• Non ci sono risultati.

1.10 I trasportatori dei metall

ZIP 4 2 2 Potri.010g134300 Potri.010g135400 AT2G04032 AtZIP7 sistema fiorale Foglie, fusto e

4.3 Conclusioni e prospettive future

I risultati ottenuti ci hanno permesso di osservare una risposta organo-specifica e gene-specifica causata dal trattamento a concentrazione sub-letale di zinco. Infatti, tutti i trasportatori ZIP sono espressi a livello della radice tra cui Zip4 e Zip9 che presentano un forte cambio d’espressione rispetto al controllo. Interessante è risultato il comportamento di Zip6 che presenta una sotto espressione statisticamente significativa in tutti gli organi delle piante in entrambi i sistemi utilizzati.

I risultati ottenuti ci hanno permesso di effettuare ipotesi sul ruolo dei geni Zip che governano insieme alle altre famiglie di trasportatori l’omeostasi dei metalli nella pianta. Non dobbiamo dimenticare che i risultati da noi ottenuti sono, quindi, influenzati indirettamente dai livelli d’espressione di tutti i trasportatori presenti nella pianta. Questo è stato uno studio preliminare che suggerisce l’allestimento di tutta una serie di prove atte alla caratterizzazione dei vari trasportatori nel pioppo. Infatti, i gruppi di geni Zip che presentano un tendente aumento o abbassamento dei livelli d’espressione non significativo statisticamente a seguito del trattamento, potrebbero essere oggetto di futuri studi in cui affinare il rilevamento di questi misurando l’espressione dei singoli geni facenti parte del gruppo. Ulteriori studi potrebbero essere condotti sugli Zip e su altre famiglie di trasportatori sia in carenza che in eccesso di zinco. Inoltre, l’allestimento di prove di stress da eccesso o da carenza di altri metalli permetterebbe la conferma di eventuali competizioni nell’assorbimento e lo studio della variazione alla risposta dei trasportatori ai vari metalli.

Le linee di piante transgeniche con UPr51 potranno essere utilizzate per effettuare prove di carenza e di eccesso di zinco in modo tale da rilevare l’effetto indotto sulla pianta dalla sovra espressione di questo trasportatore ZIP. Inoltre, una migliore comprensione del funzionamento di questi trasportatori all’interno della pianta sarebbe possibile tramite la creazione di altre piante transgeniche silenziando o sovra esprimendo i geni Zip studiati e allestendo prove non solo in presenza di un eccesso di zinco ma anche in carenza.

109

BIBLIOGRAFIA

Adams, J.P., Adeli, A., Hsu, C.-Y.Y., Harkess, R.L., Page, G.P., de Pamphilis, C.W., Schultz, E.B. e Yuceer, C., 2011. Poplar maintains zinc homeostasis with heavy metal genes HMA4 and PCS1. Journal of experimental botany 62: 3737–52.

Alloway, B.J., 2008. Zinc in Soils and Crop Nutrition. IZA Publications. International Zinc Association, Brussels.

Alloway, B.J., 1990. Soil processes and the behaviour of heavy metals. Chapter 2, In Alloway, B.J. (ed.) Heavy Metals in Soils, Blackie Academic and Professional (Glasgow), pp 7-28.

Baker, A.J.M. e Brooks, R.R., 1989. Terrestrial higher plants which hyperaccumulate metal elements: A review of their distribution, ecology, and phytochemistry. Biorecovery, vol. 1, pp 81-126.

Barak, P. e Helmke, P.A., 1993. The Chemistry of Zinc. Chap 1 in Robson, A.D. (ed.) Zinc in Soils and Plants, Kluwer Academic Publishers, Dordrecht. pp 90-106.

Borghi, M., Tognetti, R., Monteforti, G. e Sebastiani, L., 2008. Responses of two poplar species (Populus alba and Populus x canadensis) to high copper concentrations. Environmental and Experimental Botany 62, pp. 290–299.

Bradley, R., Burt, J.A. e Read, D.J., 1981. Mycorrhizal infection and resistance to heavy metal toxicity in Calluna vulgaris. Nature, 292, 335 – 337.

