• Non ci sono risultati.

odd and even lowertriangularToeplitz(l.t.T.)systems.InapaperRamanujanwritesdownasparselowertriangularsystemsolvedbyBernoullinumbers;weobservethatsuchsystemisequivalenttoasparsel.t.T.system.Theattempttoobtainthesparsel.t.T.Ramanujansystemfromthel.t.T.oddan

N/A
N/A
Protected

Academic year: 2021

Condividi "odd and even lowertriangularToeplitz(l.t.T.)systems.InapaperRamanujanwritesdownasparselowertriangularsystemsolvedbyBernoullinumbers;weobservethatsuchsystemisequivalenttoasparsel.t.T.system.Theattempttoobtainthesparsel.t.T.Ramanujansystemfromthel.t.T.oddan"

Copied!
22
0
0

Testo completo

(1)

Due Giorni di Algebra Lineare Numerica www.dima.unige.it/∼dibenede/2gg/home.html Genova, 16–17 Febbraio 2012

Bernoulli, Ramanujan, Toeplitz e le matrici triangolari

Carmine Di Fiore, Francesco Tudisco, Paolo Zellini Speaker: Carmine Di Fiore

By using one of the definitions of the Bernoulli numbers, we observe that they solve particular odd and even lower triangular Toeplitz (l.t.T.) systems.

In a paper Ramanujan writes down a sparse lower triangular system solved by Bernoulli numbers; we observe that such system is equivalent to a sparse l.t.T. system.

The attempt to obtain the sparse l.t.T. Ramanujan system from the l.t.T. odd and even systems, leads us to study efficient methods for solving generic l.t.T. systems.

(2)

Bernoulli numbers are the rational numbers satisfying the following identity t

et− 1 =

+∞

X

n=0

Bn(0)

n! tn= −1 2t +

+∞

X

k=0

B2k(0) (2k)! t2k. So, they satisfy the following linear equations

1 2j +

[j−12 ]

X

k=0

 j 2k



B2k(0) = 0, j = 2, 3, 4, . . . ,

j even :

 2 0



 4 0

  4 2



 6 0

  6 2

  6 4



 8 0

  8 2

  8 4

  8 6



· · · · ·

B0(0) B2(0) B4(0) B6(0)

·

=

1 2 3 4

·

,

j odd :

 1 0



 3 0

  3 2



 5 0

  5 2

  5 4



 7 0

  7 2

  7 4

  7 6



· · · · ·

B0(0) B2(0) B4(0) B6(0)

·

=

1 3/2 5/2 7/2

·

.

In other words, the Bernoulli numbers can be obtained by solving (by forward substitution) a lower triangular linear system (one of the above two). For example, by forward solving the first system, I have obtained the first Bernoulli numbers:

B0(0) = 1, B2(0) = 1

6, B4(0) = −1

30, B6(0) = 1

42, B8(0) = −1

30, B10(0) = 5 66, B12(0) = −691

2730, B14(0) = 7

6 ≈ 1.16, B16(0) = −47021

6630 ≈ −7.09, . . .

Bernoulli numbers appear in the Euler-Maclaurin summation formula, and, in particular, in the expression of the error of the trapezoidal quadrature rule as sum of even powers of the integration step h (the expression that justifies the efficiency of the Romberg-Trapezoidal quadrature method).

Bernoulli numbers are also often involved when studying the Riemann-Zeta function. For example, well known is the following Euler formula:

ζ(s) =

+∞

X

k=1

1

ks, ζ(2n) = 4n|B2n(0)|π2n

2(2n)! , n ∈ 1, 2, 3, . . . (see also [Riemann’s Zeta Function, H. M. Edwards, 1974]).

The Ramanujan’s paper we refer in the following is entitled “Some properties of Bernoulli’s numbers” (1911).

(3)

The coefficient matrices of the previous two lower triangular linear systems are submatrices of the matrix X displayed here below:

X =

 0 0



 1 0

  1 1



 2 0

  2 1

  2 2



 3 0

  3 1

  3 2

  3 3



 4 0

  4 1

  4 2

  4 3

  4 4



 5 0

  5 1

  5 2

  5 3

  5 4

  5 5



 6 0

  6 1

  6 2

  6 3

  6 4

  6 5

  6 6



· · · · · · · ·

=

1 1 1 1 2 1 1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

· · · · · · ·

.

One can easily observe that X can be rewritten as a power series:

X =

+∞

X

k=0

1

k! Yk, Y =

0 1 0

2 0 3 0

4 0

· ·

Proof: [X]ij = 1

(i − j)![Yi−j]ij= 1

(i − j)!j · · · (i − 2)(i − 1) = i − 1 j − 1



, 1 ≤ j ≤ i ≤ n.

