• Non ci sono risultati.

Prove X∞ n=0 4n 2n 2 28n(2n + 1

N/A
N/A
Protected

Academic year: 2021

Condividi "Prove X∞ n=0 4n 2n 2 28n(2n + 1"

Copied!
1
0
0

Testo completo

(1)

Problem 12180

(American Mathematical Monthly, Vol.127, April 2020) Proposed by P. F. Refolio (Spain).

Prove

X n=0

4n 2n

2

28n(2n + 1) = 2 π −

√2 C2

π3/2 + π1/2

√2 C2,

whereC =R

0 t−1/4e−t= Γ(3/4).

Solution proposed by Roberto Tauraso, Dipartimento di Matematica, Universit`a di Roma “Tor Vergata”, via della Ricerca Scientifica, 00133 Roma, Italy.

Solution. Since

Z π/2 0

sin2n(x) dx = π 22n+1

2n n



and, for |z| < 1,

X

n=0 4n 2nz2n 42n(2n + 1) = 1

z Z z

0

f (z) + f (−z)

2 dz =

√1 + z −√ 1 − z

z =

√2 p1 +√

1 − z2 with f (z) =P

n=0 2n

n

zn 4n =1

1−z, it follows that

X

n=0 4n 2n

2

28n(2n + 1) = 2 π

X

n=0 4n 2n

 42n(2n + 1)

Z π/2 0

sin4n(x) dx

= 2√ 2 π

Z π/2 0

dx r

1 + q

1 − sin4(x)

[sin2(x) = 2pt(1 − t)]

= 1

√2π Z 1/2

0

t1/2+ (1 − t)1/2 t3/4(1 − t)5/4 dt

= 1

√2π Z 1/2

0

t−1/4(1 − t)−5/4dt + Z 1/2

0

t−3/4(1 − t)−3/4dt

!

= 1

√2π

2√

2 − 2B1/2(3/4, 3/4) + B1/2(1/4, 1/4) where

Bx(a, b) = Z x

0

ta−1(1 − t)b−1dt is the so-called Incomplete Beta Function and we used the fact that

d dt

4t3/4(1 − t)−1/4

= t−1/4(1 − t)−5/4+ 2t−1/4(1 − t)−1/4. By noting that

B1/2(a, b) = B1(a, b)

2 = Γ(a)Γ(b) 2Γ(a + b),

Γ(3/2) = Γ(1/2)/2 and, by the Euler’s reflection formula Γ(z)Γ(1 − z) =sin(πz)z , Γ(1/2) =√

π and Γ(1/4)Γ(3/4) =√ 2π, we finally find

X n=0

4n 2n

2

28n(2n + 1)= 1

√2π

 2√

2 − Γ(3/4)2

Γ(3/2) +Γ(1/4)2 2Γ(1/2)



= 2 π−

√2 Γ(3/4)2

π3/2 + π1/2

√2 Γ(3/4)2.



Riferimenti