• Non ci sono risultati.

In our case Γ is a continuous real function in (0

N/A
N/A
Protected

Academic year: 2021

Condividi "In our case Γ is a continuous real function in (0"

Copied!
1
0
0

Testo completo

(1)

Problem 11808

(American Mathematical Monthly, Vol.121, December 2014)

Proposed by D.M. Batinetu-Giurgiu (Romania) and N. Stanciu (Romania).

Compute

n→∞lim n2

Z ((n)!)−1/n

((n+1)!)−1/(n+1)

Γ(nx) dx.

Solution proposed by Roberto Tauraso, Dipartimento di Matematica, Universit`a di Roma “Tor Vergata”, via della Ricerca Scientifica, 00133 Roma, Italy.

We will show that if f is a continuous real function in (a, b) and e ∈ (a, b) then

n→∞lim n2

Z ((n)!)−1/n

((n+1)!)−1/(n+1)

f (nx) dx = ef (e).

In our case Γ is a continuous real function in (0, +∞) and therefore the required limit is eΓ(e).

Let bn= n(n!)−1/n and an = n((n + 1)!)−1/(n+1), then by the Mean Value Theorem for integrals,

n2

Z ((n)!)−1/n

((n+1)!)−1/(n+1)

f (nx) dx = n Z bn

an

f (t) dt = n(bn− an)f (tn)

for some tn ∈ (an, bn). Now, by the Stirling approximation formula,

ln(n!) = n ln(n) − n +1

2ln(n) + ln(√

2π) + O(1/n).

Hence

bn= n exp(− ln(n!)/n) = e − e ln(n)

2n −e ln(√ 2π)

n + O(ln2(n)/n2), bn− an = bn−nbn+1

n + 1 = e

n+ O(ln(n)/n2), which imply that

n→∞lim bn= lim

n→∞an= lim

n→∞tn= e and, by the continuity of f at e,

n→∞lim n(bn− an)f (tn) = ef (e).



Riferimenti