• Non ci sono risultati.

Reference intervals for orotic acid in urine, plasma and dried blood spot using hydrophilic interaction liquid chromatography-tandem mass spectrometry.

N/A
N/A
Protected

Academic year: 2021

Condividi "Reference intervals for orotic acid in urine, plasma and dried blood spot using hydrophilic interaction liquid chromatography-tandem mass spectrometry."

Copied!
6
0
0

Testo completo

(1)

JournalofChromatographyB,xxx (2011) xxx–xxx

ContentslistsavailableatSciVerseScienceDirect

Journal

of

Chromatography

B

jo u r n al h om ep a g e :w w w . e l s e v i e r . c o m / l o c a t e / c h r o m b

Reference

intervals

for

orotic

acid

in

urine,

plasma

and

dried

blood

spot

using

hydrophilic

interaction

liquid

chromatography–tandem

mass

spectrometry

Oceania

D’Apolito

a,1

,

Daniela

Garofalo

a,1

,

Giancarlo

la

Marca

b,c

,

Antonio

Dello

Russo

d

,

Gaetano

Corso

a,d,∗

aDepartmentofBiomedicalSciences,UniversityofFoggia,Foggia,Italy bDepartmentofPharmacology,UniversityofFlorence,Italy cMassSpectrometryLab,MeyerChildren’sHospital,Florence,Italy

dDepartmentofBiochemistryandMedicalBiotechnologies,UniversityFedericoIIofNaples,Naples,Italy

a

r

t

i

c

l

e

i

n

f

o

Articlehistory: Received19July2011 Accepted27September2011 Available online xxx Keywords: Referenceintervals Oroticacid Driedbloodspot Tandemmassspectrometry

a

b

s

t

r

a

c

t

Oroticacid(OA),amarkerofhereditaryoroticaciduria,isusuallyusedforthedifferentialdiagnosisof somehyperammonemicinheriteddefectsofureacycleandofbasicaminoacidtransporters.Thisstudy wasaimedtoestablishagerelatedreferenceintervalsofOAinurine,andforthefirsttimeinplasma, anddriedbloodspot(DBS)from229apparentlyhealthysubjectsagedfromthreedaysto40years. ThequantificationofOAwasperformedbyapreviouslyimplementedmethod,usingastableisotope dilutionwith1,3-[15N

2]-oroticacidandhydrophilicinteractionliquidchromatography–tandemmass

spectrometry(HILIC–MS/MS).Themethodhasprovedtobesensitiveandaccurateforaquantitative analysisofOAalsoinDBSandplasma.Accordingtopreviousstudies,urinaryOAlevels(mmol/molof creatinine)decreasesignificantlywithage.Theupperlimits(as99th%ile)wereof3.44and1.30ingroups agedfromthreedaysto1year(group1)andfrom1yearto12years(group2),respectively;inteenagers (from13to19years;group3)andadults(from20to40years;group4)urinarylevelsbecamemore stableandtheupperlimitswereof0.64and1.21,respectively.Furthermore,OAlevelsinDBS(␮M)also resultedsignificantlyhigherinsubjectsofgroup1(upperlimitof0.89)thaninsubjectsofgroups2,3and 4(upperlimitsof0.24,0.21,and0.29,respectively).OAlevelsinplasma(␮M)weresignificantlylower insubjectsofgroup3(upperlimitof0.30)thaninsubjectsofgroups1,2,and4(upperlimitsof0.59, 0.48,and0.77,respectively).ThismethodwasalsoemployedforOAquantificationinplasmaandDBS of17newbornsaffectedbyureacycledefects,resultingsensitiveandspecificenoughtoscreenthese disorders.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Orotic acid (OA; 1,2,3,6-tetrahydro-2,6-dioxo-4-pyrimidinecarboxylicacid;uracil-6-carboxylicacid)isametabolic markerof thehereditaryoroticaciduria,apyrimidinesynthesis defectcausedbyuridine-5-monophosphate(UMP)synthase defi-ciency[1](OMIM258900and258920),butthemostvaluableuse ofOAdeterminationisforthedifferentialdiagnosisofornithine transcarbamoylase (OTC, OMIM 311250) deficiency, the most commonformofaureacycledefect.Increasedexcretionofurinary

夽 Thispaperispartofthespecialissue“LC–MS/MSinClinicalChemistry”,Michael VogeserandChristophSeger(GuestEditors).

∗ Correspondingauthorat:DipartimentodiScienzeBiomediche,Facoltàdi Medic-inaeChirurgia–UniversitàdiFoggia,VialeL.Pinto1,71122Foggia,Italy. Tel.:+390881588055;fax:+390881588037.

E-mailaddress:g.corso@unifg.it(G.Corso). 1 Theseauthorscontributedequallytothiswork.

