• Non ci sono risultati.

Fig.40 Meccanismo d’azione di Acyclovir

8. NUOVI APPROCC

8.1. Il sistema EVAC

Come è ben noto, il sangue è il principale mezzo di trasmissione di un virus.

La severità della malattia aumenta in modo direttamente proporzionale al titolo ematico di un virus e delle sue tossine circolanti, che trasportate ai diversi organi apportano danni più o meno gravi. Un paziente giovane o in età adulta, riesce spesso a superare le infezioni grazie al suo sistema immunitario, ma nel caso di persone anziane, che già difficilmente combattono con non poche difficoltà la comune influenza stagionale, la persistenza (anche per anni) di un’infezione virale sistemica mette a dura prova questi soggetti, che rischiano anche la morte. Lo stesso accade per i soggetti immunocompromessi.

Ridurre i livelli ematici di un virus con l’intenzione di attenuare i sintomi e migliorare di conseguenza lo stato di salute di un paziente infetto sembra essere possibile, grazie alla proposta di Ambrus e Scamurra (già ipotizzato da Shahidi Bonjar): il sistema EVAC (Fig.68).

Si tratta di un metodo di rimozione delle particelle virali e di loro frammenti dal sangue, in maniera tale da avere la detossificazione del sangue, ed é indicate per tutti quei soggetti affetti da infezioni virali trasmesse per via ematica.

Prevede l’utilizzo di una colonna di anticorpi virali extra corporea (extracorporeal viral antibody column o EVAC). Si tratta di una colonna cava che contiene delle fibre (nanotubi di carbonio) del volume si circa 200ml, sulle cui ampie e porose superfici esterne si trovano delle molecole con alta affinità per le componenti virali.

Il passaggio del fluido sanguigno attraverso queste fibre indurrebbe le particelle virali a legarsi alle molecole affini della colonna, così da ridurre il titolo ematico del virus nell’effluente. Le molecole affini della colonna non sono altro che anticorpi virali polivalenti (PVA) stazionari, che intrappolano il virus come un filtro biologico. Il dispositivo ricorda una macchina per dialisi renale che al posto della commune membrana per dialisi supporta EVAC.

Il metodo si presenta sicuro e non aggressivo, adatto soprattutto nei casi di setticemia. Di fatto, la somministrazione diretta nel flusso sanguigno di anticorpi perde di efficacia a causa degli effetti allergici che possono suscitare risultando anch’essi agenti estranei e perciò fagocitati dal sistema immunitario che nel frattempo produrrebbe ulteriori anticorpi. La colonna è ad uso singolo, specifica per un tipo di virus e sue tossine, e rappresenterebbe un sistema di supporto alla terapia antivirale standard, che grazie alla riduzione del titolo virale, migliorerebbe in efficacia. In più non apporta effetti collaterali.

L’efficacia di EVAC potrebbe essere rilevata con semplici test effettuati in loco, post- terapia. Il periodo di trattamento con il sistema EVAC va in base al titolo ematico dell’agente virale e delle tossine che rimangono nel sangue. Il sistema EVAC monouso, detto anche EVAC-pack, è costituito da “silicone tubing”, è ad uso singolo e verrebbe distribuito sottovuoto a seguito di procedure di sterilizzazione a raggi γ durante la fase di produzione.

Tuttavia, il sistema EVAC non si può sostituire del tutto alla terapia antivirale, ma potrebbe risultare un buon mezzo a sostegno all’efficacia chemioterapica [137].

9. CONCLUSIONI

La ricerca di nuovi target farmacologici è essenziale soprattutto per ovviare il manifestarsi delle resistenze, sempre più frequenti, indotte dai farmaci più comunemente utilizzati come standard terapeutico. Grazie agli studi di biologia molecolare, di spettroscopia RMN e di cristallografia a raggi X oggi é possibile determinare nel dettaglio le strutture dei singoli virus, per analizzarne le caratteristiche e le eventuali mutazioni, al fine di progettare nuove molecole con selettività sempre più marcata. Le nuove strategie terapeutiche e farmacologiche si basano proprio sulla sintesi di farmaci che utilizzano sia nuovi meccanismi d’azione che nuovi target, cercando di incrementare l’efficacia, ma soprattutto di limitare gli effetti collaterali.