Broadley, M.R., White, P.J., Hammond, J.P., Zelko, I. e Lux, A., 2007. Zinc in plants. The New phytologist 173, pp 677–702.

Brown, P.H., Cakmak, I. e Zhang, Q. 1993. Form and function of zinc in plants. Capitolo 7 in Robson, A.D. Zinc in Soils and Plants, Kluwer Academic Publishers, Dordrecht. pp 90-106.

110 Cakmak, I., Tolay, I., Özkan, H., Özdemir, A. e Braun, H., 1999. Variation in zinc efficiency among and within Aegilops species. Journal of Plant Nutrition and Soil Science 162: 257–26. Castiglione, S., Franchin, C., Fossati, T., Lingua, G., Torrigiani, P. e Biondi, S., 2007. High zinc

concentrations reduce rooting capacity and alter metallothionein gene expression in white poplar (Populus alba L. cv. Villafranca). Chemosphere 67, pp. 1117–1126.

Chardonnens, A.N., Koevoets, P.L.M., van Zanten, A., Schat H. e Verkleij J.A.C., 1999. Properties of Enhanced Tonoplast Zinc Transport in Naturally Selected Zinc-Tolerant Silene vulgaris. Plant Physiology, vol. 120 no. 3 779-786.

Chaudry, F.M. e Loneragan, J.F., 1972. Zinc absorption by wheat seedlings. 1. inhibition by macronutrient ions in short term experiments and its relevance to long term zinc nutrition. Soil Society of America Proceedings, 36, 323-327.

Ciadamidaro, L., Madejón, E., Robinson, B. e Madejón, P., 2014. Soil plant interactions of Populus alba in contrasting environments. Journal of environmental management 132, pp. 329–337. Cicatelli, A., Lingua, G., Todeschini, V., Biondi, S., Torrigiani, P. e Castiglione, S., 2010.

Arbuscular mycorrhizal fungi restore normal growth in a white poplar clone grown on heavy metal-contaminated soil, and this is associated with upregulation of foliar metallothionein and polyamine biosynthetic gene expression. Annals of botany, 106, pp 791–802

Claus, J., Bohmann, A. e Chavarría-Krauser, A., 2013. Zinc uptake and radial transport in roots of Arabidopsis thaliana: a modelling approach to understand accumulation. Annals of botany 112: 369–80.

Clemens S., 2001. Molecular mechanisms of plant metal tolerance and homeostasis. Planta 212: 475–86.

111 Cobbett, C.S., 2000. Phytochelatins and their roles in heavy metal detoxification. Plant physiology

123: 825–32.

Colangelo, E.P. e Guerinot, M.L., 2006. Put the metal to the petal: metal uptake and transport throughout plants. Current opinion in plant biology 9: 322–30.

Confalonieri, M., Balestrazzi, A., Bisoffi, S., Carbonera, D., 2003. In vitro culture and genetic engineering of Populus spp.: synergy for forest tree improvement. Plant Cell Tissue Organ Cult. 72, 109–138.

Deinlein, U., Weber, M., Schmidt, H., Rensch, S., Trampczynska, A., Hansen, T., Husted, S., Schjoerring, J., Talke, I. e Krämer, U. e Clemens, S., 2012. Elevated nicotianamine levels in Arabidopsis halleri roots play a key role in zinc hyperaccumulation. The Plant cell 24: 708– 23.

Delledonne, M., Allegro, G., Belenghi, B., Balestrazzi, A., Picco, F., Levine, A., Zelasco, S., Calligari P., & Confalonieri, M., 2001. Transformation of white poplar (Populus alba L.) with a novel Arabidopsis thaliana cysteine proteinase inhibitor and analysis of insect pest resistance. Molecular Breeding 7, 35-42.

Di Baccio, D., Galla, G., Bracci, T., Andreucci, A., Barcaccia, G., Tognetti, R., Sebastiani, L., 2011. Transcriptome analyses of Populus x euramericana clone I-214 leaves exposed to excess zinc. Tree Physiol. 31, 1293–1308.

Di Baccio, D., Minnocci, A. e Sebastiani, L., 2010. Leaf structural modifications in Populus × euramericana subjected to Zn excess. Biologia Plantarum 54, pp. 502–508.

