe Al-Cu e per l’ottone η = 0,62.

poliglotta

Sensibilità all’intaglio GB: Notch sensibility

F: Sensibilitè à l’effet d’entaille D: Kerbempfindlichkeit

Carico

di rottura Rm 350 450 550 650 750 900 1100 1300 1500 Fattore

di sensibilità

all’intaglio η 0,36 0,29 0,23 0,19 0,15 0,11 0,07 0,05 0,04 Tabella 1.4 Corrispondenza fra il carico di rottura Rm

e il fattore di sensibilità all’intaglio η

Osservazione: il bronzo e la ghisa sono insensibili alle variazioni di for- ma, perciò per essi si assume Kf = 1.

Per tener conto delle influenze combinate delle dimensioni geometriche, dello stato superficiale e della forma dei corpi sollecitati a fatica, si con- sidera un fattore globale di riduzione del limite di fatica K dato dalla seguente relazione:

K C C

Kf

= 1 2 [1.23]

Moltiplicando il fattore globale K per il limite di fatica σLF ricavato dalle prove sperimentali, si ottiene il limite di fatica σ*LF del corpo in esame:

σ* LF = K σ LF [1.24]

Un’analoga relazione si ha per le sollecitazioni tangenziali:

τ*LF = K τLF [1.25]

(8)

Meccanica, Macchine ed Energia – articolazione Energia 2 – Giuseppe Anzalone, Paolo Bassignana, Giuseppe Brafa Musicoro • Copyright © Ulrico Hoepli Editore S.p.A.

Osservazione: l’influenza delle dimensioni, della finitura superficiale e della forma, analizzate per il ciclo alterno simmetrico, diminuisce pro- porzionalmente ai limiti di fatica per cicli di altro tipo.

Per ottenere la tensione ammissibile a fatica, indispensabile per i cal coli di progetto e di verifica di elementi strutturali e organi meccanici, occorre considerare che i limiti di fatica sono soggetti oltre all’influen za delle dimensioni, della finitura superficiale e della forma del corpo, a tutte quelle incertezze già indicate per le tensioni ammissibili con cari- chi statici.

Per tener conto di ciò, i valori delle tensioni limite di fatica ottenuti dal le relazioni [1.24] e [1.25] devono essere ulteriormente ridotti, divi- dendoli per un coefficiente o grado di sicurezza gf che può assumere orientativamente i valori compresi nell’intervallo 1,2÷2,3, per materiali duttili, e i valori compresi fra 1,2÷3, per materiali fragili.

Eventuali sovrasollecitazioni dinamiche, conseguenti all’applicazio- ne impulsiva dei carichi, si considerano mediante un coefficiente di esercizio C3, che si può ricavare dalla tabella 1.5.

Tipo di sovraccarico Tipologia di macchine Coefficiente C3 Urto leggero

Turbine, pompe

1,0÷1,1 centrifughe, compressori,

motori elettrici, mole, rettificatrici

Urto medio

Macchine alternative

1,2÷1,5 in genere, torni,

piallatrici, limatrici, stozzatrici, macchine di sollevamento

Urto forte Punzonatrici, tranciatrici, presse per stampaggio 1,5÷2,0 Urto molto forte Laminatoi, magli, frantoi 2,0÷3,0 Tabella 1.5 Coefficienti di esercizio C3 per urti

o sovraccarichi dinamici

poliglotta

Coefficiente di esercizio GB: Duty coefficient F: Coefficient d’exercice D: Betriebsfaktor

Pertanto, la tensione normale ammissibile a fatica σamf assume il valore seguente:

σamf σLF

f f

C C K g C

= 1 2

3

[1.26]

e analogamente, la tensione tangenziale ammissibile a fatica τamf va le:

τamf τLF

f f

C C K g C

= 1 2

3

[1.27]

poliglotta

Tensione normale ammissibile a fatica

GB: Normal fatigue stress F: Tension normale admissible

à fatigue

D: Zulässige Normalspannung

poliglotta

Tensione tangenziale ammissibile a fatica

GB: Tangential fatigue stress F: Tension tangentielle admissible

à fatigue

D: Zulässige Schubspannung

(9)