Per esempio, nel caso dell’epatite di tipo C, si noti come negli utlimi anni la ricerca si sia focalizzata su una terapia mirata e selettiva per cercare di eliminare in modo definitivo l’uso di Interferone. Ecco che nascono farmaci come i Directly Activity Antivirals (DAAs), la cui azione è mirata a nuovi target come le proteasi virali.

10. BIBLIOGRAFIA

[1] Koonin EV, Senkevich TG, Dolja VV, The ancient Virus World and evolution of cells, Biol. Direct, 2006, 1, p. 29.

[2] Enciclopedia Medica Italiana. Aggiornamento della II edizione. Editor Luciano Vella. USES, Edizioni Scientifiche, Firenze. pp. 2067-2068.

[3] Bernard Roizman. Medical Microbiology. 4th edition. Baron S., editor. Chapter 42, Multiplication.

[4] Baltimore D. Expression of animal virus genomes. Bacteriol Rev. 1971, 35, p. 234. [5] D. Sadava, H. Craig Heller, Gordon H. Orians, William K. Purves, David M. Hillis, Biologia. La genetica dei virus – Le modalità di riproduzione dei fagi. Ciclo litico e ciclo lisogeno. La scienza della vita. Zanichelli.

[6] Jean-Michel Pawlotsky, Jordan J. Feld, Stefan Zeuzem, Jay H. Hoofnagle. From non- A, non-B hepatitis to hepatitis C virus cure. Journal of Hepatology 2015, 62, S87-S99. [7] www.epatitec.info

[8] World Health Organisation, Media Centre. Hepatitis C. Updated July 2016.

[9] Op De Beeck, A. et al. Biogenesis of hepatitis C virus envelope glycoproteins. J. Gen. Virol. 2001, 82, 2589–2595.

[10] Agnello, V. et al. Hepatitis C virus and other Flaviviridae viruses enter cells via low density lipoprotein receptor. Proc. Natl. Acad. Sci. U.S.A. 1999, 96, 12766 – 12771.

[11] Hsu, M. et al. Hepatitis C virus glycoproteins mediate pH-dependent cell entry of pseudotyped retroviral particles. Proc. Natl. Acad. Sci. U. S. A. 2003, 100, 7271–7276. [12] Griffin, S.D. et al. The p7 protein of hepatitis C virus forms an ion channel that is blocked by the antiviral drug, Amantadine. FEBS Lett. 2003, 535, 34–38.

[13] Tsukiyama, Kohara, K. Et al. Internal ribosome entry site with in hepatitis C virus RNA. J. Virol. 1992, 66, 1476–1483.

[14] Alberts B., Johnson A., Lewis J., et al. The Adaptive Immune System. Molecular Biology of the Cell. 4th edition. Chapter 24.

[15] Medzhitov R., Recognition of microorganisms and activation of the immune response, in Nature. 2007, 449, 819–26.

[16] Kawai T., Akira S., Innate immune recognition of viral infection, in Nature Immunology, 2006, 7, 131–7.

[18] Holtmeier W., Kabelitz D., Gamma, delta T cells link innate and adaptive immune responses, in Chemical Immunology and Allergy. Chemical Immunology and Allergy. 2005, 86, 151–83.

[19] Thimme, R. et al. Determinants of viral clearance and persistence during acute hepatitis C virus infection. J. Exp. Med. 2001, 194, 1395–1406.

[20] Tseng, C.T. and Klimpel, G.R. Binding of the hepatitis C virus envelope protein E2 to CD81 inhibits natural killer cell functions. J. Exp. Med. 2002, 195, 43–49.

[21] Barth, H. et al. Cellular binding of hepatitis C virus envelope glycoprotein E2 requires cell surface heparan sulfate. J. Biol. Chem. 2003, 278, 41003–41012.

