• Non ci sono risultati.

La tretalogia di Fallot è la forma più comune di CHD cianotici. TOF implica quattro difetti del cuore : un ampio difetto ventricolare settale , stenosi polmonare ,

ipertrofia ventricolare destra , e una sovrascrittura dell’ aorta.

Utilizzando un test ad ampio genoma per registrare il numero di varianti.

Silversides e altri hanno scoperto che il gene PLXNA2 , il quale codifica la plexina A2 , è un candidato per la patogenesi di TOF. Tale scoperta diventa rilevante se associata ad un’ altro studio più aggiornato che mostra i CHD , incluso TOF , nei topi plexina A2-deficienti.

CONCLUSIONE.

La segnalazione della semaforina gioca un ruolo centrale non solo nei vari processi di sviluppo ma anche nella patogenesi di diversi disturbi congeniti. Ulteriori studi sul genoma utilizzanti tecnologie di nuova generazione dovrebbero definire l’ ancora poco chiara relazione tra le patologie congenite e le semaforine segnale.

xy

Bibliografia

Cap 1.

Behar, O., Golden, J.A., Mashimo, H., Schoen, F.J., and Fishman, M.C. (1996). Semaphorin III is needed for normal patterning and growth of nerves, bones and heart. Nature 383, 525–528. Bhatia, N.L., Tajik, A.J., Wilansky, S., Steidley, D.E., and Mookadam, F. (2011). Isolated

noncompaction of the left ventricular myocardium in adults: a system- atic overview. J. Card. Fail. 17, 771–778.

Bouvre´ e, K., Brunet, I., Del Toro, R., Gordon, E., Prahst, C., Cristofaro, B., Mathivet, T., Xu, Y., Soueid, J., Fortuna, V., et al. (2012). Semaphorin3A, Neuropilin-1, and PlexinA1 are required for lymphatic valve formation. Circ. Res. 111, 437–445.

Brown, C.B., Feiner, L., Lu, M.M., Li, J., Ma, X., Webber, A.L., Jia, L., Raper, J.A., and Epstein, J.A. (2001). PlexinA2 and semaphorin signaling during car- diac neural crest development. Development 128, 3071–3080.

Cao, J.M., Chen, L.S., KenKnight, B.H., Ohara, T., Lee, M.H., Tsai, J., Lai, W.W., Karagueuzian, H.S., Wolf, P.L., Fishbein, M.C., and Chen, P.S. (2000a). Nerve sprouting and sudden cardiac death. Circ. Res. 86, 816–821.

Cao, J.M., Fishbein, M.C., Han, J.B., Lai, W.W., Lai, A.C., Wu, T.J., Czer, L.,Wolf, P.L., Denton, T.A., Shintaku, I.P., et al. (2000b). Relationship between regional cardiac hyperinnervation and ventricular arrhythmia. Circulation 101, 1960–1969.

Casazza, A., Finisguerra, V., Capparuccia, L., Camperi, A., Swiercz, J.M., Riz- zolio, S., Rolny, C., Christensen, C., Bertotti, A., Sarotto, I., et al. (2010). Sema3E-Plexin D1 signaling drives human cancer cell invasiveness and met- astatic spreading in mice. J. Clin. Invest. 120, 2684–2698.

Ch’ng, E.S., and Kumanogoh, A. (2010). Roles of Sema4D and Plexin-B1 in tu- mor progression. Mol. Cancer 9, 251.

Chen, H., Bagri, A., Zupicich, J.A., Zou, Y., Stoeckli, E., Pleasure, S.J., Lowen- stein, D.H., Skarnes, W.C., Che´ dotal, A., and Tessier-Lavigne, M. (2000). Neu- ropilin-2 regulates the development of selective cranial and sensory nerves and hippocampal mossy fiber projections. Neuron 25, 43–56.

Chen, R.H., Li, Y.G., Jiao, K.L., Zhang, P.P., Sun, Y., Zhang, L.P., Fong, X.F., Li, W., and Yu, Y. (2013). Overexpression of Sema3a in myocardial infarction border zone decreases vulnerability of ventricular tachycardia post-myocar- dial infarction in rats. J. Cell. Mol. Med. 17, 608–616.

Cora` , D., Astanina, E., Giraudo, E., and Bussolino, F. (2014). Semaphorins in cardiovascular medicine. Trends Mol. Med. 20, 589–598.

z3

Crick, S.J., Wharton, J., Sheppard, M.N., Royston, D., Yacoub, M.H., Ander- son, R.H., and Polak, J.M. (1994). Innervation of the human cardiac conduction system. A quantitative

immunohistochemical and histochemical study. Circu- lation 89, 1697–1708.