Meccanica, Macchine ed Energia – articolazione Energia 2 – Giuseppe Anzalone, Paolo Bassignana, Giuseppe Brafa Musicoro • Copyright © Ulrico Hoepli Editore S.p.A.

dove:

— σLF e τLF indicano, rispettivamente, la tensione limite normale e tan- genziale a fatica;

— K = C1 C2/Kf è il fattore globale di riduzione del limite di fatica;

— gf è il grado di sicurezza;

— C3 rappresenta il coefficiente di esercizio.

Osservazione: la tensione limite a fatica normale σLF o tangenziale τLF e le conseguenti tensioni ammissibili, espresse dalle relazioni [1.26] e [1.27], si riferiscono a sollecitazioni di fatica alternata, indicate rispetti- vamente con σamf e τamf. Per le sollecitazioni di fatica pul sante, il limite a fatica normale si indica con σ'LF; quello tangenziale, con τ'LF; infine le tensioni ammissibili, date sempre dalle relazioni [1.26] e [1.27], si in dicano con σ'amf e τ'amf; ovviamente, oltre alla simbologia, anche i va- lori dei limiti di fatica e delle tensioni ammissibili risultano diversi, in quan to dipendono dal tipo di sollecitazione.

(10)

Meccanica, Macchine ed Energia – articolazione Energia 2 – Giuseppe Anzalone, Paolo Bassignana, Giuseppe Brafa Musicoro • Copyright © Ulrico Hoepli Editore S.p.A.

Soluzione

Nel caso di trazione-compressione, non essendoci l’influenza dimensio- nale, il coefficiente dimensionale vale:

C1 = 1

Il coefficiente di finitura superficiale C2 si ricava dal diagramma rappre- sentato nella figura 1.20:

C2 = 0,88

Dalla figura 1.22a si ricava il fattore d’intaglio teorico Kt; per d/D = 0,67 e r/t = 0,5, si ottiene:

Kt = 1,9

Si ricava il coefficiente di sensibilità all’intaglio η dalla tabella 1.4:

η = 0,19

dalla [1.22] si ottiene il fattore d’intaglio a fatica Kf:

K K r

f = rt +

+ = × +

+ =

η η

1 9 5 0 19

5 0 19 1 87

, ,

, ,

Per la [1.23] il fattore globale di riduzione del limite di fatica è:

K C C

Kf

= 1 2 = ×1 0 88= 1 87, 0 47

, ,

Esempio 1

Calcolare i valori massimo e minimo entro i quali può variare una forza assiale, nel caso di ciclo alterno simmetrico da applicare al corpo cilin- drico in acciaio con due diametri diversi (4Fig. 1.24). Sono noti: il carico di rottura a trazione statica Rm = 650 N/mm2; i diametri del corpo ci lin- drico: D = 60 mm e d = 40 mm e la superficie rifinita da utensile (ru go- sità 1,6÷4 Ra).

Fig. 1.24

Corpo cilindrico con due diametri diversi, sottoposto a sollecitazione assiale alternata simmetrica.

(11)

Meccanica, Macchine ed Energia – articolazione Energia 2 – Giuseppe Anzalone, Paolo Bassignana, Giuseppe Brafa Musicoro • Copyright © Ulrico Hoepli Editore S.p.A.

Dalla tabella 1.6 si deduce il valore del rapporto di fatica:

ϕa = 0,42

per cui il limite di resistenza a fatica assiale alternata del materiale, cioè riferito alla provetta, è:

σFAaaRm =0 42 650 273, × = N mm2 mentre per il corpo in esame vale la seguente relazione:

σ*FAa=KσFAa =0 47 273 128, × = N mm2

Poiché l’area della sezione minore è:

A=π40 =

4 2 1260mm2

i valori massimo e minimo, di uguale intensità e segno opposto, entro i quali la forza applicata può variare per una resistenza indefinita del corpo in esame sono:

Fmax =FminFAa* A=128 1260 161 280 N× =

Se la forza di trazione-compressione uscisse da questi limiti, produrreb- be la rottura dopo un numero finito di cicli.