This remark is the starting point in order to show that

2

12 30

56

·

+∞

X

k=0

1

(2k + 2)!φk=

 2 0



 4 0

  4 2



 6 0

  6 2

  6 4



 8 0

  8 2

  8 4

  8 6



· · · · ·

,

1

3 5

7

·

+∞

X

k=0

1

(2k + 1)!φk=

 1 0



 3 0

  3 2



 5 0

  5 2

  5 4



 7 0

  7 2

  7 4

  7 6



· · · · ·

,

whereφ =

0 2 0

12 0

,2 = 1 · 2, 12 = 3 · 4, 30 = 5 · 6, . . . .

(4)

It follows that the linear systems solved by the Bernoulli numbers, can be rewritten as follows, in terms of the matrix φ:

+∞

X

k=0

2 1

(2k + 2)!φk

B0(0) B2(0) B4(0) B6(0)

·

= 2

1/2 2/12 3/30 4/56 5/90

·

= 2

1/2 1/6 1/10 1/14 1/18

·

=: qe, (almosteven)

+∞

X

k=0

1 (2k + 1)!φk

B0(0) B2(0) B4(0) B6(0)

·

=

1/1 (3/2)/3 (5/2)/5 (7/2)/7 (9/2)/9

·

=

1 1/2 1/2 1/2 1/2

·

=: qo. (almostodd)

Now we transform φ into a Toeplitz matrix. We have that

DφD−1=

d1

d2

d3

d4

·

0 2 0

12 0 30 0

56 0

· ·

d−11

d−12 d−13

d−14

·

=

0 2dd2

1 0

12dd3

2 0

30dd4

3 0

56dd5

4 0

· ·

= xZ, Z =

0 1 0

1 0 1 0

1 0

· ·

,

iff dk= xk−1d1

(2k − 2)!, k = 1, 2, 3, . . ., iff

D = d1Dx, Dx=

1

x 2!

x2 4! ·

xn−1 (2n−2)!

·

.

We are ready to introduce the two even and odd lower triangular Toeplitz (l.t.T.) systems solved by the Bernoulli numbers. Set

b =

B0(0) B2(0) B4(0)

·

where the B (0), i = 0, 1, 2, . . ., are the Bernoulli numbers.

(5)

Then the (almosteven) systemP+∞

k=02(2k+2)!1 φkb = qeis equivalent to the systemP+∞

k=02(2k+2)!1 (DxφD−1x )k(Dxb) = Dxqe, i.e. to the following l.t.T. even system:

+∞

X

k=0

2 xk

(2k + 2)!Zk(Dxb) = Dxqe. (even) Idem, the (almostodd) systemP+∞

k=0 1

(2k+1)!φkb = qois equivalent to the systemP+∞

k=0 1

(2k+1)!(DxφD−1x )k(Dxb) = Dxqo, i.e. to the following l.t.T. odd system:

+∞

X

k=0

xk

(2k + 1)!Zk(Dxb) = Dxqo. (odd)

So, Bernoulli numbers can be computed by using a l.t.T. linear system solver. Such solver yields the following vector z:

z = Dxb =

1 · B0(0)

x 2!B2(0)

x2 4!B4(0)

·

xs

(2s)!B2s(0)

·

xn−1

(2n−2)!B2n−2(0)

·

,

from which one obtains the vector of the first n Bernoulli numbers:

{b}n = {Dx−1z}n. Why x positive different from 1 may be useful?

A suitable choice of x can make possible and more stable the computation via a l.t.T. solver of the entries zi

of z for very large i. In fact, since xi

(2i)!B2i(0) ≈ (−1)i+1pi, pi= xi (2i)!4

πi i2i

(πe)2i, pi+1 pi

x

2,

we have that |(2i)!xi B2i(0)| → 0 (+∞) if x < 4π2 (x > 4π2), both bad situations. Instead, for x ≈ 4π2 = 39.47.. the sequence |(2i)!xi B2i(0)|, i = 0, 1, 2, . . ., should be lower and upper bounded. . . .

|(4)!x2 B4(0)| ≤ 1 iff |x| ≤ 26.84

|(8)!x4 B8(0)| ≤ 1 iff |x| ≤ 33.2

|(16)!x8 B16(0)| ≤ 1 iff |x| ≤ 36.2

|(32)!x16 B32(0)| ≤ 1 about iff |x|1612931 (8.54)4·7.0932 iff |x| ≤ 37.82

|(2s)!xs B2s(0)| ≤ 1 about iff |(2s)!xs 4

πs(πe)s2s2s| ≤ 1 iff |x|s(2s)!s2s

(πe)2s 4

πs . . . More generally, the parameter x should be used to make more stable the l.t.T. solver.

