• Non ci sono risultati.

Prove that Z 1 0 ln(1 − x)(ln(1 + x))2 x dx= −π4 240

N/A
N/A
Protected

Academic year: 2021

Condividi "Prove that Z 1 0 ln(1 − x)(ln(1 + x))2 x dx= −π4 240"

Copied!
2
0
0

Testo completo

(1)

Problem 11993

(American Mathematical Monthly, Vol.124, August-September 2017) Proposed by C. I. V˘alean (Romania).

Prove that

Z 1

0

ln(1 − x)(ln(1 + x))2

x dx= −π4

240.

Solution proposed by Roberto Tauraso, Dipartimento di Matematica, Universit`a di Roma “Tor Vergata”, via della Ricerca Scientifica, 00133 Roma, Italy.

First solution. By letting a = ln(1 − x) and b = ln(1 + x) in the identity 6ab2= (a + b)3+ (a − b)3−2a3, we get

I:=

Z 1

0

ln(1 − x)(ln(1 + x))2

x dx= I1+ I2−2I3

6 where

I1= Z 1

0

(ln(1 − x2))3

x dx=1

2 Z 1

0

ln3(t)

1 − t dt (t = 1 − x2),

I2= Z 1

0

ln

1−x 1+x

3

x dx= 2

Z 1

0

ln3(t)

(1 − t)(1 + t)dt= Z 1

0

ln3(t) 1 − t dt+

Z 1

0

ln3(t)

1 + t dt (t = 1 − x 1 + x), I3=

Z 1 0

(ln(1 − x))3

x dx=

Z 1 0

ln3(t)

1 − t dt (t = 1 − x).

Hence, by the uniform convergence,

I= 1 6

 1

2 + 1 − 2

 Z 1 0

ln3(t) 1 − t dt+

Z 1

0

ln3(t) 1 + t dt



= 1 6 −1

2

X

n=0

Z 1

0

tnln3(t) dt +

X

n=0

(−1)n Z 1

0

tnln3(t) dt

!

= 1 6

6 2

X

n=0

1

(n + 1)4 −6

X

n=0

(−1)n (n + 1)4

!

= ζ(4)

2 −7ζ(4)

8 = −3ζ(4) 8 = −3

8 ·π4

90 = − π4 240 where we used the fact that for any non-negative integers m, n,

Z 1

0

tnlnm(t) dt = 1

n+ 1tn+1lnm(t)1

0− m n+ 1

Z 1

0

tnlnm−1(t) dt = (−1)mm!

(n + 1)m+1.



(2)

Second solution. For x ∈ [0, 1],

(ln(1 + x))2= 2

X

n=1

Hn(−x)n+1 n+ 1 where Hn =Pn

k=1 1

k. Hence, by the uniform convergence, I: =

Z 1

0

ln(1 − x)(ln(1 + x))2

x dx= 2

X

n=1

(−1)n+1Hn

n+ 1 Z 1

0

xnln(1 − x) dx

= 2

X

n=1

(−1)nHnHn+1

(n + 1)2 = 2

X

n=1

(−1)n−1Hn2

n2

X

n=1

(−1)n−1Hn

n3

! ,

where we used the fact that Z 1

0

xnln(1 − x) dx = − 1 n+ 1

Z 1 0

ln(1 − x) d(1 − xn+1)

= − 1

n+ 1ln(1 − x)(1 − xn+1)1

0− 1 n+ 1

Z 1 0

1 − xn+1 1 − x dx

= − 1 n+ 1

Z 1

0 n

X

k=0

xkdx= −Hn+1

n+ 1. Since the values of the two following Euler sums are known,

X

n=1

(−1)n−1Hn

n3 =41

16ζ(4) − 2Li4

 1 2



−7

4log(2)ζ(3) +1

2log2(2)ζ(2) − 1

12log4(2),

X

n=1

(−1)n−1Hn2

n2 =11

4 ζ(4) − 2Li4

 1 2



−7

4log(2)ζ(3) +1

2log2(2)ζ(2) − 1

12log4(2), we may conclude that

I= 2 41

16ζ(4) −11 4 ζ(4)



= −3 8 ·π4

90 = −π4 240.



Riferimenti