Esempio 2

Un corpo cilindrico in acciaio, con carico di rottura a trazione statica Rm = 400 N/mm2 e rettificato con media precisione (rugosità 0,6÷1,6 Ra), è sottoposto a sollecitazioni assiali di trazione-compressione. Consi- de ran do Fmax = 12 000 N e Fmin = –4000 N, calcolare il valore della tensione normale ammissibile a fatica σamf.

Soluzione

Per la sollecitazione di trazione-compressione il coefficiente dimensiona le vale:

C1 = 1

per la finitura superficiale, indicata dalla figura 1.20, si ottiene:

C2 = 0,93

Poiché il corpo cilindrico non presenta variazioni di sezioni, il fattore di intaglio a fatica vale:

Kf = 1

pertanto il fattore globale di riduzione del limite di fatica vale:

K C C

Kf

= = ×

1 2 1 0 93= 1, 0 93

,

(12)

Meccanica, Macchine ed Energia – articolazione Energia 2 – Giuseppe Anzalone, Paolo Bassignana, Giuseppe Brafa Musicoro • Copyright © Ulrico Hoepli Editore S.p.A.

Dalla tabella 1.6 si deduce il valore del rapporto di fatica:

ϕa = 0,50

tenuto conto del fattore K, si determina il limite di resistenza a fatica assiale per il corpo:

σFAa* =KσFAa =KϕaRm =0 93 0 50 400 186, × , × = N mm2

Assunto un grado di sicurezza gf = 2, si ottiene il valore della tensione am missibile a fatica:

σ σ

amf FAa

gf

= * =186 =

2 93 N

mm2

Volendo risolvere il problema con il metodo semplificato che utilizza il diagramma della figura 1.23, si ha che il rapporto Fmin/Fmax fra il valore minimo e quello massimo della forza applicata al corpo in esame vale:

F

Fminmax = −4000 = − , 12 000 0 33

a cui corrisponde, nel diagramma della figura 1.23, il coefficiente di si cu- rezza nR = 4÷4,8.

Per la [1.33], considerando nR = 4,5, la tensione ammissibile è:

σamf m

R

R

= n = 400≈ 4 5 91

,

N mm2

(13)

Meccanica, Macchine ed Energia – articolazione Energia 2 – Giuseppe Anzalone, Paolo Bassignana, Giuseppe Brafa Musicoro • Copyright © Ulrico Hoepli Editore S.p.A.

l’unità didattica in breve a1

sollecitazioni, deformazioni e tensioni interne

Ogni elemento di una struttura è soggetto a forze e coppie di forze ap- plicate di rettamente, dette carichi, e alle reazioni dei vincoli. Ca ri- chi e reazioni vincolari costituiscono il sistema equilibrato delle forze esterne; tali forze si possono distinguere in:

— forze costanti, applicate gradualmente dal valore nullo fino a un va - lore massimo, per poi rimanere costanti nel tempo (carichi statici);

— forze dinamiche, applicate istantaneamente e per tempi brevi (urti);

— forze variabili, applicate periodicamente e in modo graduale, dal va- lore minimo al valore massimo, tipicamente con legge sinusoidale, det te sollecitazioni a fatica.

Il sistema di forze esterne agenti su una trave può ridursi a una forza ri sultante R– e a un momento risultante M–

r, applicati nel baricentro di una generica sezione della trave stessa. Pertanto le componenti della ri sul tante e del momento risultante, secondo le direzioni di un sistema di assi cartesiani ortogonali con l’origine nel baricentro della sezione in esa me, rappresentano le caratteristiche di sollecitazione; esse ca- rat te riz za no l’azione delle forze esterne indotta nella sezione in esame.

