• Non ci sono risultati.

Prove that X(1 + t1+ t2

N/A
N/A
Protected

Academic year: 2021

Condividi "Prove that X(1 + t1+ t2"

Copied!
1
0
0

Testo completo

(1)

Problem 11767

(American Mathematical Monthly, Vol.121, March 2014)

Proposed by M. Merca (Romania).

Prove that

X(1 + t1+ t2+ · · · + tn)!

(1 + t1)!t2! · · · tn! = 2n− Fn

where the sum is over all nonnegative integer solutions to t1+ 2t2+ · · · + ntn= n and Fk is the kth Fibonacci number.

Solution proposed by Roberto Tauraso, Dipartimento di Matematica, Universit`a di Roma “Tor Vergata”, via della Ricerca Scientifica, 00133 Roma, Italy.

Let F (x, y) = (exy− 1)e1−xx2 y for x, y ∈ (−1, 1) then

F (x, y) = (exy− 1)

Y

k=2

ex2y =

X

t1=0

(xy)1+t1 (1 + t1)!

Y

k=2

X

tk=0

(xky)tk tk! =

X

n=0

X

y1+t1+t2+···+tn (1 + t1)!t2! · · · tn!xn+1

whereP

is over all nonnegative integer solutions to t1+ 2t2+ · · · + ntn= n. Hence

X

n=0

X

(1 + t1+ t2+ · · · + tn)!

(1 + t1)!t2! · · · tn! xn+1=

X

m=0

m(F (x, y))

∂ym y=0

=

X

m=0 m

X

k=0

m k

 ∂m−k(exy− 1)

∂ym−k y=0

· ∂k(e1−xx2 y)

∂yk y=0

=

X

m=0 m

X

k=0

m k



(xm−k− δm,k) · x2k (1 − x)k

=

X

m=0

xm

m

X

k=0

m k

 xk

(1 − x)k − x2m (1 − x)m

!

=

X

m=0

 xm

 1 + x

1 − x

m

− x2m (1 − x)m



=

X

m=0

xm− x2m (1 − x)m

=

X

m=1

 x 1 − x

m

X

m=1

 x2 1 − x

m

= x

1 − 2x− x2 1 − x − x2

=

X

n=0

(2n− Fn) xn+1,

which implies that for any nonnegative integer n,

X

(1 + t1+ t2+ · · · + tn)!

(1 + t1)!t2! · · · tn! = 2n− Fn.



Riferimenti