[22] Poynard, T. et al. Effect of treatment with peginterferon or interferon alfa-2b and ribavirin on steatosis in patients infected with hepatitis C. Hepatology 2003, 38, 75 – 85. [23] Sulkowski, M.S. and Thomas, D.L. Hepatitis C in the HIV-infected Person. Ann. Intern. Med. 2003, 138, 197–207.

[24] Fiore, G. et al. In-situ immunophenotyping study of hepatic-infiltrating cytotoxic cells in chronic active hepatitis C. Eur. J. Gastroenterol. Hepatol. 1997, 9, 491–496.

[25] Rockey, D.C. Hepatic fibrogenesis and hepatitis C. Semin. Gastrointest. Dis. 2000, 11, 69–83.

[26] Ghosh, A.K. et al. Hepatitis C virus NS5A protein modulates cell cycle regulatory genes and promotes cell growth. J. Gen. Virol. 1999, 80, 1179 – 1183.

[27] Dusheiko G., Nelson D., Reddy K.R. Ribavirin considerations in treatment optimization. Antiviral Therapy 2008, 13, 23–30.

[28] De Clercq E. Interferon: A molecule for all seasons. Olsen LC, editor. Virus infections: Modern concepts and status. New York: Marcel Dekker Inc. 1982, 87–138. [29] Isaacs A, Lindenmann J. Virus interference. I. Interferon. Proc R Soc Lond 1957, 147, 258–267.

[30] Enciclopedia Medica Italiana. Aggiornamento della II edizione. Editor Luciano Vella. USES, Edizioni Scientifiche, Firenze, 3867-3881.

[31] Erik De Clercq. Antiviral Drug Discovery: Ten More Compounds, and Ten More Stories (Part B). Medicinal Research Reviews, 2009, 29, 571-610.

[32] Enciclopedia Medica Italiana. Aggiornamento della II edizione. Editor Luciano Vella. USES, Edizioni Scientifiche, Firenze, p. 3873.

[33] Sidwell RW, Huffman JH, Khare GP, Allen LB, Witkowski JT, Robins RK. Broad- spectrum antiviral activity of Virazole: 1-beta-D-ribofuranosyl-1,2,4-triazole-3- carboxamide. Science, 1972, 177, 705–706.

[34] www.epatitec.info

[35] European Association for the Study of the Liver. EASL Clinical Practice Guidelines: management of hepatitis C virus infection. J Hepatol, 2011, 55, 245-264.

[36] Bartenschlager R., Ahlborn-Laake L., Mous J., Jacobsen H. “Kinetic and structural analyses of hepatitis C virus polyprotein processing." J.Virol. 1994, 68, 5045–55.

[37] Hijikata, M. et al. Proteolytic processing and membrane association of putative nonstructural proteins of hepatitis C virus. Proc. Natl. Acad. Sci. USA. 1993, 90, 10773- 10777.

[38] Grakoui A., McCourt D.W., Wychowski C., Feinstone S.M., Rice C.M.: Characterization of the hepatitis C virus-encoded serine proteinase: determination of proteinase-dependent polyprotein cleavage sites. J Virol 1993, 67, 2832-2843.

[39] E.J. Gane, K. Agarwal. Directly Acting Antivirals (DAAs) for the Treatment of Chronic Hepatitis C Virus Infection in Liver Transplant Patients: “A Flood of Opportunity”. American Journal of Transplantation, 2014, 14, 994–1002.

[40] FDA Approves Merck's VICTRELIS (Boceprevir), First-in-Class Oral Hepatitis C Virus (HCV) Protease Inhibitor, Merck & Co.. (URL consultato il 14 maggio 2011).

[41] Quotidiano sanità. “Epatite C. Arriva anche in Italia Telaprevir, più efficace contro il genotipo 1”. 2012.