A ciascuna caratteristica di sollecitazione corrispondono specifiche sollecitazioni della trave:

— forza normale o assiale N–, che può essere di trazione o di com- pressione, perpendicolare al piano yz della sezione S e diretta secon- do l’asse x (asse longitudinale della trave);

— forza di taglio T

y, giacente nel piano yz della sezione S e diret- ta se con do l’asse y, perpendicolarmente all’asse longitudinale della tra ve;

— forza di taglio T

z, giacente nel piano yz della sezione S e diretta se- condo l’asse z, perpendicolarmente all’asse longitudinale della tra - ve;

— momento torcente M

t, rappresentato dal vettore momento per- pendicolare al piano yz della sezione S e diretto secondo l’asse x;

— momento flettente M

fy, rappresentato dal vettore momento per- pendicolare al piano xz e diretto secondo l’asse y;

— momento flettente M

fz, rappresentato dal vettore momento per- pendicolare al piano xy e diretto secondo l’asse z.

L’esperienza insegna che nessun corpo reale può ritenersi perfetta- mente rigido, ossia indeformabile: ogni corpo vincolato, sottoposto a un si ste ma di forze esterne, presenta deformazioni dipendenti dalla loro entità, dalla natura del materiale, dalle dimensioni e dalla forma del corpo stesso.

Nel caso in cui le sollecitazioni esterne siano di modesta entità, le de formazioni che esse provocano sono relativamente piccole e si annul- lano al cessare delle sollecitazioni stesse. A tali deformazioni si può attri bui re carattere elastico: il corpo, al cessare dell’azione delle forze esterne, riacquista le dimensioni originarie.

(14)

Meccanica, Macchine ed Energia – articolazione Energia 2 – Giuseppe Anzalone, Paolo Bassignana, Giuseppe Brafa Musicoro • Copyright © Ulrico Hoepli Editore S.p.A.

Nel caso, invece, in cui le sollecitazioni esterne sono intense, le defor- mazioni assumono carattere permanente.

Tuttavia, non esistendo corpi perfettamente elastici né perfetta- mente anelastici, la deformazione totale di un corpo si può pensare formata da una parte di deformazione elastica e da una parte di deformazione plastica o permanente. In ogni modo, se la sollecita- zione non su pera un determinato limite, detto limite di elasticità, la deformazione permanente è trascurabile e il corpo si può conside- rare elastico.

Ciascuna caratteristica di sollecitazione induce sul corpo cui è appli- cata deformazioni diverse, ma riconducibili a due tipi:

— una variazione ∆l della lunghezza (allungamento o accorciamen- to) delle fibre longitudinali;

— uno scorrimento s di una sezione rispetto a quella contigua.

Pertanto si hanno le seguenti definizioni:

— si definisce allungamento relativo o unitario ε il rapporto fra l’al lungamento totale ∆l e la lunghezza l originaria del corpo;

— si definisce scorrimento relativo o unitario γ il rapporto fra lo scorrimento totale s di una sezione rispetto a quella contigua e la distanza ∆x fra le due sezioni.

Da quanto esposto si deduce che ogni sollecitazione produce un determi- nato tipo di deformazione:

— la forza assiale N

genera l’allungamento delle fibre longitudinali del corpo, se è di trazione, o l’accorciamento delle stesse, se è di compressione;

— le forze di taglio T

z e T

y tendono a tagliare le fibre in corrispon- denza della sezione S considerata, provocando lo scorrimento (detto scorrimento assiale) di tale sezione rispetto a quella contigua, ri- spettivamente nel la direzione z o y;

— il momento torcente M–

t produce la rotazione (detta scorrimento an go lare) di ciascuna sezione rispetto alla contigua, deformando le fibre in modo da assumere la forma di eliche;

— i momenti flettenti M–

fz e M–

fy provocano, rispettivamente, nei piani xy, e xz, contenenti l’asse longitudinale della trave, la curvatura del- le fibre secondo un arco di circonferenza.