OAisalsoobservedintheotherinbornerrorsoftheureacycle,as argininosuccinatesynthetase deficiency(ASS, citrullinemiatype I,OMIM215700),argininosuccinatelyasedeficiency(ASL, argini-nosuccinicaciduria,OMIM207900),andarginasedeficiency(ARG, argininemia,OMIM207800).OAinurinealsoincreasesindefects of genes encoding somecationic amino acidtransporters such asthemitochondrialornithinetransporter1deficiency(ORNT1; HHHsyndrome,OMIM238970),andthelysinetransportery+

LAT-1 (SLC7A7; LPI, lysinuric protein intolerance, OMIM 222700), whichimpairtheintestinalabsorptionandrenalre-absorptionof basicaminoacids,respectively. Intheseconditionsthereduced bloodlevelsofornithineand/orofarginineslowdowntherateof ureacycle[2,3].OAdetermination ishelpfulforthedifferential diagnosisofhyperammonemiadisorderswhichcannotbereadily diagnosedbyaminoacidchromatography,thusreducingtheneed forenzymedeterminationintissuebiopsies.

OAexcretionincreasesalsoasaresultofdrugs,suchas allop-urinoland6-azauridine,thatappearstoinhibitthedistalpartof pyrimidinesynthesispathway.OnceOA reachestheblood, itis 1570-0232/$–seefrontmatter © 2011 Elsevier B.V. All rights reserved.

(2)

2 O.D’Apolitoetal./J.Chromatogr.Bxxx (2011) xxx–xxx

efficientlyclearedbythekidney;there isevidenceforsecretion bythetubules,aswellaslossbyfiltration[4].OAmayevenbe suc-cessfullyanalyzedinpiecesofurine-impregnatedfilterpaper[5,6] andmailedtoacentrallaboratory;today,avarietyofanalytical techniquesprovidesatisfactoryresults[2].AnalysisofurinaryOA providesanintegratedpictureofOAproductionovertime,rather thanthesnapshotthatisprovidedbyanalysisofasingleplasma sample[7].

AlthoughtheOAinurinerepresentsworldwidethereference testfordifferentialdiagnosisandforthemonitoringofdisorders abovementioned,patientsaffectedbyureacycledefectsalsoshow elevatedOAlevelsinplasmaorblood[3,4,8],andonlyfewaffected patientswiththesedisordershavebeencarefullyinvestigated ana-lyzingOAinblood orplasma.IncreasedconcentrationofOA in plasmaandbloodhasbeenfoundinASL[4],andOTCdefects[9].

We recently implemented a fast and sensitive hydrophilic interactionLC(HILIC)–MS/MSmethodforthequantitative determi-nationofOAinurine,plasma,anddriedbloodspot(DBS)requiring onlyminimalsamplepreparationandprovidingashortruntime. Usingthismethod,OAlevelsinplasmaandDBSfromapatient affectedbycitrullinemiawereatleastfiftytimeshigherthan nor-malcontrols[8].Theseraredatamakeitdifficulttodefinesafety limitsofOAinbloodanditsusefulnessasabiomarkerofdisease; moreover,referenceintervalsinbloodofhealthyhumansare com-pletelylacking.

Today,tandem MS representsa powerful tool for quantita-tiveanalysisofmetabolitesinbiologicalfluids,and,inparticular, themetabolicanalysisinDBSbyMS/MSrepresentsthereference methodfortheexpandednewbornscreeningofinbornerrorsof metabolism;therefore,theanalysisofOAinDBSmightrepresent ausefultestforthediagnosisofclassicaloroticacidurias,orasa secondtiertesttoconfirmureacycledefects.

Thepurposeofthisstudywastodeterminereferenceintervals forOAconcentrationsinurine,plasma,andDBSfromapparently healthychildrenandadults,dividedintofourgroupsagedfrom threedaysto40years,andtoassesstheeffectofage.Inaddition, wereporttheresultsofOAinDBSandplasmafromsomepatients affectedbydifferentinbornerrorsofureacycle.

2. Materialsandmethods

2.1. Chemicals

Theanalytical solvents of HPLCgrade ACN, and ammonium acetatewereobtainedfromJ.T.Baker(Deventer,TheNetherlands). OA standard was purchased from Sigma–Aldrich (Steinheim, Germany),and[1,3-15N

2]-OA,usedasinternalstandard(IS),was

purchased from Cambridge Isotope Laboratories (Andover, MA, USA).FilterpaperforDBSpreparationwasofgrade903andwas purchasedfromWhatmanGmbH(Dassel,Germany).