[42] Lawitz E., Mangia A., Wyles D., Rodriguez-Torres M., Hassanein T., Gordon S.C., Schultz M., Davis M.N., Kayali Z., Reddy K.R., Jacobson I.M., Kowdley K.V., Nyberg L., Subramanian G.M., Hyland R.H., Arterburn S., Jiang D., McNally J., Brainard D., Symonds W.T., McHutchison J.G., Sheikh A.M., Younossi Z., Gane E.J. Sofosbuvir for previously untreated chronic hepatitis C infection. N Engl J Med, 2013, 368, 1878-1887. [43] Lenz O., Verbinnen T., Fevery B., Tambuyzer L., Vijgen L., Peeters M., Buelens A., Ceulemans H., Beumont M., Picchio G., De Meyer S. Virology analyses of HCV isolates from genotype 1-infected patients treated with simeprevir plus peginterferon/ribavirin in Phase IIb/III studies. J Hepatol. 2015, 62, 1008-1014.

Noviello S, Swenson E. Daclatasvir, sofosbuvir, and ribavirin combination for HCV patients with advanced cirrhosis or post-transplant recurrence: phase 3 ALLY-1 study. J Viral Hepatitis. 2015, 22, 30-31.

[45] EpaC Onlus

[46] Cheng EY, Saab S, Holt CD, Busuttil RW. Paritaprevir/ritonavir/ombitasvir and dasabuvir for the treatment of chronic hepatitis C virus infection. Expert Opinion on Pharmacotherapy. 2015, 16, 2835--2848.

[47] Harmeet Kaur Bhatia, Harmanjit Singh, Nipunjot Grewal and Navreet Kaur. Sofosbuvir: A novel treatment option for chronic hepatitis C infection. Journal of Pharmacology and Pharmacotherapeutics. 2014, 4, 278–284.

[48] Quotidiano Sanità. Scienza e Farmaci. Farmaci. “Da commissione europea ok a Zepatier per epatite C cronica”. 2016.

[49] Enciclopedia Medica Italiana. Aggiornamento della II edizione. Editor Luciano Vella. USES, Edizioni Scientifiche, Firenze, pp.1999-2010.

[50] Alter H, Blumberg BS. Further studies on a "new" human isoprecipitin system (Australia antigen), in Blood. 1966, 27, 297–309.

[51] Glebe D, Urban S. Viral and cellular determinants involved in hepadnaviral entry. World Journal of Gastroenterology 2007, 13, 22–38.

[52] Enciclopedia Medica Italiana. Aggiornamento della II edizione. Editor Luciano Vella. USES, Edizioni Scientifiche, Firenze, p.2003.

[53] Custer B, Sullivan S, Hazlet T, Kowdley U, Veenstra D, Iloeje K. Global epidemiology of hepatitis B virus. Journal of Clinical Gastroenterology. 2004, 38, Suppl 3, 2004.

[54] Barker LF, Murray R. Relationship of virus dose to incubation time of clinical hepatitis and time of appearance of hepatitis–associated antigen. Am J Med Sci 1972, 263, 27–33.

[55] Rachel Click, Julie Dahl-Smith, Lindsay Fowler, Jacqueline DuBose, Margi Deneau- Saxton e Jennifer Herbert,. An osteopathic approach to reduction of readmissions for

neonatal jaundice. Osteopathic Family Physician 2013, 5, 17–23.

[56] Krugman S, Overby LR, Mushahwar IK, Ling CM, Frosner GG, Deinhardt F. Viral hepatitis, type B. Studies on natural history and prevention re-examined. N Engl J Med 1979, 300, 101–106.

[57] Liang TJ, Ghany M. Hepatitis B e antigen–the dangerous endgame of hepatitis B. N Engl J Med 2002, 347, 208–210.

[58] EpatiteB.com

[59] Perrillo RP, Chau KH, Overby LR, Decker RH. Anti-hepatitis B core immunoglobulin M in the serologic evaluation of hepatitis B virus infection and simultaneous infection with type B, delta agent, and non-A, non-B viruses. Gastroenterology 1983, 85, 163–167.

[60] Trepo C, Guillevin L. Polyarteritis nodosa and extrahepatic manifestations of HBV infection: the case against autoimmune intervention in pathogenesis. J Autoimmun 2001, 16, 269–274.