Ogni materiale è in grado di sopportare sollecitazioni esterne tanto più intense quanto maggiori sono le forze di coesione molecolare. Tali forze vengono definite tensioni interne e si sviluppano in modo crescente al l’aumentare delle sollecitazioni esterne fino a un certo limite, oltre il qua le le forze di coesione non sono più in grado di tenere insieme le mo- le cole e si ha la rottura del corpo in esame.

Per dimensionare un elemento strutturale si fa riferimento alle ten- sioni interne unitarie, cioè alle tensioni interne per unità di area della sezione, che nel SI si misurano in N/m2 o in N/mm2. Le tensioni inter- ne unitarie dovute a sollecitazioni di trazione, compressione e flessione sono dette tensioni normali σ; quelle dovute a sollecitazioni di taglio e torsione sono dette tensioni tangenziali τ.

(15)

Meccanica, Macchine ed Energia – articolazione Energia 2 – Giuseppe Anzalone, Paolo Bassignana, Giuseppe Brafa Musicoro • Copyright © Ulrico Hoepli Editore S.p.A.

legge di Hooke

Lo studio della resistenza dei materiali è basato sulla legge di propor- zionalità di Hooke, che consente, note le deformazioni, di determinare la distribuzione delle tensioni in una qualsiasi sezione di un solido. Le formulazioni analitiche della legge di Hooke sono:

— σ = E ε, per tensioni e deformazioni normali, ossia parallele all’asse del solido in esame;

— τ = G γ, per tensioni e deformazioni tangenti alla sezione del solido in esame.

E indica il modulo di elasticità normale e G rappresenta il modulo di elasticità tangenziale.

criteri di resistenza dei materiali

Il calcolo strutturale degli elementi di una costruzione o di organi mec- canici si prefigge l’obiettivo di garantirne la sicurezza, cioè di garantire che non si verifichino deformazioni intollerabili o addirittura la rottura dell’organo in esame.

Note le caratteristiche di sollecitazione, in corrispondenza della se- zio ne più pericolosa di un corpo, si possono ricavare i valori delle tensio- ni in ogni punto, identificando i punti più gravosi ai fini della verifica di re sistenza. La verifica di resistenza consiste nell’accertare che il valore della tensione interna massima σmax sia inferiore alla tensione am- missibile statica σmax o carico di sicurezza. Nel caso di sollecitazioni variabili nel tempo, la sicurezza è assicurata, imponendo che le tensioni interne siano inferiori a una nuova tensione limite, definita limite di resistenza a fatica.

Nel caso più generale in cui agiscono contemporaneamente due o più caratteristiche di sollecitazione, che danno origine a uno stato di tensio- ne pluriassiale, la tensione ammissibile si confronta con una tensione ideale σid monoassiale ugualmente pericolosa, nel senso che ap plicata da sola farebbe raggiungere all’elemento in esame la stessa condizione limite provocata dal sistema pluriassiale di tensioni effettivamente applicate.

Riassumendo, lo studio di una struttura resistente è composto dalle seguenti parti:

— calcolo delle reazioni vincolari;

— determinazione delle sollecitazioni massime agenti sulla struttura;

— valutazione della tensione ammissibile;

— dimensionamento o verifica della struttura, confrontando la tensio- ne interna massima con la tensione ammissibile;

— eventuale calcolo delle deformazioni.

La verifica consiste nel determinare la tensione interna massima cui è soggetto il materiale, verificando che essa sia inferiore al valore della tensione ammissibile. Il dimensionamento consiste nel determinare le dimensioni minime della sezione resistente dell’organo in esame, im- ponendo che la tensione interna massima del materiale non superi la tensione ammissibile.