Crick, S.J., Sheppard, M.N., Ho, S.Y., and Anderson, R.H. (1999). Localisation and quantitation of autonomic innervation in the porcine heart I: conduction system. J. Anat. 195, 341–357.

Degenhardt, K., Singh, M.K., Aghajanian, H., Massera, D., Wang, Q., Li, J., Li, L., Choi, C., Yzaguirre, A.D., Francey, L.J., et al. (2013a). Semaphorin 3d signaling defects are associated with anomalous pulmonary venous connec- tions. Nat. Med. 19, 760–765.

Degenhardt, K., Singh, M.K., and Epstein, J.A. (2013b). New approaches un- der development: cardiovascular embryology applied to heart disease. J. Clin. Invest. 123, 71–74.

Dhanabal, M., Wu, F., Alvarez, E., McQueeney, K.D., Jeffers, M., MacDougall, J., Boldog, F.L., Hackett, C., Shenoy, S., Khramtsov, N., et al. (2005). Recom- binant semaphorin 6A-1 ectodomain inhibits in vivo growth factor and tumor cell line-induced angiogenesis. Cancer Biol. Ther. 4, 659– 668.

Epstein, J.A. (2010). Franklin H. Epstein Lecture. Cardiac development and im- plications for heart disease. N. Engl. J. Med. 363, 1638–1647.

Falk, J., Bechara, A., Fiore, R., Nawabi, H., Zhou, H., Hoyo-Becerra, C., Bozon, M., Rougon, G., Grumet, M., Pu¨ schel, A.W., et al. (2005). Dual functional activ- ity of semaphorin 3B is required for positioning the anterior commissure. Neuron 48, 63–75.

Feiner, L., Webber, A.L., Brown, C.B., Lu, M.M., Jia, L., Feinstein, P., Mom- baerts, P., Epstein, J.A., and Raper, J.A. (2001). Targeted disruption of sema- phorin 3C leads to persistent truncus arteriosus and aortic arch interruption. Development 128, 3061–3070.

Cap 2.

Deppmann CD, Ginty DD. Retrograde control of neural circuit forma- tion. Cell 127: 1306 – 1307, 2006.

Domeniconi M, Zampieri N, Spencer T, Hilaire M, Mellado W, Chao MV, Filbin MT. MAG

induces regulated intramembrane proteolysis of the p75 neurotrophin receptor to inhibit neurite outgrowth. Neuron 46: 849 –855, 2005.

Donovan MJ, Lin MI, Wiegn P, Ringstedt T, Kraemer R, Hahn R, Wang S, Ibanez CF, Rafii S, Hempstead BL. Brain derived neurotrophic factor is an endothelial cell survival factor required for intramyocardial vessel stabilization. Development 127: 4531–4540, 2000.

Ebendal T, Belew M, Jacobson CO, Porath J. Neurite outgrowth elicited by embryonic chick heart: partial purification of the active factor. Neurosci Lett 14: 91–95, 1979.

{|

Ernfors P, Lee KF, Jaenisch R. Target derived and putative local actions of neurotrophins in the peripheral nervous system. Prog Brain Res 103: 43–54, 1994.

Esler M, Kaye D. Sympathetic nervous system neuroplasticity. Hyper- tension 47: 143–144, 2006.

Esler M, Rumantir M, Kaye D, Jennings G, Hastings J, Socratous F, Lambert G. Sympathetic nerve biology in essential hypertension. Clin Exp Pharmacol Physiol 28: 986 –989, 2001.

Fraser J, Nadeau J, Robertson D, Wood AJ. Regulation of human leukocyte beta receptors by endogenous catecholamines: relationship of leukocyte beta receptor density to the cardiac sensitivity to isoproterenol. J Clin Invest 67: 1777–1784, 1981.

Gentry JJ, Barker PA, Carter BD. The p75 neurotrophin receptor: multiple interactors and numerous functions. Prog Brain Res 146: 25–39, 2004.

Glebova NO, Ginty DD. Growth and survival signals controlling sym- pathetic nervous system development. Annu Rev Neurosci 28: 191–222, 2005.