Di Baccio, D., Tognetti, R., Minnocci, A., Sebastiani, L., 2009. Responses of the

Populus × euramericana clone I-214 to excess zinc: Carbon assimilation, structural

112 Di Baccio, D., Kopriva, S., Sebastiani, L. e Rennenberg, H., 2005. Does glutathione metabolism

have a role in the defence of poplar against zinc excess? New Phytologist 167, pp 73-80. Di Lonardo, S., Capuana, M., Arnetoli, M., Gabbrielli, R. e Gonnelli, C., 2011. Exploring the metal

phytoremediation potential of three Populus alba L. clones using an in vitro screening. Environmental science and pollution research international 18: 82–90.

Duffus, G.H., 2002. “HEAVY METALS”—A MEANINGLESS TERM? (IUPAC Technical Report). International Union of Pure and Applied Chemistry. Pure Applied Chemistry, Vol. 74, No. 5, pp. 793–807.

Eapen, S. e D’Souza S.F., 2005. Prospects of genetic engineering of plants for phytoremediation of toxic metals. Biotechnology Advances 23 (2005) 97 – 114.

Favas, P.J.C., Pratas, j., Varun, M., D’Souza, R. e Manoj S.P., 2014. Phytoremediation of Soils Contaminated with Metals and Metalloids at Mining Areas: Potential of Native Flora. "Environmental Risk Assessment of Soil Contamination", book edited by Maria C. Hernandez-Soriano, chapter 17, pp 1235-8.

Franchin, C., Fossati, T., Pasquini, E., Lingua, G., Castiglione, S., Torrigiani, P. e Biondi, S., 2007. High concentrations of zinc and copper induce differential polyamine responses in micropropagated white poplar (Populus alba). Physiologia Plantarum, 130, pp. 77-90.

Gielen, H., Remans, T., Vangronsveld, J., Cuypers, A., 2012. MicroRNAs in Metal Stress: Specific Roles or Secondary Responses? International journal of molecular sciences, 13: 15826–47. Graham, R., Archer, J.S. e Hynes, S.C., 1992. Selecting zinc-efficient cereal genotypes for soils of

113 Grill, E., Winnacker, E.L. e Zenk, M.H., 1987. Phytochelatins, a class of heavy-metal-binding peptides from plants, are functionally analogous to metallothioneins. Proceedings of the National Academy of Sciences of the United States of America. 84(2):439-43.

Grotz, N., Fox, T., Connolly, E., Park, W., Guerinot, M.L. e Eide, D., 1998. Identification of a family of zinc transporter genes from Arabidopsis that respond to zinc deficiency. Proceedings of the National Academy of Sciences of the United States of America 95: 7220– 7224.

Guerinot M.L., 2000. The ZIP family of metal transporters. Biochimica et biophysica acta 1465: 190–8.

Gustin, J.L., Loureiro, M.E., Kim, D., Na, G., Tikhonova, M. e Salt, D.E., 2009. MTP1-dependent Zn sequestration into shoot vacuoles suggests dual roles in Zn tolerance and accumulation in Zn-hyperaccumulating plants. The Plant journal : for cell and molecular biology 57: 1116–27. Hall J.L., 2002. Cellular mechanism for heavy metal detoxification and tolerance. Journal of

experimental botany, vol. 53, n.366, pp 1-11.

Hall, J.L. e Williams, L.E., 2003. Transition metal transporters in plants. Journal of experimental botany 54: 2601–13.

Hamer, D.H., 1986. Metallothionein. Annual Review of Biochemistry. Vol. 55: 913-951.

Hanikenne, M., Talke, I., Haydon, M., Lanz, C., Nolte, A., Motte, P., Kroymann, J., Weigel, D. e Krämer, U., 2008. Evolution of metal hyperaccumulation required cis-regulatory changes and triplication of HMA4. Nature 453: 391–395.

Hoffland, E., Wei, C. e Wissuwa, M., 2006. Organic anion exudation by lowland rice (Oryza sativa L.) at zinc and phosphorus deficiency. Plant and Soil, 283:155-162.