(16)

Meccanica, Macchine ed Energia – articolazione Energia 2 – Giuseppe Anzalone, Paolo Bassignana, Giuseppe Brafa Musicoro • Copyright © Ulrico Hoepli Editore S.p.A.

sollecitazioni di fatica

Le forze applicate agli organi di macchine raramente sono costanti, ma variano periodicamente nel tempo, secondo cicli che si ripetono un ele- vato numero di volte durante la vita della macchina, generando solleci- tazioni dette di fatica. Un materiale, soggetto a un tale tipo di solleci- tazione, presenta una resistenza minore rispetto a quella che avrebbe se fosse sottoposto a sollecitazioni statiche della stessa intensità massima.

Secondo il genere di ciclo di carico seguito, si possono avere solle- citazioni di fatica pulsante o alternata. Per definire un ciclo di carico occorre indicare i valori massimo σmax e minimo σmin, entro i quali oscilla la tensione nel punto più sollecitato, ricavando i seguenti parametri ca- ratteristici comuni a tutti i tipi di sollecitazione:

— ampiezza dell’oscillazione della tensione σa;

— tensione media σm.

Lo studio della resistenza a fatica si realizza sperimentalmente con mac- chine di prova, la più comune delle quali è quella per prove di flessione rotante. I risultati delle prove di fatica si possono riportare su un dia- gramma, detto di Wöhler, con in ascisse il numero di cicli n che provocano la rottura e in ordinate i valori dell’ampiezza della tensione σa,corrispon- dente al carico massimo in ogni ciclo. Osservando una curva di Wöhler si nota un tratto rapidamente decrescente nel verso crescente delle ascisse, seguito da un tratto che tende asintoticamente alla retta parallela all’as- se delle ascisse, la cui ordinata corrisponde al valore del limite di resi- stenza a fatica σLF.

Si definisce limite di resistenza a fatica σLF la sollecitazione li mi- te al di sotto della quale non si verifica la rottura di una provetta, per grande che sia il numero di cicli cui è sottoposta.

Un altro diagramma, molto utilizzato per avere una chiara rappre- sentazione dei risultati delle prove di fatica condotte sui materiali, è il dia gramma di Goodman-Smith. Esso consente di ricavare, per un qua lunque valore della tensione media σm, i corrispondenti valori delle tensioni limite per i vari tipi di sollecitazione.

Il valore del limite di resistenza a fatica relativo al materiale consi- derato e al tipo di sollecitazione agente, essendo ottenuto con prove fatte su provette standard (diametro di circa 10 mm, superfici lucidate e sen za intagli), non trova esatto riscontro se si opera sugli organi meccanici con differenti caratteristiche rispetto alle provette. Questi organi, infatti, ri- sentono dell’influenza delle dimensioni geometriche, della finitura super- ficiale e della forma del corpo, che ne diminuiscono la resistenza a fatica.

Per ottenere la tensione ammissibile a fatica, indispensabile per i calcoli di progetto e di verifica di elementi strutturali e organi meccani- ci, occorre considerare che i limiti di fatica sono soggetti oltre che all’in- fluenza delle dimensioni, della finitura superficiale e della forma del corpo, a tutte quelle incertezze già indicate per le tensioni ammissibili con carichi statici. Per tener conto di ciò, i valori delle tensioni limite di fatica devono essere ulteriormente ridotti, dividendoli per un coefficien- te o grado di sicurezza gf. Eventuali sovra sollecitazioni dinamiche, conseguenti all’applicazione impulsiva dei carichi, si considerano me- diante un coefficiente di esercizio.

(17)

Meccanica, Macchine ed Energia – articolazione Energia 2 – Giuseppe Anzalone, Paolo Bassignana, Giuseppe Brafa Musicoro • Copyright © Ulrico Hoepli Editore S.p.A.

Dall’analisi fin qui condotta si deduce che nei calcoli di progetto e di ve- rifica a fatica degli organi meccanici occorre conoscere la tensione limite di resistenza a fatica, il cui valore esatto può essere determinato speri- mentalmente. Tuttavia, in mancanza di dati sperimentali, anche se non esistono relazioni esatte, si possono utilizzare relazioni sperimentali fra tensione di rottura statica e limite di resistenza a fatica, rappresentate dai rapporti di fatica ϕ. Tali rapporti consentono di determinare, in prima approssimazione, il limite di fatica.