[61] Ishimaru Y, Ishimaru H, Toda G, Baba K, Mayumi M. An epidemic of infantile papular acrodermatitis (Gianotti’s disease) in Japan associated with hepatitis-B surface antigen subtype ayw. Lancet 1976, 1, 707–709.

[62] Ministero della Sanità. Circolare n. 19 del 30 novembre 2000 Protocollo per l’esecuzione della vaccinazione contro l’epatite virale B (D.M. 20 novembre 2000).

[63] Hoofnagle JH, di Bisceglie AM. The treatment of chronic viral hepatitis. N Engl J Med 1997, 336, 347–56.

[64] Lin SM, Yu ML, Lee CM, et al. Interferon therapy in HBeAg positive chronic hepatitis reduces progression to cirrhosis and hepatocellular carcinoma. J Hepatol 2007, 46, 45–52.

[65] Jarvis B et al. Lamivudine. A review of its therapeutic potential in chronic hepatitis B. Drugs 1999, 58, 101-41.

[66] Dando T., Plosker G. Adefovir dipivoxil: a review of its use in chronic hepatitis B. Adis International Limited, Auckland, New Zealand. Drugs 2003, 63, 2215-34.

[67] Erik De Clercq. The Discovery of Antiviral Agents: Ten Different Compounds, Ten Different Stories. Medicinal Research Reviews. 2008, 68, 929-953.

[68] De Clercq E, Holy ́ A. Acyclic nucleoside phosphonates: A key class of antiviral drugs. Nat Rev Drug Discov 2005, 4, 928–940.

[69] Sax PE, Wohl D, Yin MT, Post F, DeJesus E, Saag M, Pozniak A, Thompson M, Podzamczer D, Molina JM, Oka S, Koenig E, Trottier B, Andrade-Villanueva J, Crofoot G, Custodio JM, Plummer A, Zhong L, Cao H, Martin H, Callebaut C, Cheng AK, Fordyce MW, McCallister S; GS-US-292-0104/0111 Study Team. Tenofovir alafenamide versus tenofovir disoproxil fumarate, coformulated with elvitegravir, cobicistat, and emtricitabine, for initial treatment of HIV-1 infection: two randomised, double-blind, phase 3, non- inferiority trials 2015, 385, 2606-15.

[70] Yuk-Fai Lam & Man-Fung Yuen & Wai-Kay Seto & Ching-Lung Lai. Current Antiviral Therapy of Chronic Hepatitis B: Efficacy and Safety. Curr Hepatitis Rep 2011, 10, 235–243.

[71] Marcellin P, Dusheiko G, Zoulim F, Esteban R, Hadziyannis S, Lampertico P, Manns M, Shouval D, Yurdaydin C. EASL Clinical Practice Guidelines: management of chronic hepatitis B. J Hepatol 2009, 50, 227–42.

[72] Gish RG1, Trinh H, Leung N, Chan FK, Fried MW, Wright TL, Wang C, Anderson J, Mondou E, Snow A, Sorbel J, Rousseau F, Corey L. Safety and antiviral activity of emtricitabine (FTC) for the treatment of chronic hepatitis B infection: a two-year study. J Hepatol 2005, 43, 60-6.

[73] Sims KA, Woodland AM. "Entecavir: a new nucleoside analog for the treatment of chronic hepatitis B infection". Pharmacotherapy 2006, 12, 1745–57.

[74] Fauquet, Mayo, Maniloff, Desselberger, BallDavison, A. J., Eberle, R., Hayward, G. S. et al. Family Herpesviridae. Virus Taxonomy, Ⅷth. Report of the International Committee on Taxonomy of Viruses 2005, 193–212.

[75] Edward Mocarski. Basic virology and viral gene effects on host cell functions: betaherpesviruses Human Herpesviruses: Biology, Therapy, and Immunoprophylaxis.

Arvin A, Campadelli-Fiume G, Mocarski E, et al., editors 2007.

