• Non ci sono risultati.

Osservazioni sull’interpretazione basata sulla divisione di corrente

3 Modello non-lineare della carica di Gate

3.11 Osservazioni sull’interpretazione basata sulla divisione di corrente

A margine delle analisi e argomentazioni offerte sulle diverse interpretazioni che si possono fare relativamente al comportamento della carica di Gate, è stata fatta una verifica volta a ribadire la consistenza del modello e ad evidenziare la robustezza del metodo.

Il metodo basato sulla divisione della corrente reattiva ha consentito di cambiare profondamente l’approccio con cui si analizza il comportamento della carica di Gate mediante l’introduzione della funzione di divisione. Questa particolarità, oltre ai benefici discussi in precedenza, suggerisce la possibilità di osservare l’evoluzione della corrente di Gate al variare delle tensioni applicate sebbene questa non sia misurata direttamente. Nel fare questo risulterà chiara la solidità della teoria su cui è fondato il metodo.

Partendo dall’analisi sviluppata nel paragrafo 3.6.4, operando alcune manipolazioni dei dati sperimentali è possibile risalire a tre diverse espressioni della corrente di Gate partendo dai diversi contributi misurati:

𝜔𝐼 3-116

𝜔𝐼 3-117

𝜔𝐼 3-118

Il confronto tra gli andamenti delle tre quantità calcolate è riportato in Figura 3-24:

Figura 3-24: Confronto tra gli andamenti della corrente di Gate a piccolo segnale calcolati a partire dalle quantità misurate.

Analizzando i precedenti grafici emerge che, a meno di errori trascurabili derivanti dalla accuratezza dell’estrazione dei singoli elementi e dell’errore di misura, è possibile osservare un ottima sovrapposizione delle curve. Questo consente di dire che il modello è coerente e che l’approccio basato sul criterio della divisione di corrente è effettivamente valido per trattare la carica di Gate su base di un approccio empirico.

3.12 RIFERIMENTI BIBLIOGRAFICI

[3.1] D. E. Root, “Measurement-based active device modeling for circuit simulation,” Eur. Microw. Conf. Advanced Microw. Devices, Characterization, and Modeling Workshop, Madrid, Sept. 1993.

[3.2] J. Staudinger, M. C. De Baca, and R. Vaitkus, “An examination of several large signal capacitance models to predict GaAs HEMT linear power amplifier performance,” IEEE Radio and Wireless Conf., Aug. 1998, pp. 343–346.

[3.3] D. E. Root, “Nonlinear charge modeling for FET large-signal simulation and its importance for IP3 and ACPR in communication circuits,” Proc. 44th IEEE Midwest Symp. on Circuits and Sys., Dayton OH, Aug. 2001, pp. 768–772

[3.4] P. Yang, B. Epler and P. Chatterjee, "An Investigation of the Charge Conservation Problem for MOSFET Circuit Simulation," IEEE J. Solid-State Circuits, vol. SC-18, no. 1, p. 128, 1983.

[3.5] T. J. Drummond , W. T. Masselink and H. Morkoç "Modulation-doped GaAs/AlGaAs heterojunction field-effect transistors: MODFET's", Proc. IEEE, vol. 74, no. 6, pp.773 -822 1986

[3.6] H. Rohdin, P. Roblin, “A MODFET dc model with improved pinch off and saturation characteristics”, IEEE Trans Electron Devices, Vol. 33, pp. 664-672, 1986

[3.7] G. George and J. Hauser, “An Analytic Model for MODFET Capacitance-Voltage Characteristics,” IEEE Trans. Elec. Dev., Vol. 37, No. 5, pp. 1193-1198, 1990

[3.8] T. Takada, K. Yokoyama, M. Ida, and T.Sudo, “A MESFET Variable Capacitance Model for GaAs Integrated Circuit Simulation,” IEEE Transactions on Microwave Theory and Techniques, Vol. MTT-30, No. 5, pp. 719-723, May 1982.