114 Holloway, R. E., 1996. Zinc as a Subsoil Nutrient for Cereals. Unpublished PhD, University of

Adelaide.

Huang, C. Barker, S.J., Langridge, P., Smith, F.W. e Graham, R.D., 2000. Zinc deficiency up- regulates expression of high-affinity phosphate transporter genes in both phosphate-deficient and sufficient barley roots. Plant Physiology, 124: 415-422.

Jelusic, M. e Lestan, D., 2014. Effect of EDTA washing of metal polluted garden soils. Part I: Toxicity hazards and impact on soil properties. Science of The Total Environment 475: 132141.

Jelusic, M., Vodnik, D., Macek, I. e Lestan, D., 2014. Effect of EDTA washing of metal polluted garden soils. Part II: Can remediated soil be used as a plant substrate? The Science of the total environment 475: 142–52.

Kabata-Pendias, A. and H. Pendias, 1992. Trace Elements in Soils and Plants (2 nd edn.). CRC Press, Boca Raton, 365 pp.

Kiekens, L., 1995. Zinc, in Alloway, B.J. (ed.) Heavy Metals in Soils (2a ed.). Blackie Academic and Professional, pp 284-305.

Lasat, M., Pence, N., Garvin, D., Ebbs, S. e Kochian, L., 2000. Molecular physiology of zinc transport in the Zn hyperaccumulator Thlaspi caerulescens. Journal of Experimental Botany 51: 71–79.

Lingua, G., Todeschini, V., Grimaldi, M., Baldantoni, D., Proto, A., Cicatelli, A., Biondi, S., Torrigiani, P. e Castiglione, S., 2014. Polyaspartate, a biodegradable chelant that improves the phytoremediation potential of poplar in a highly metal-contaminated agricultural soil. Journal of environmental management 132, pp 9–15.

115 Lloyd, G., McCown, B., 1980. Commercially-feasible micropropagation of mountain laurel, Kalmia

latifolia, by use of shoot-tip culture. Comb. Proc. Int. Plant Propagators Soc. 30, 421–427. Loneragan, J.F. e Webb, M.J., 1993. Interactions between Zinc and Other Nutrients Affecting the

Growth of Plants. Capitolo 9 in Robson, A.D. (ed.) Zinc in Soils and Plants, Kluwer Academic Publishers, Dordrecht, pp 119-134.

Macci, C., Doni, S., Peruzzi, E., Bardella, S., Filippis, G., Ceccanti, B. e Masciandaro, G., 2013. A real-scale soil phytoremediation. Biodegradation 24: 521–38.

Marschner, H., 1995. Mineral Nutrition of Higher Plants (2a edn.). Academic Press, London. 889 pp.

Martens S.N. e Boyd, R.S., 2002. The defensive role of Ni hyperaccumulation by plants: a field experiment. American journal of botany 89: 998–1003.

McCutcheon, S.C. e Schnoor J.L., 2003. Phytoremediation, transformation and control of contaminants. Wiley Interscience, pp 238.

Milner, M.J., Seamon, J., Craft, E. e Kochian, L.V., 2013. Transport properties of members of the ZIP family in plants and their role in Zn and Mn homeostasis. Journal of experimental botany 64: 369–81.

Nicholson F., Smith S.R., Alloway B.J. and Chambers B.J., 2003. An inventory of heavy metals inputs to agricultural soils in England and Wales. Science of the Total Environment, 311: 205-220.

Pahlsson, A.M., 1989. Toxicity of heavy metals (Zn, Cu, Cd, Pb) to vascular plants: a literature review. Water Air Soil Pollut. 47, 287e319.

116 Pence, N., Larsen, P., Ebbs, S., Letham, D., Lasa, M., Garvin, D., Eide, D. e Kochian, L., 2000. The molecular physiology of heavy metal transport in the Zn/Cd hyperaccumulator Thlaspi

caerulescens. Proceedings of the National Academy of Sciences 97: 4956–4960.

Peterson C.A. e Rauser W.E., 1979. Carbohydrate Levels and Photoassimilate Export from Leaves of Phaseolus vulgaris Exposed to Excess Cobalt, Nickel, and Zinc. Plant Physiology, 63, 1170-1174.