Habecker BA, Bilimoria P, Linick C, Gritman K, Lorentz CU, Wood- ward W, Birren SJ. Regulation of cardiac innervation and function via the p75 neurotrophin receptor. Auton

Neurosci 140: 40 –48, 2008.

Hannila SS, Lawrance GM, Ross GM, Kawaja MD. TrkA and mitogen- activated protein kinase phosphorylation are enhanced in sympathetic neurons lacking functional p75 neurotrophin receptor expression. Eur J Neurosci 19: 2903–2908, 2004.

Hassankhani A, Steinhelper ME, Soonpaa MH, Katz EB, Taylor DA, Andrade-Rozental A, Factor SM, Steinberg JJ, Field LJ, Federoff HJ. Overexpression of NGF within the heart of transgenic mice causes hyperinnervation, cardiac enlargement, and hyperplasia of ectopic cells. Dev Biol 169: 309 –321, 1995.

Hoard JL, Hoover DB, Mabe AM, Blakely RD, Feng N, Paolocci N. Cholinergic neurons of mouse intrinsic cardiac ganglia contain noradren- ergic enzymes, norepinephrine transporters, and the neurotrophin recep- tors tropomyosin-related kinase A and p75. Neuroscience 156: 129 –142, 2008.

Ieda M, Kanazawa H, Kimura K, Hattori F, Ieda Y, Taniguchi M, Lee JK, Matsumura K, Tomita Y, Miyoshi S, Shimoda K, Makino S, Sano M, Kodama I, Ogawa S, Fukuda K. Sema3a maintains normal heart rhythm through sympathetic innervation patterning. Nat Med 13: 604 – 612, 2007.

Jahed A, Kawaja MD. The influences of p75 neurotrophin receptor and brain-derived neurotrophic factor in the sympathetic innervation of target tissues during murine postnatal development. Auton Neurosci 118: 32–42, 2005.

Kawaguchi-Manabe H, Ieda M, Kimura K, Manabe T, Miyatake S, Kanazawa H, Kawakami T, Ogawa S, Suematsu M, Fukuda K. A novel cardiac hypertrophic factor, neurotrophin-3, is paradoxically down- regulated in cardiac hypertrophy. Life Sci 81: 385–392, 2007.

}~

Kohn J, Aloyz RS, Toma JG, Haak-Frendscho M, Miller FD. Func- tionally antagonistic interactions between the TrkA and p75 neurotrophin receptors regulate sympathetic neuron growth and target innervation. J Neurosci 19: 5393–5408, 1999.

Cap 3.

Maione, F., F. Molla, C. Meda, R. Latini, L. Zentilin, M. Giacca, G. Seano, G. Serini, F. Bussolino, and E. Giraudo. 2009. Semaphorin 3A is an endogenous angiogenesis inhibitor that blocks tumor growth and normalizes tumor vascu- lature in transgenic mouse models. J. Clin. Invest. 119: 3356–3372.

Basile, J. R., T. Afkhami, and J. S. Gutkind. 2005. Semaphorin 4D/plexin-B1 induces endothelial cell migration through the activation of PYK2, Src, and the phosphatidylinositol 3-kinase-Akt pathway. Mol. Cell. Biol. 25: 6889–6898.

Sierra, J. R., S. Corso, L. Caione, V. Cepero, P. Conrotto, A. Cignetti,

W. Piacibello, A. Kumanogoh, H. Kikutani, P. M. Comoglio, et al. 2008. Tumor angiogenesis and progression are enhanced by Sema4D produced by tumor- associated macrophages. J. Exp. Med. 205: 1673–1685.

Pu¨schel, A. W., R. H. Adams, and H. Betz. 1995. Murine semaphorin D/ collapsin is a member of a diverse gene family and creates domains inhibitory for axonal extension. Neuron 14: 941–948.

Kumanogoh, A., S. Marukawa, K. Suzuki, N. Takegahara, C. Watanabe,

E. Ch’ng, I. Ishida, H. Fujimura, S. Sakoda, K. Yoshida, and H. Kikutani. 2002. Class IV

semaphorin Sema4A enhances T-cell activation and interacts with Tim- 2. Nature 419: 629–633. Toyofuku, T., M. Yabuki, J. Kamei, M. Kamei, N. Makino, A. Kumanogoh, and

Hori. 2007. Semaphorin-4A, an activator for T-cell-mediated immunity, suppresses angiogenesis via Plexin-D1. EMBO J. 26: 1373–1384.