2.2. Samplescollectionandpopulationstudy

Urine,plasma,andwholebloodsampleswerereferredtoour laboratory(ClinicalBiochemistryLaboratoryofUniversity Hospi-talofFoggia,Italy)forgenerallaboratorytests.Thecollectionof samples,fortheestablishmentofreferenceintervals,wasmade betweenJanuary 2010and March2011. Disease controlswere selectedfromthoseofthenewbornscreeningcenteratA.Meyer Children’s Hospital, Florence (Italy). The samples were divided accordingtopatientageintofourgroups:group1comprised51 babies(20femalesand31males;age,fromthreedaysto1year); urines were collectedfrom all, and blood for plasma and DBS preparationwerecollectedfrom24(9femalesand15males). Fur-thermore,other20DBSsampleswereselectedfromunaffected

patients(12femalesand8males;age,3–16days)whohadalready beenanalyzedformetabolicdiseases.Group2comprised40 chil-dren(17femalesand23males;age,1–12years);group3comprised 40teenagers(18femalesand22males;age,13–19years);group4 comprised78adults(55femalesand23males;age,20–40years).In addition,anothergroup(n◦5)comprised17newborns(7females and10males,fromwhich11plasmaand6DBSwereobtained) affectedbyASSdeficiency(n=11),OTCdeficiency(n=2),ASL defi-ciency (n=2), and CPS deficiency (n=2), diagnosed on clinical, biochemical,and/orgeneticgrounds.Allthesamplesanalyzedin thisstudywerereservematerialsthatwerenotneededforfurther diagnosticinvestigations,thusavoidtakingextramaterialsormore volumeofsamplefrompatients.

The selection of normal sampleswas based onthe normal-ityofthefollowinglaboratorymarkers:glucose,urea,creatinine, uricacid,aspartatetransaminase,alaninetransaminase, gamma-glutamyl-transferase,andhemoglobin.Aliquotsofurine,plasma, andwholebloodsamplesfromapparentlyhealthyindividuals,not affectedby urea-cycledisorders, were usedtoassess reference intervalsofOA.

2.3. Specimenpreparationandanalysis 2.3.1. Creatininemeasurement

Urinarycreatinineconcentrationwas determinedby a com-mercialkit,basedontheFolin’smethodwiththeJafféreaction [10],ontheautomatedinstrumentAU2700(BeckmanCoulter,Inc., Brea, CA).Theconcentrationof OAis expressedas aratio with urinarycreatinineconcentration(mmol/molofcreatinine)totake intoaccountthevariationsofurinaryvolumeamongsubjects,this procedureiscommonlyusedinclinicalbiochemistry.

2.3.2. DBS,plasma,andurinepreparation

DBSsampleswerepreparedfromEDTAbloodspottingatleast 30␮Lonfilterpaperandstored indesiccantsealedplasticbags at−20◦Cuntilanalysis.Plasma,obtainedfromEDTAblood,and

urinesampleswerestoredat−20◦Cuntilanalysis.Adiscof6mm

waspunchedfromDBSandtheOAwasextractedbyadding10␮L ofanaqueoussolutionofIS(5␮M),20␮Lof water,and120␮L ofACNwithammoniumacetate(5mM).Aftermixing,the solu-tionwasincubatedfor20minat30◦C,then2␮Lofsupernatant wereanalyzed.Twentymicrolitersofplasmasampleweremixed with20␮LofISsolution,andthesolutionwasdilutedwith260␮L ofACNwithammoniumacetate(4.6mM).Themixturewas vor-texed,andallowedtostandfor5minatroomtemperatureand, aftercentrifugationat3000×gfor5min,2␮Lofsupernatantwere analyzed.Theurinesampleswerefilteredtoremovebacteriaand anyparticulatematerial(membranefilterof0.22␮m;Millex-GV, Millipore,France)andthendiluted1:10withwaterbeforethe anal-ysis.Twentymicrolitersofdilutedurineweremixedwith20␮L ofIS solutionanddilutedwith260␮Lof ACNwithammonium acetate(4.6mM),mixedandallowedtostandfor5minatroom temperature;then2␮Loftheextractwereinjected.

2.3.3. LC–MS/MSanalysis

Urine,plasma,andDBSsampleswereanalyzedbyHILIC–MS/MS performed according to the method previously described [8]. Briefly,chromatographywasperformedbyacolumnpackedwith sub-2␮m particles (Zorbax RX-SIL,1.8␮m, 50mm×2.1mm id, Agilent Technologies, USA), and OA was eluted by an isocratic mobilephaseconstitutedofACN/water(90/10)containing4mMof ammoniumacetate.TheMSdetectionwasperformedby electro-sprayionizationandcompoundsweremonitoredusingamultiple reactionmonitoring(MRM)innegativemodeofthefollowing tran-sitions:m/z155>111forOA,andm/z157>113for[1,3-15N

(3)