(6)

Ramanujan in a paper states that the Bernoulli numbers B2(0), B4(0), B6(0), . . ., satisfy the following lower triangular sparse system of linear equations:

1

0 1

0 0 1

1

3 0 0 1

0 52 0 0 1

0 0 11 0 0 1

1

5 0 0 1434 0 0 1

0 4 0 0 2863 0 0 1

0 0 2045 0 0 221 0 0 1

1

7 0 0 19387 0 0 32307 0 0 1

0 112 0 0 71065 0 0 35534 0 0 1

· · · · · · · · · · · ·

B2(0) B4(0) B6(0) B8(0) B10(0) B12(0) B14(0) B16(0) B18(0) B20(0) B22(0)

·

=

1/6

−1/30 1/42 1/45

−1/132 4/455 1/120

−1/306 3/665 1/231

−1/552

·

(actually, since Ramanujan-Bernoulli numbers are the moduli of ours, his equations, obtained by an analytical proof, are a bit different).

So, for example, from the above equations I have easily computed the Bernoulli numbers B18(0), B20(0), B22(0) (from the ones already computed):

B18(0) = 43867

798 ≈ 54.97, B20(0) = −174611

330 ≈ −529.12, B22(0) = 854513

138 ≈ 6192.12.

Problem.

Is it possible to obtain such Ramanujan lower triangular sparse system of equations from our odd and even l.t.T. linear systems ? Is it possible to obtain other sparse equations (hopefully more sparse than Ramanujan ones) defining the Bernoulli numbers ?

Note that the Ramanujan matrix, say R, has nonzero entries exactly in the places where the following Toeplitz matrix

+∞

X

k=0

γk(Z3)k, Z =

0 1 0

1 0

· ·

has nonzero entries. But R it is not a Toeplitz matrix !

. . . break for some months . . .

Note that the vector of the indeterminates in the Ramanujan system is ZT times our vector b:

B2(0) B4(0) B6(0)

·

=

0 1

0 1 0 ·

·

B0(0) B2(0) B4(0)

·

= ZTb.

So, the Ramanujan system can be rewritten as follows

R(ZTb) = f , f = [ f1f2f3 · ]T.

(7)

Remark

The Ramanujan matrix R satisfies the following identity involving a sparse lower triangular Toeplitz matrix R:˜

R

2!

x 4!

x2 6!

x3

·

=

2!

x 4!

x2 6!

x3

·

R,˜ R =˜

+∞

X

s=0

2 x3s

(6s + 2)!(2s + 1)Z3s.

RZTb = f , f = [f1f2f3· ]T iff

R

2!

x 4!

x2 6!

x3

·

x 2!

x2 4!

x3 6!

·

ZTb = f iff

2!

x 4!

x2 6!

x3

·

R˜

x 2!

x2 4!

x3 6!

·

ZTb = f iff

R˜

x 2!

x2 4!

x3 6!

·

B2(0) B4(0) B6(0)

·

=

x 2!

x2 4!

x3 6!

·

f1 f2 f3

·

.

So, the Ramanujan system is is equivalent to the following sparse l.t.T. system:

R (Z˜ TDxb) =

x 2!

x2 4!

x3 6!

·

f1

f2

f3

·

, where

R = L(a˜ R) =

1

0 1

0 0 1

2

8!3x3 0 0 1

0 8!32 x3 0 0 1

0 0 8!32 x3 0 0 1

2

14!5x6 0 0 8!32 x3 0 0 1

0 14!52 x6 0 0 8!32 x3 0 0 1 0 0 14!52 x6 0 0 8!32 x3 0 0 1

2

20!7x9 0 0 14!52 x6 0 0 8!32 x3 0 0 1

0 20!72 x9 0 0 14!52 x6 0 0 8!32 x3 0 0 1

· · · · · · · · · · · ·

, aR=

1 0 0

2 8!3x3

0 0

2 14!5x6

0 0

2 20!7x9

0

·

.

Note the new notation : a =

a0

a1

a2

·

L(a) =

a0

a1 a1

a2 a1 a2

· · · ·

.

(8)

THEOREM

Notations: Z is the lower shift matrix

Z =

0 1 0

1 0

· ·

,

L(a) is the lower triangular Toeplitz matrix with first column a, i.e.

a =

a0 a1 a2

·

, L(a) =

+∞

X

i=0

aiZi=

a0 a1 a0 a2 a1 a0 a3 a2 a1 a0

· · · · ·

,

d(z) is the diagonal matrix with zi as diagonal entries.