Yukawa, K., T. Tanaka, T. Bai, T. Ueyama, K. Owada-Makabe, Y. Tsubota,

Maeda, K. Suzuki, H. Kikutani, and A. Kumanogoh. 2005. Semaphorin 4A induces growth cone collapse of hippocampal neurons in a Rho/Rho-kinase- dependent manner. Int. J. Mol. Med. 16: 115–118.

Yukawa, K., T. Tanaka, K. Yoshida, N. Takeuchi, T. Ito, H. Takamatsu,

H. Kikutani, and A. Kumanogoh. 2010. Sema4A induces cell morphological changes through B- type plexin-mediated signaling. Int. J. Mol. Med. 25: 225–230.

Kumanogoh, A., T. Shikina, K. Suzuki, S. Uematsu, K. Yukawa, S. Kashiwamura,

H. Tsutsui, M. Yamamoto, H. Takamatsu, E. P. Ko-Mitamura, et al. 2005. Non- redundant roles of Sema4A in the immune system: defective T cell priming and Th1/Th2 regulation in Sema4A- deficient mice. Immunity 22: 305–316.

Smith, E. P., K. Shanks, M. M. Lipsky, L. J. DeTolla, A. D. Keegan, and

S. P. Chapoval. 2011. Expression of neuroimmune semaphorins 4A and 4D and their receptors in the lung is enhanced by allergen and vascular endothelial growth factor. BMC Immunol. 12: 30. Bing, R. J. 2001. Myocardial ischemia and infarction: growth of ideas. Car-

diovasc. Res. 51: 13–20.

Frangogiannis, N. G., C. W. Smith, and M. L. Entman. 2002. The inflammatory response in myocardial infarction. Cardiovasc. Res. 53: 31–47.

Nian, M., P. Lee, N. Khaper, and P. Liu. 2004. Inflammatory cytokines and postmyocardial infarction remodeling. Circ. Res. 94: 1543–1553.

Piper, H. M., K. Meuter, and C. Scha¨fer. 2003. Cellular mechanisms of ischemia- reperfusion injury. Ann. Thorac. Surg. 75: S644–S648.

Bussolino, F., M. F. Di Renzo, M. Ziche, E. Bocchietto, M. Olivero, L. Naldini,

G. Gaudino, L. Tamagnone, A. Coffer, and P. M. Comoglio. 1992. Hepatocyte growth factor is a potent angiogenic factor which stimulates endothelial cell motility and growth. J. Cell Biol. 119: 629–641.

Valdembri, D., P. T. Caswell, K. I. Anderson, J. P. Schwarz, I. Ko¨nig, E. Astanina, F. Caccavari, J. C. Norman, M. J. Humphries, F. Bussolino, and

G. Serini. 2009. Neuropilin-1/GIPC1 signaling regulates alpha5beta1 integrin traffic and function in endothelial cells. PLoS Biol. 7: e25.

Naldini, A., D. Leali, A. Pucci, E. Morena, F. Carraro, B. Nico, D. Ribatti, and

M. Presta. 2006. Cutting edge: IL-1beta mediates the proangiogenic activity of osteopontin- activated human monocytes. J. Immunol. 177: 4267–4270.

Tsou, C. L., W. Peters, Y. Si, S. Slaymaker, A. M. Aslanian, S. P. Weisberg,

M. Mack, and I. F. Charo. 2007. Critical roles for CCR2 and MCP-3 in monocyte mobilization from bone marrow and recruitment to inflammatory sites. J. Clin. Invest. 117: 902–909.

Chow, J. C., D. W. Young, D. T. Golenbock, W. J. Christ, and F. Gusovsky. 1999.

Toll-like receptor-4 mediates lipopolysaccharide-induced signal transduction. J. Biol. Chem. 274: 10689–10692.

Medzhitov, R., and C. A. Janeway, Jr. 1997. Innate immunity: the virtues of a nonclonal system of recognition. Cell 91: 295–298.

Gu, C., Y. Yoshida, J. Livet, D. V. Reimert, F. Mann, J. Merte, C. E. Henderson, T. M. Jessell, A. L. Kolodkin, and D. D. Ginty. 2005. Semaphorin 3E and plexin- D1 control vascular pattern

independently of neuropilins. Science 307: 265–268.

Geissmann, F., C. Auffray, R. Palframan, C. Wirrig, A. Ciocca, L. Campisi,

E. Narni-Mancinelli, and G. Lauvau. 2008. Blood monocytes: distinct subsets, how they relate to dendritic cells, and their possible roles in the regulation of T- cell responses. Immunol. Cell Biol. 86: 398–408.