[76] Patrick S. Moore. Part II.3. Basic virology and viral gene effects on host cell functions: gammaherpesviruses. Human Herpesviruses: Biology, Therapy, and Immunoprophylaxis. Arvin A, Campadelli-Fiume G, Mocarski E, et al., editors 2007. [77] Erik De Clercq. AnotherTen Stories in Antiviral Drug Discovery (Part C): ‘‘Old’’and ‘‘New’’ Antivirals, Strategies, and Perspectives. Medicinal Research Reviews 2009, 29, 611—645.

[78] Elion GB, Furman PA, Fyfe JA, de Miranda P, Beauchamp L, Schaeffer HJ. Selectivity of action of an antiherpetic agent, 9-(2-hydroxyethoxymethyl)guanine. Proc Natl Acad Sci USA 1977, 74, 5716–5720.

[79] Erik De Clercq. The Discovery of Antiviral Agents: Ten Di¡erent Compounds, Ten Different Stories. Medicinal Research Reviews, 2008, 28, 929--953.

[80] Luber AD, Flaherty JF, Famciclovir for Treatment of Herpesvirus Infections, in Ann. Pharmacother, 1996, 30, 978–85.

[81] T. Matthews, R. Boehme, Antiviral activity and mechanism of action of ganciclovir. Rev Infect Dis, 1998, 10 Suppl 3, S490-4.

[82] De Clercq E. Therapeutic potential of cidofovir (HPMPC, VistideTM) for the treatment of DNA virus (i.e. herpes-, papova-, pox- and adenovirus) infections. Verh K Acad Geneeskd Belg 1996, 58, 19–49.

[83] B. Oberg, Antiviral effects of phosphonoformate (PFA, foscarnet sodium)., in Pharmacol Ther, 1982, 19, 387-415.

[84] Surjo K. De, Jennifer C.L. Hart, and Judith Breuer. Herpes simplex virus and varicella zoster virus: recent advances in therapy. Curr Opin Infect Dis 2015, 28, 589 – 595.

[85] Buller RM, Owens G, Schriewer J, et al. Efficacy of oral active ether lipid analogs of cidofovir in a lethal mousepox model. Virology 2004, 318, 474– 481.

[86] Painter W, Robertson A, Trost LC, et al. First pharmacokinetic and safety study in humans of the novel lipid antiviral conjugate CMX001: a broad- spectrum oral drug active against double-stranded DNA viruses. Antimicrob Agents Chemother 2012, 56, 2726– 2734.

[87] Lowe D.M., Alderton W.K., Ellis M.R., et al. Mode of action of (R)-9-[4-hydroxy-2- (hydroxymethyl)butyl] guanine against herpesviruses. Antimicrob Agents Che-mother 1995, 39, 1802–1808.

[88]. McGuigan C, Yarnold CJ, Jones G, et al. Potent and selective inhibition of varicella- zoster virus (VZV) by nucleoside analogues with an unusual bicyclic base. J Med Chem 1999, 42, 4479 – 4484.

[89] Erik De Clercq. Antiviral Drug Discovery:Ten More Compounds, and Ten More Stories (Part B). Medicinal Research Reviews, 2009, 29, 571—610.

[90]. Biswas S, Jennens L, Field HJ. Single amino acid substitutions in the HSV-1 helicase protein that confer resistance to the helicase-primase inhibitor BAY 57-1293 are associated with increased or decreased virus growth characteristics in tissue culture. Arch Virol 2007, 152, 1489 – 1500.

[91] Abdool Karim S.S., Abdool Karim Q., Kharsany A.B., et al. Tenofovir gel for the prevention of herpes simplex virus type 2 infection. N Engl J Med 2015, 373, 530 – 539. [92] Robert B. Couch. Chapter 58Orthomyxoviruses. Medical Microbiology. 4th edition. Baron S, editor. Galveston (TX): University of Texas Medical Branch at Galveston; 1996. [93] Fiore AE, Bridges CB, Cox NJ. Seasonal influenza vaccines. Curr Top Microbiol Immunol 2009, 333, 43– 82.

[94] Partridge J, Kieny MP. Global production capacity of seasonal influenza vaccine in 2011. 2013, 31, 728 –731.

[95] Abdelwhab EM, Veits J, Mettenleiter TC. Prevalence and control of H7 avian influenza viruses in birds and humans. Epidemiol Infect 2014, 142, 896 –920.