Set

b =

B0(0) B2(0) B4(0)

·

, Dx= diag ( xi

(2i)!, i = 0, 1, 2, . . .), x ∈ R,

where B2i(0), i = 0, 1, 2, . . ., are the Bernoulli numbers.

Then the vectors Dxb and ZTDxb solve the following l.t.T. linear systems L(a) (Dxb) = Dxq, L(a) (ZTDxb) = d(z)ZTDxq,

where the vectors a = (ai)+∞i=0, q = (qi)+∞i=0, and z = (zi)+∞i=1, can assume respectively the values:

aRi = δi=0mod3

2xi

(2i + 2)!(23i + 1), qRi = 1

(2i + 1)(i + 1)(1 − δi=2mod3

3

2), i = 0, 1, 2, 3, . . . zRi = 1 − δi=0mod3

1

2

3i + 1, i = 1, 2, 3, . . . , aei = 2xi

(2i + 2)!, qei = 1

2i + 1, i = 0, 1, 2, 3, . . . zie= i

i + 1, i = 1, 2, 3, . . . , aoi = xi

(2i + 1)!, i = 0, 1, 2, 3, . . . , qo0= 1, qoi = 1

2, i = 1, 2, 3, . . . zoi = 2i − 1

2i + 1, i = 1, 2, 3, . . . .

(9)

Problem (regarding the computation of the Bernoulli numbers).

Can the Ramanujan l.t.T. sparse system

L(aR)Dxb = DxqR, be obtained as a consequence of the even and odd l.t.T. system

L(ae)Dxb = Dxqe, L(ao)Dxb = Dxqo ?

→ find ˆae, ˆao such that L(ˆae)L(ae) = L(a(1)) = L(ˆao)L(ao), i.e. such that L(aeae= a(1)= L(aoao,

with a(1)= aR=

1 0 0

·

or a(1) more sparse than aR.

Important: the computation of such vectors ˆae, ˆao and a(1)should be cheaper than solving the original even and odd (dense) systems.

A more general problem: is it possible to transform efficiently a generic l.t.T. matrix into a more sparse l.t.T.

matrix ?

→ Question: given ai, i = 1, 2, 3, . . ., is it possible to obtain “cheaply” ˆai and a(1)i such that

1 a1 1 a2 a1 1 a3 a2 a1 1

· · · · ·

1 ˆ a1

ˆ a2

ˆ a3

·

=

1 0 a(1)1

0

·

;

1 a1 1 a2 a1 1 a3 a2 a1 1 a4 a3 a2 a1 1 a5 a4 a3 a2 a1 1

· · · · ·

1 ˆ a1

ˆ a2

ˆ a3

ˆ a4

ˆ a5

·

=

1 0 0 a(1)1

0 0

·

;

1 a1 1 a2 a1 1 a3 a2 a1 1 a4 a3 a2 a1 1 a5 a4 a3 a2 a1 1

· · · · ·

1 ˆ a1

ˆ a2

ˆ a3

ˆ a4

ˆ a5

·

=

1 0 a(1)1

0 a(1)2

0

·

= γ, 0 ∈ Rb−1 ?

If the answer is yes, then a dense l.t.T system can be transformed efficiently into a sparse l.t.T. system:

L(a)z = c iff L(ˆa)L(a)z = L(ˆa)c iff L(γ)z = L(ˆa)c.

Riferimenti

Documenti correlati

Le risorse economiche, destinate alla produttività sono suddivise pro-quota tra il personale dipendente sulla base della percentuale di coinvolgimento dei dipendenti

Il fondo di produttività, in applicazione delle disposizioni dei contratti collettivi nazionali vigenti nel Comparto Funzioni Locali, è stato quantificato

Toys center &amp; Bimbo Store. Gift Card da 100€ spendibile in tutti negozi Toys center e Bimbo

In spiaggia sono disponibili barche a vela e windsurf (salvo negli orari dei corsi), canoe, pedalò, paddle surf, campo da beach tennis, campo da beach volley e servizi del

Dopo il successo ottenuto nella precedente edizione a Madonna di Campiglio, lo Staff della Nazionale Montepaschi Sport e la Sezione Calcio del Cral, propongono ai Soci, ai

Le regioni, per quanto concerne le proprie amministrazioni, e gli enti locali possono destinare risorse aggiuntive alla contrattazione integrativa nei limiti

Secondo tali previsioni il gettito IVA sugli scambi interni era previsto aumentare di 2,5 miliardi nel 2019 rispetto al 2018 (+2,1 per cento), di cui 2,3 miliardi attribuibile

Ai sensi dell’attuale Regolamento degli Uffici e dei Servizi, ogni anno l’Ente è tenuto ad approvare un Piano delle Performance che deve contenere le attività di processo