Fong, G. H. 2009. Regulation of angiogenesis by oxygen sensing mechanisms. J. Mol. Med. 87: 549–560.

Ahmed, Z., and R. Bicknell. 2009. Angiogenic signalling pathways. Methods Mol. Biol. 467: 3–24. Harmey, J. H., E. Dimitriadis, E. Kay, H. P. Redmond, and D. Bouchier-Hayes.



hypoxia and transforming growth factor beta-1. Ann. Surg. Oncol. 5: 271–278. Botero, T. M., M. G. Mantellini, W. Song, C. T. Hanks, and J. E. No¨r. 2003. Effect of lipopolysaccharides on vascular endothelial growth factor expression in mouse pulp cells and macrophages. Eur. J. Oral Sci. 111: 228–234.

Cap 4.

Suzuki K, Kumanogoh A, Kikutani H (2008) Semaphorins and their receptors in immune cell interactions. Nat Immunol 9: 17–23.

Oinuma I, Ito Y, Katoh H, Negishi M (2010) Semaphorin 4D/Plexin-B1 stimulates PTEN activity through R-Ras GTPase-activating protein activity, inducing growth cone collapse in

hippocampal neurons. J Biol Chem 285: 28200–28209.

Ito Y, Oinuma I, Katoh H, Kaibuchi K, Negishi M (2006) Sema4D/plexin-B1 activates GSK-3beta through R-Ras GAP activity, inducing growth cone collapse. EMBO Rep 7: 704–709.

Oinuma I, Katoh H, Negishi M (2004) Molecular dissection of the semaphorin 4D receptor plexin- B1-stimulated R-Ras GTPase-activating protein activity and neurite remodeling in hippocampal neurons. J Neurosci 24: 11473–11480.

Oinuma I, Ishikawa Y, Katoh H, Negishi M (2004) The Semaphorin 4D receptor Plexin-B1 is a GTPase activating protein for R-Ras. Science 305: 862– 865.

Ch’ng ES, Kumanogoh A (2010) Roles of Sema4D and Plexin-B1 in tumor progression. Mol Cancer 9: 251.

Binmadi NO, Proia P, Zhou H, Yang YH, Basile JR (2011) Rho-mediated activation of PI(4)P5K and lipid second messengers is necessary for promotion of angiogenesis by Semaphorin 4D. Angiogenesis 14: 309–319.

Zhou H, Binmadi NO, Yang YH, Proia P, Basile JR (2012) Semaphorin 4D cooperates with VEGF to promote angiogenesis and tumor progression. Angiogenesis 15: 391–407.

Kato S, Kubota K, Shimamura T, Shinohara Y, Kobayashi N, et al. (2011) Semaphorin 4D, a lymphocyte semaphorin, enhances tumor cell motility through binding its receptor, plexinB1, in pancreatic cancer. Cancer Sci 102: 2029–2037.

‚ƒ

Conrotto P, Corso S, Gamberini S, Comoglio PM, Giordano S (2004) Interplay between scatter factor receptors and B plexins controls invasive growth. Oncogene 23: 5131–5137.

Friedel RH, Kerjan G, Rayburn H, Schuller U, Sotelo C, et al. (2007) Plexin-B2 controls the development of cerebellar granule cells. J Neurosci 27: 3921–3932.

Zhu L, Bergmeier W, Wu J, Jiang H, Stalker TJ, et al. (2007) Regulated surface expression and shedding support a dual role for semaphorin 4D in platelet responses to vascular injury. Proc Natl Acad Sci U S A 104: 1621–1626.

Wannemacher KM, Zhu L, Jiang H, Fong KP, Stalker TJ, et al. (2010) Diminished contact- dependent reinforcement of Syk activation underlies impaired thrombus growth in mice lacking Semaphorin 4D. Blood 116: 5707– 5715.

Wang X, Kumanogoh A, Watanabe C, Shi W, Yoshida K, et al. (2001) Functional soluble CD100/Sema4D released from activated lymphocytes: possible role in normal and pathologic immune responses. Blood 97: 3498–3504.

Elhabazi A, Delaire S, Bensussan A, Boumsell L, Bismuth G (2001) Biological activity of soluble CD100. I. The extracellular region of CD100 is released from the surface of T lymphocytes by regulated proteolysis. J Immunol 166: 4341– 4347.

Cap 5.