[3.9] T. Chen and M. Shur, “A Capacitance Model for GaAs MEFSETS,” IEEE Transactions on Electron Devices, Vol. ED-12, No. 5, pp. 883-891, May 1985.

[3.10] M. Shur, “GaAs FETs: Device physics and modeling,” in GaAs Devices and Circuit, New York: Plenum, Chapter 7, pp343-390, 1987.

[3.11] C.M. Snowden and R.R. Pantoja, “ Quasi-Two-Dimensional MESFET Simulation for CAD,” IEEE Transactions on Electron Devices, Vol. 36, No.9, pp.1564-1574, September 1989.

[3.12] T.M. Barton and C.M. Snowden, “Two-Dimensional Numerical Simulation of Trapping Phenomena in the Substrate of GaAs MESFETs, ” IEEE Transactions on Electron Devices, Vol. 37, No.6, pp. 1409-1415, June 1990.

[3.13] J.S. Atherton, C.M. Snowden, and J.R. Richardson, “Characterization of Thermal Effects on Microwave Transistor Performance Using An Efficient Physical Model,” IEEE MTT-S International Microwave Symposium Digest, pp.1181-1184, 1993.

[3.14] S. D’Agostino and A. Beti-Beruto, “Physical-based Expressions for the Nonlinear Capacitances of the MESFET Equivalent Circuit,” IEEE Transactions on Microwave Theory and Techniques, Vol. 42, No.3, pp. 403-406, March 1996.

[3.15] N. Scheinberg, R.J. Bayruns, P.W. Wallace, and R. Goyal, “An Accurate MESFET Model for Linear and Microwave Circuit Design,” IEEE Journal of Solid-State Circuits, Vol. 24, No.2, pp.532-538, April 1989.

[3.16] I. Angelov, H. Zirath, N. Rorsman, “ A New Empirical Nonlinear Model for HEMT Devices, ” IEEE MTT-S International Microwave Symposium Digest, pp. 1583-1586, 1992. [3.17] J. Rodriguez-Tellez, K. Mezher, and M. Al-Ddaas, “Improved Junction Capacitance Model for the GaAs MESFET,” IEEE Transaction on Electron Devices, Vol. 40, No. 11, pp.2083-2085, November 1993.

[3.18] H. Statz, P. Newman, I. Smith, R. Pucel, and H. Haus, “GaAs FET Device and Circuit Simulation in SPICE,” IEEE Trans. Electron Devices, Vol. ED-34, 1987, pp. 160-169.

[3.19] Parker, A. E. and Skellern, D. J., \A Realistic Large-signal MESFET Model for SPICE," IEEE Trans. On Microwave Theory and Techniques, vol. MTT-45, no. 9, Sep. 1997, pp. 1563- 1571

[3.20] D. Root and B. Hughes, “Principles of nonlinear active device modeling for circuit simulation,” 32nd Automatic Radio Frequency Techniques Group Conf, Dec. 1988.

[3.21] A. Snider, "Charge conservation and the transcapacitance element: An exposition," IEEE Tran. Educ., vol. 38, no. 4, pp-376-379, Nov. 1995.

[3.22] D. E. Root, S. Fan, and J. Meyer, “Technology independent non quasi-static FET models by direct construction from automatically characterized device data,” 21st Eur. Microw. Conf. Proc., Stuttgart, Germany, pp. 927–932, Sept. 1991.

[3.23] D. E. Root and S. Fan, “Experimental evaluation of large-signal modeling assumptions based on vector analysis of bias-dependent S-parameter data from MESFETs and HEMTs,” IEEE Int. Microwave Symp. Dig., pp. 255–259, 1992.

[3.24] W. Struble et al., “A New Small Signal MESFET and HEMT Model Compatible With Large Signal Modeling” IEEE MTS 1994 International Microwave Symp. Digest, p. 1567, 1994. [3.25] N. Scheinberg and E. Chisholm, “A Capacitance Model for GaAs MESFET’s,” IEEE J. Solid- State Circuits, vol. 26, no. 10, p. 1467, 1991.