[96] Writing Committee of the Second World Health Organization Consultation on Clinical Aspects of Human Infection with Avian Influenza A (H5N1) virus. Update on avian influenza A (H5N1) virus infection in humans. N Engl J Med 2008, 358, 261–273. [97] De Clercq E. Antiviral agents active against influenza A viruses. Nat Rev Drug Discov 2006, 5, 1015–1025.

Characterization and quantification of grape variety by means of shikimic acid concentration and protein fingerprint in still white wines. J.Agric. Food Chem., 2008, 16, 6785-90.

[99] Griffiths PD. Whatever happened to bird flu? Rev Med Virol 2008, 18, 1–3.

[100] Erik De Clercq. The NextTen Stories on Antiviral Drug Discovery (Part E): Advents, Advances, and Adventures. Medicinal Research Reviews, 2010, 31, 118—160.

[101] https://www.cancer.gov

[102] Davies WL, Grunert RR, Haff RF, McGahen JW, Neumayer EM, Paulshock M, Watts JC, Wood TR, Hermann EC, Hoffmann CE. Antiviral activity of 1-adamantanamine (amantadine). Science 1964, 144, 862–863.

[103] De Clercq E. Antiviral agents active against influenza A viruses. Nat Rev Drug Discov 2006, 5, 1015–1025.

[104] Jefferson TO, Demicheli V, Deeks JJ, Rivetti D. Amantadine and rimantadine for preventing and treating influenza A in adults. The Cochrane Database of Systematic Reviews. 2004, 3, 1-6.

[105] Preziosi, P. Influenza pharmacotherapy: present situation, strategies and hopes, Expert Opin Pharmacother 2011, 12, 1523-1549.

[106] Furuse, Y., Suzuki, A., Kamigaki, T., and Oshitani, H. Evolution of the M gene of the influenza A virus in different host species: large-scale sequence analysis, Virol J. 2009, 6, 67.

[107] Grohskopf, L. A., Sokolow, L. Z., Olsen, S. J., Bresee, J. S., Broder, K. R., and Karron, R. A. Prevention and Control of Influenza with Vaccines: Recommendations of the Advisory Committee on Immunization Practices, United States, 2015-16 Influenza Season, MMWR Morb Mortal Wkly Rep 2015, 64, 818-825.

[108] He G, Qiao J, Dong C, He C, Zhao L, Tian Y. Amantadine-resistance among H5N1 avian influenza viruses isolated in Northern China. Antiviral Res 2008, 77, 72–76.

[109] Randal A. Byrn, Steven M. Jones, Hamilton B. Bennett, Chris Bral, Michael P. Clark, Marc D. Jacobs, Ann D. Kwong, Mark W. Ledeboer, Joshua R. Leeman, Colleen F. McNeil, Mark A. Murcko, Azin Nezami, Emanuele Perola, Rene Rijnbrand, Kumkum Saxena, Alice W. Tsai, Yi Zhou, Paul S. Charifson. Preclinical Activity of VX-787, a First-in-Class, Orally Bioavailable Inhibitor of the Influenza Virus Polymerase PB2

Subunit. Antimicrob Agents Chemother. 2015, 59, 1569–1582.

[110] Smee DF, Hurst BL, Wong MH, Bailey KW, Morrey JD. Effects of double combinations of amantadine, oseltamivir, and ribavirin on influenza A (H5N1) virus infections in cell culture and in mice. Antimicrob Agents Chemother 2009, 53, 2120–2128. [111] Centers for Disease Control. b. Update on acquired immune deficiency syndrome (AIDS)—United States. Morbid. Mortal. Weekly Rep. 1982, 31, 507–514.

[112] Alan D. Frankel, John A. T. Young. HIV-1: Fifteen Proteins and an RNA. Annu. Rev. Biochem. 1998, 67, 1–25.

[113] Doms, R.W. & Trono, D. The plasma membrane as a combat zone in the HIV bat- tlefield. Genes Dev. 14, 2677–2688 (2000).