Chung L, Yang T-L, Huang H-R, Hsu S-M, Cheng H-J, Huang P-H. 2007. Semaphorin signaling facilitates cleft formation in the developing sali- vary gland. Development 134:2935–2945. Clementi M, Tenconi R, Turolla L, Silvan C, Bortotto L, Artifoni L. 1991. Apparent CHARGE association and chromosome anomaly: chance or contiguous gene syndrome. Am J Med Genet 41:246–250.

Degenhardt K, Singh MK, Aghajanian H et al. 2013. Semaphorin 3d signaling defects are associated with anomalous pulmonary venous con- nections. Nat Med 19:760–765.

Feiner L, Webber AL, Brown CB et al. 2001. Targeted disruption of semaphorin 3C leads to persistent truncus arteriosus and aortic arch interruption. Development 128:3061–3070.

Gitler AD, Lu MM, Epstein JA. 2004. PlexinD1 and semaphorin signaling are required in endothelial cells for cardiovascular development. Dev Cell 7:107–116.

Gu C, Rodriguez ER, Reimert DV et al. 2003. Neuropilin-1 conveys semaphorin and VEGF signaling during neural and cardiovascular devel- opment. Dev Cell 5:45–57.

„…

Gu C, Yoshida Y, Livet J et al. 2005. Semaphorin 3E and plexin-D1 control vascular pattern independently of neuropilins. Science 307:265–268.

Hamel CP. 2007. Cone rod dystrophies. Orphanet J Rare Dis 2:7.

Hanchate NK, Giacobini P, Lhuillier P et al. 2012. SEMA3A, a gene involved in axonal pathfinding, is mutated in patients with Kallmann syndrome. PLoS Genet 8:e1002896.

Hofmann K, Zweier M, Sticht H et al. 2013. Biallelic SEMA3A defects cause a novel type of syndromic short stature. Am J Med Genet A 161A:2880–2289.

Jiang Q, Turner T, Sosa MX, Rakha A, Arnold S, Chakravarti A. 2012. Rapid and efficient human mutation detection using a bench-top next- generation DNA sequencer. Hum Mutat 33:281–289.

Khoshnood B, Lelong N, Houyel L et al. 2012. Prevalence, timing of diag- nosis and mortality of newborns with congenital heart defects: a population-based study. Heart 98:1667–1673. Kodo K, Nishizawa T, Furutani M et al. 2009. GATA6 mutations cause human cardiac outflow tract defects by disrupting semaphorin-plexin signaling. Proc Natl Acad Sci USA 106:13933– 13938.

Kosaki K. 2011. Role of rare cases in deciphering the mechanisms of congenital anomalies: CHARGE syndrome research. Congenit Anom 51:12–15.

Kruger RP, Aurandt J, Guan K-L. 2005. Semaphorins command cells to move. Nat Rev Mol Cell Biol 6:789–800.

Lalani SR, Safiullah AM, Molinari LM, Fernbach SD, Martin DM, Belmont JW. 2004. SEMA3E mutation in a patient with CHARGE syndrome. J Med Genet 41:e94.

Lepore JJ, Mericko PA, Cheng L, Lu MM, Morrisey EE, Parmacek MS. 2006. GATA-6 regulates semaphorin 3C and is required in cardiac neural crest for cardiovascular morphogenesis. J Clin Invest 116:929–939.

Luzón-Toro B, Fernández RM, Torroglosa A et al. 2013. Mutational spec- trum of semaphorin 3A and semaphorin 3D genes in Spanish Hirschsprung patients. PLoS ONE 8:e54800.

MacColl G, Bouloux P, Quinton R. 2002. Kallmann syndrome: adhesion, afferents, and anosmia. Neuron 34:675–678.

Maier V, Jolicoeur C, Rayburn H et al. 2011. Semaphorin 4C and 4G are ligands of Plexin-B2 required in cerebellar development. Mol Cell Neurosci 46:419–431.

Masuda K, Furuyama T, Takahara M, Fujioka S, Kurinami H, Inagaki S. 2004. Sema4D stimulates axonal outgrowth of embryonic DRG sensory neurones. Genes Cells 9:821–829. Masuda T, Kai N, Sakuma C, Kobayashi K, Koga H, Yaginuma H. 2009. Laser capture

microdissection and cDNA array analysis for identification of mouse KIAA/FLJ genes differentially expressed in the embryonic dorsal spinal cord. Brain Res 1249:61–67.

Documenti correlati