[3.26] “Large signal model for a pseudomorphic heterojunction electron mobility transistor”, European patent application #ep0997 833a2 (2000)

[3.27] Z. Zhong , Y.-X. Guo and M. S. Leong "A consistent charge model of GaAs MESFETs for Ku-band power amplifiers", IEEE Trans.Microw. Theory Tech., vol. 59, no. 9, pp.2246 - 2253 2011

[3.28] M. V. Calvo , A. D. Snider and L. P. Dunleavy "Resolving capacitor discrepancies between large and small signal FET models", IEEE MTT-S Int. Microw. Symp. Dig., pp.1251 - 1254 1995

[3.29] Calvo, M.V.; Snider, A.D. "Resolution of linear/nonlinear inconsistencies in charge- conservative FET models", Southeastcon '96. Bringing Together Education, Science and Technology., Proceedings of the IEEE, On page(s): 428 – 431

[3.30]D. E. Root, “Principles and procedures for successful large-signal measurement-based FET modeling for power amplifier design,” Nov. 2000. Available: http://cp.literature.agilent.com/litweb/pdf/5989-9099EN.pdf

[3.31] D. E. Root “Elements of measurement-based large-signal device modeling”, IEEE Radio and Wireless Conf. (RAWCON) Workshop on Modeling and Simulation of Devices and Circuits for Wireless Commun. Syst., Colorado Springs, Aug. 1998.

[3.32] D. E. Root, J. Xu, D. Gunyan, J. Horn, and M. Iwamoto, “The large-signal model: theoretical and practical considerations, trade-offs, and trends,” IEEE Int. Microw. Symp. workshop (WMB), Boston,2009.

[3.33] A. C. T. Aarts, R. van der Hout; J. C. J. Paasschens, A. J. Scholten, M. Willemsen, andD. B. M. Klaassen, “Capacitance modeling of laterally non-uniform MOS devices,” IEEE IEDM Tech. Dig., pp. 751–754, Dec. 2004

[3.34] A. E. Parker and D. J. Skellern, “A Realistic Large Signal MESFET Model for Spice,” IEEE Trans. Microwave Theory Tech., vol. 45, no. 9, p. 1463, 1997

[3.35] M. Wren and T. J. Brazil, “Enhanced Prediction of pHEMT Nonlinear Distortion Using a Novel Charge Conservative Model,” IEEE MTS 2004 International Microwave Symp. Digest, p. 31, 2004

[3.36] R. B. Hallgren and P. H. Litzenberg, “TOM3 Capacitance Model: Linking Large- and Small-Signal MESFET Models in SPICE,” IEEE Trans. Microwave Theory Tech., vol. 47, no. 5, p. 556, 1999

[3.37] Z. Zhong , Y.-X. Guo and M. S. Leong "A consistent charge model of GaAs MESFETs for Ku-band power amplifiers", IEEE Trans.Microw. Theory Tech., vol. 59, no. 9, pp.2246 - 2253, 2011

[3.38] I. Angelov, L. Bengtsson and M. Garica, "Extensions of the Chalmers nonlinear HEMT and MESFET model," IEEE Trans. Microwave Theory & Tech., vol.44, no. 10, pp.1664-1674, Oct. 1996

[3.39] Follmann, R. Kother, D. at all. ”Consistent large signal implementation of capacitances driven by two steering voltages for FET modeling” EUMC 2005, Vol. 2, 4-6 Oct. 2005 Page(s):3-6

[3.40] S. Mass "Division by current: A new approach to FET capacitance modeling", Int. Nonlinear Microw. Millimeter-Wave Circuits, pp.16 -19 2010

[3.41] B. D. Popovic, “Introductory Engineering Electromagnetics”, Reading, MA: Addison- Wesley, 1971, pp. 196–198

[3.42] Hans Hjelmgren, Erik Kollberg, Lennart Lundgren, “Numerical simulations of the capacitance of forward-biased Schottky-diodes”, Solid-State Electronics Volume 34, Issue 6, June 1991, Pages 587.sci