[114] Weiss RA, How does HIV cause AIDS? Science 1993, 260, 1273–9.

[115] Geijtenbeek, T.B. et al. DC-SIGN, a dendritic cell-specific HIV-1-binding protein that enhances trans-infection of T cells. Cell 2000, 100, 587–597.

[116] Chan, D.C. & Kim, P.S. HIV entry and its inhibition. Cell 1998, 93, 681–684. [117] Adams, M. et al. Cellular latency in human immunodeficiency virus-infected indi- viduals with high CD4 levels can be detected by the presence of promoter- prox- imal transcripts. Proc. Natl. Acad. Sci. USA 1994, 91, 3862–3866.

[118] Gottlinger, H.G., Sodroski, J.G. & Haseltine, W.A. Role of capsid precursor pro- cessing and myristoylation in morphogenesis and infectivity of human immun- odeficiency virus type 1. Proc. Natl. Acad. Sci. USA 1989, 86, 5781–5785.

[119] Simmons, A., Aluvihare, V. & McMichael, A. Nef triggers a transcriptional pro- gram in T cells imitating single-signal T cell activation and inducing HIV virulence mediators. Immunity 14, 2001, 763–777.

[120] Lama, J., Mangasarian, A. & Trono, D. Cell-surface expression of CD4 reduces HIV-1 infectivity by blocking Env incorporation in a Nef- and Vpu-inhibitable manner. Curr. Biol. 1999, 9, 622–631.

[121] Mitsuya H, Weinhold KJ, Furman PA, St. Clair MH, Lehrman SN, Gallo RC, Bolognesi D, Barry DW, Broder S. 30-Azido-30-deoxythymidine (BWA509U): An antiviral agent that inhibits the infectivity and cytopathic effect of human T-lymphotropic

virus type III/lymphadenopathy-associated virus in vitro. Proc Natl Acad Sci USA 1985, 82, 7096–7100.

[122] De Clercq E, Descamps J, De Somer P, Holy ́ A. (S)-9-(2,3- Dihydroxypropyl)adenine: An aliphatic nucleoside analog with broad spectrum antiviral activity. Science 1978, 200, 563–565.

[123] www.aidsmap.com

[124] Baba M., Pauwels R., Herdewijn P., De Clercq E., Desmyter J., Vandeputte M. Both 2’,3’-dideoxythymidine and its 2’,3’-unsaturated derivative (2’,3’-dideoxythymidinene) are potent and selective inhibitors of human immunodeficiency virus replication in vitro. Biochem Biophys Res Commun 1987, 142, 128 – 134.

[125] De Clercq E. Emerging anti-HIV drugs. Exp Opin Emerg Drugs 2005, 10, 241–274. [126] Domingo P, Labarga P, Palacios R, Guerro MF, Terro ́n JA, Elias MJ, Santos J, Ruiz MI, Llibre JM. Improvement of dyslipidemia in patients switching from stavudine to tenofovir: Preliminary results. AIDS 2004;18:1475 – 1478.

[127] Gallant J.E , De Jesus E., Arribas J. R., Pozniak A. L., Gazzard B., Campo R.E., Lu B., McColl D., Chuck S., Enejosa J., Toole J.J., Cheng A.K., Tenofovir D.F. emtricitabine, and efavirenz vs. zidovudine, lamivudine, and efavirenz for HIV. N Engl J Med 2006, 354, 251–260.

[128] De Clercq E. The bicyclam AMD3100 story. Nat Rev Drug Discov 2003, 2, 581– 587.

[129] Princen K, Hatse S, Vermeire K, Aquaro S, De Clercq E, Gerlach L-O, Rosenkilde M, Schwartz TW, Skerlj R, Bridger G, Schols D. Inhibition of human immunodeficiency virus replication by a dual CCR5/CXCR4 antagonist. J Virol 2004, 78, 12996–13006. [130] Moye G, DeJesus E, Boffito M, Wong R, Coakley E, Gibney C, Badel K, Calandra G, Bridger G, Becker S. CXCR4 antagonism: Proof of activity with AMD11070. The 14th

Documenti correlati