(18)

Meccanica, Macchine ed Energia – articolazione Energia 2 – Giuseppe Anzalone, Paolo Bassignana, Giuseppe Brafa Musicoro • Copyright © Ulrico Hoepli Editore S.p.A.

ud12 Problemi di riePiloGo a1

1. Un corpo cilindrico in alluminio, di diametro d = 10 mm, è soggetto a una sollecitazione di trazione in direzione assiale F = 4500 N. Determinare l’allungamento relativo ε subito dal corpo.

2. Due aste, una in acciaio e l’altra in ghisa, sono sottoposte a un allun- gamento relativo ε = 0,0001. Calcolare la tensione interna con cui rea- gisce ciascuna di esse, assumendo per i rispettivi moduli di elasticità:

Eacciaio = 206 000 N/mm2, Eghisa = 117 000 N/mm2.

3. Una barra d’acciaio, di lunghezza l = 2 m e sezione trasversale di area A = 250 mm2, è sottoposta a una sollecitazione di trazione F = 3900 daN.

Sapendo che l’allungamento assoluto della barra è ∆l = 1,5 mm, determi- nare il valore del modulo di elasticità longitudinale E.

4. Calcolare la forza necessaria per allungare di 1 mm un filo di rame, avente lunghezza l = 2 m e diametro d = 4 mm. Si consideri E = 122 600 N/mm2. 5. Determinare la tensione ammissibile statica σams di un corpo cilindrico

in acciaio E 355 (Rm = 590 N/mm2) sollecitato a trazione da una forza F = 8500 daN.

6. Verificare se un getto di bronzo, con sezione circolare di diametro d = 55 mm e soggetto alla sollecitazione di compressione in direzione assiale F=115000N, è in condizioni di sicurezza.

7. Un getto in lega di alluminio, con sezione circolare cava, è sottoposto alla forza di trazione in direzione assiale F = 2000 daN. Sapendo che la sezio- ne a corona circolare ha diametro esterno de = 40 mm e diametro interno di = 35 mm e che il carico di rottura del materiale vale Rm = 245÷340 N/mm2, determinare il grado di sicurezza gR riferito alla rottura.

8. Una lamiera in acciaio, di larghezza l = 1 m, spessore s = 10 mm e ten- sione di snervamento ReL = 235 N/mm2, presenta una fila di 12 fori di diametro d = 22 mm ed è soggetta a una forza di trazione F = 70 000 daN.

Verificarne la resistenza.

Riferimenti

Documenti correlati

Situazione del litorale al 2012 rispetto al 2006 se non fossero stati effettuati interventi (indicatore ASPE).. •  Piena disponibilità

Smith, MB, ChB, MD, FRCOG West London Gynaecological Cancer Centre Hammersmith &amp; Queen Charlotte’s Hospital London, UK. Healy, MRCP, FRCR

Pellino G, Sciaudone G, Caserta V, Candilio G, De Fatico GS, Gagliardi S, Landino I, Patturelli M, Riegler G, Di Caprio EL, Canonico S, Gritti P, Selvaggi F.. Pagina 3 -

DOCUMENTAZIONE TECNICO-INFORMATIVA Rame: KME Rolled Products, “Nuovi prodotti TECU:.. sistemi per facciate

corta analogia con quella della classificazione di Gheyreul, il quale perfezionandola l’ha resa più rigorosa e nello stesso tempo afiche di più facile

La regione con la quota più alta di superficie territoriale protetta delle aree della Rete Natura 2000 è l’Abruzzo, con il 35,7 per cento del territorio e con i suoi 3.871 chilometri

zione della prima valvola radio a due elettrodi, detta diodo, usata in quell'epoca per la ricezione radio e dalla quale ebbero inizio tutte le altre valvole

può essere interrotta o staccata la resistenza d i filtro oppure interrotta o staccata la resistenza di protezione in serie alla placca della reftificatrice,