Pulford I. e Watson, C., 2003. Phytoremediation of heavy metal-contaminated land by trees—a review. Environment International 29: 529–540.

Rampey, R.A., Baldridge, M.T., Farrow, D.C., Bay, S.N. e Bartel, B., 2013. Compensatory mutations in predicted metal transporters modulate auxin conjugate responsiveness in Arabidopsis. G3 (Bethesda, Md) 3: 131–41.

Raulin, J., 1869. Etudes clinique sur la vegetation. Annales des Scienceas Naturelle: Botanique 11, 93-299.

Rauser, W.E. 1978. Early Effects of Phytotoxic Burdens of Cadmium, Cobalt, Nickel and Zinc in Whiate Beans. Canadian Journal of Botany, 56, pp 1744-1749.

Romeo, S., Francini, A., Ariani, A., Sebastiani, L., 2014 (a). Phytoremediation of Zn: Identify the Diverging Resistance, Uptake and Biomass Production Behaviours of Poplar Clones Under High Zinc Stress. Water Air Soil Pollution, 225, pp. 1–12.

Romeo, S., Trupiano, D., Ariani, A., Renzone, G., Scippa, G.S., Scaloni, A. e Sebastiani, L., 2014 (b). Proteomic analysis of Populus × euramericana (clone I-214) roots to identify key factors involved in zinc stress response. Journal of Plant Physiology, Volume 171, pp. 1054–1063. Roos, W., Evers, S., Hieke, M., Tschope, M. e Schumann, B., 1998. Shifts of intracellular pH

117 benzophenanthridine alkaloids . Phytoalexin biosynthesis in cultured cells of eschscholtzia californica. Plant physiology 118: 349–64.

Schlegel, H., Godbold, D.L. e Hüttermann, A., 1987. Whole plant aspects of heavy metal induced changes in CO2, uptake and water relations of spruce (Picea abies) seedlings. Physiologia Plantarum, 1399-3054.

Schneider, T., Schellenberg, M., Meyer, S., Keller, F., Gehrig, P., Riedel, K., Lee, Y., Eberl, L. e Martinoia, E., 2009. Quantitative detection of changes in the leaf-mesophyll tonoplast proteome in dependency of a cadmium exposure of barley (Hordeum vulgare L.) plants. Proteomics, 9(10):2668-77.

Schützendübel, A. e Polle, A., 2002. Plant responses to abiotic stresses: heavy metal induced oxidative stress and protection by mycorrhization. Journal of experimental botany 53: 1351– 1365.

Sharma, A., Patni, B., Shankhdhar, D., Shankhdhar, S.C., 2013. Zinc - an indispensable micronutrient. Physiology and molecular biology of plants : an international journal of functional plant biology 19: 11–20.

Sinclair, S. e Krämer, U., 2012. The zinc homeostasis network of land plants. Biochimica et biophysica acta 1823: 1553–67.

Srivastava, P.C. e Gupta, U.C., 1996. Trace Elements in Crop Production. Science Publishers, Lebanon, NH. 356 pp.

Stevenson, F.J., 1991. Organic Matter-Micronutrient Reactions in Soil. Capitolo 6 in Mortvedt, J.J., Cox, F.R., Schuman, L.M. e Welch, R.M. Micronutrients in Agriculture (2a edn.), No.4. Soil Science Society of America, Madison, Wisc. pp 145-186.

118 Todeschini, V., Lingua, G., D’Agostino, G., Carniato, F., Roccotiello, E. e Berta G., 2011. Effects of high zinc concentration on poplar leaves: A morphological and biochemical study. Environmental and Experimental Botany 71: 5056.

Tognetti, R., Sebastiani, L. e Minnocci, A., 2004. Gas exchange and foliage characteristics of two poplar clones grown in soil amended with industrial waste. Tree physiology 24, pp. 75–82. Tuskan, G.A., Difazio, S., Jansson, S., Bohlmann, J., Grigoriev, I., Hellsten, U., Putnam, N. et al.,

2006. The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science, 313(5793), pp 1596-604.

Ulrich, K., Ulrich, A. e Ewald, D., 2008. Diversity of endophytic bacterial communities in poplar grown under field conditions. FEMS Microbiology Ecology 63, pp. 169–180.

Uygur, V. e Rimmer D.L., 2000. Reactions of zinc with iron coated calcite surfaces at alkaline pH. European Journal of Soil Science, 51: 511-516.

Van der Lelie, D., Taghavi, S., Monchy, S., Schwender, J., Miller, L., Ferrieri, R., Rogers, A., Wu, X., Zhu, W., Weyens, N., Vangrosveld, J. e Newman L., 2009. Poplar and its Bacterial Endophytes: Coexistence and Harmony. Critical Reviews in Plant Sciences, 28, pp. 346-358. Viehweger, K., 2014. How plants cope with heavy metals. Botanical Studies. Vol. 55 pp 35.

Wang, M., Xu, Q. e Yuan, M., 2011. Zinc homeostasis is involved in unfolded protein response under salt stress. Plant signaling & behavior 6: 77–9.

Wang, X. e Jia, Y., 2010. Study on adsorption and remediation of heavy metals by poplar and larch in contaminated soil. Environmental science and pollution research international 17: 1331–8. Welch, R.M., Webb, M.J. e. Loneragan, J.F, 1982. Zinc in membrane function and its role in

119 Nutrition Colloquium, Warwick University, England, August 1982. Scaife, A. (ed.) pp 710- 715.

Wintz, H., Fox, T., Wu, Y.Y., Feng, V., Chen, W., Chang, H.S., Zhu, T. e Vulpe, C., 2003. Expression Profiles of Arabidopsis thaliana in Mineral Deficiencies Reveal Novel Transporters Involved in Metal Homeostasis. Journal of Biological Chemistry 278: 47644– 47653.

Van de Mortel, J.E., Almar Villanueva, L., Schat, H., Kwekkeboom, J., Coughlan, S., Moerland, P.D., Ver Loren van Themaat, E., Koornneef, M, e Aarts, M.G., 2006. Large expression differences in genes for iron and zinc homeostasis, stress response, and lignin biosynthesis distinguish roots of Arabidopsis thaliana and the related metal hyperaccumulator Thlaspi

caerulescens. Plant physiology 142: 1127–47.

Vinogradov, A.P., 1959. The Geochemistry of Rare and Dispersed Chemical Elements in Soils. Consultants Bureau Press Inc., New York. 65-70.

120

Ringraziamenti

Ringrazio il prof.re Andrea Andreucci e Lara Lombardi dell’Università di Pisa per la pazienza e la collaborazione.

Ringrazio tutto il personale dei BioLabs dell’istituto di scienza della vita della Scuola Superiore Sant’Anna per la disponibilità e la collaborazione alla tesi, in particolare volevo ringraziare: Alessandra Francini, Andrea Ariani, Chiara Romè, Cristina Ghelardi, Roberta Tosetti, Gaia Monteforti e Stefania Romeo.

Ringrazio tutti i miei amici vecchi e nuovi che mi sono stati vicini in questi duri 2 anni, in

particolare: Raffaele Luongo e Gianmarco Meo, Giovanni Giangreco, Michele Tarabella, Lorenzo Bascetta, Giacomo Siano e Cristina Romani.

Ringrazio la mia ragazza Giulia per essermi stata accanto anche nei momenti più bui e sconfortanti di questa laurea magistrale con pazienza e dedizione.

Ringrazio mio fratello Vincenzo che mi ha sempre dato una mano ed ha creduto in me nel bene e nel male.

Ringrazio i miei cugini Lorenzo, Enrico e Luisa che con la loro permanenza a Pisa hanno permesso di creare un pezzo di famiglia sicula nella verde Toscana.

Ringrazio i miei genitori che mi hanno sempre appoggiato anche nelle scelta di questo campo con un incerto futuro lavorativo. Spero di non aver mai deluso le loro aspettative e che mai le deluderò. Ringrazio tutta la mia famiglia e la mia Terra d’origine che per quanto problematica mi ha generato e suscita sempre in me un’attrazione silenziosa.

Documenti correlati