O.D’Apolitoetal./J.Chromatogr.Bxxx (2011) xxx–xxx 3

Table1

Meanvalues,within-day,andbetween-dayprecision(CV%)andaccuracy(%)obtainedmeasuringOAinplasma,driedbloodspot,andurinequalitycontrols. Concentrationof

addedOA(␮M)

Expectedvalue Within-day(n=6) Between-day(n=12)

Measuredmean values

Precision(CV%) Accuracy(%) Measuredmean values

Precision(CV%) Accuracy(%) Plasma

0 N/A 0.25 13.2 N/A 0.27 18.5 N/A

2.5 2.8 3.06 3.2 9.5 3.22 8.0 15.0

15 15.2 14.7 3.8 −3.4 14.6 8.2 −4.1

DBS

0 N/A 0.12 9.6 N/A 0.12 14.1 N/A

2.5 2.6 2.55 2.8 −2.8 2.69 13.6 3.6

15 15.1 13.4 0.8 −11.1 14.0 17.3 −7.4

Urinea

0 N/A 6.1 2.2 N/A 6.4 8.8 N/A

5 11 12.3 1.9 11.6 12.8 5.8 16.5

25 30.8 33.7 2.7 9.5 35.0 9.7 13.6

150 154.3 149.1 1.9 −3.4 166.3 7.2 7.8

N/A:notapplicable.

aUrinesampleswerediluted1:10beforeanalysis.

internalstandard.BothOAanditsISelutedat2.00min,andthe totalruntimewasof4min.

PlasmaandDBSconcentrationswerecalculatedoncalibration curvespreparedusingenrichedplasmaandbloodina concentra-tionrangefrom0.1to25␮M.Bloodcalibrationpointswerespotted onfilterpaperandanalyzed.Theurinaryconcentrationswere cal-culatedusingacalibrationcurvepreparedwithaqueousstandard solutionsinaconcentrationrangefrom0.78to25␮M.Thelinearity ofcalibrationcurveswasestimatedbyevaluationofcoefficientof correlation(r)thatrangedamonganalyticalbatchesfrom0.997to 0.999forwater,from0.994to0.997forplasma,andfrom0.993to 0.998forDBS.

Qualitycontrol(QC)wascarriedouttoevaluatewithin-dayand between-dayprecisionandaccuracy.IneachanalyticalbatchQC specimenswereanalyzedtogetherwithrealsamples.Analiquot ofblankpoolofblood,plasma,andurinewasusedaslowQClevel onlyforprecisionevaluation,twoaliquotswerespikedwithOA standardtoobtainQCsatconcentrationof2.5and15␮Mforplasma andblood,whileforurinethreealiquotsofthenormalpoolwere spikedwithOAtoobtainQCsatconcentrationof5,25,and150␮M. TheQCaliquotswerestoredastheclinicalsamplesuntiluse. 2.4. Statisticalanalysis

Theacquired datawereprocessed usingtheQuanLynx soft-ware(v.MassLynx4.0,Waters)tocalculatecalibrationcurves,QCs, andsampleconcentrations.Statisticalparameterswereobtained byMicrosoftExcelsoftware(v.11.0,Microsoft)and/orwith Kalei-daGraphsoftware(version4.1.1).ANOVAanalysiswasperformed usingtheBonferronipost-testcorrection.Thedataofeachgroup weretested fordistribution and,if aGaussian distributionwas obtained,themeanvaluewasusedtosetalimitatthemean±2SD; thevaluesoutside thelimitwereconsideredtobeoutliersand rejected.Whenthedatasetsshowednon-Gaussiandistributions,a robuststatisticalmethodwasusedforthedetectionofoutliers.This robust statistical technique uses distribution-free inter-quartile range (IQR)toseta Tukeyfence [11,12]. Thedata weresorted intoascendingsequencetoobtainthelowerandupperquartile point, Q1and Q3,respectively. The differencebetweenQ3 and Q1(Q3−Q1)is named IQR. The Tukeyfenceis therange from Q1− 1.5*IQRtoQ3+1.5*IQR.ThevaluesoutsidetheTukeyfence wereconsideredtobeoutliersand removed.Afterthe elimina-tionofoutliers,thedatasetswerere-testedfordistribution,and ifaGaussiandistributionwasobtained,themeanvaluewasused toestablishalimitatthemean±2SD.Instead,ifanonGaussian

distribution was obtained the data sets were described using median,range,andpercentiles.Thevaluesoutsidethelimitof1st %ileandof99th%ilewereconsideredtobeoutliersandrejected.

3. Results

3.1. Qualitycontrolresults

QCsampleswereanalyzedduringtheassaysofpatientsamples. Within-dayprecision(CV%)andaccuracy(%)werecalculatedby analyzingeachlevelofQCsamples6timesinthesameanalytical run.TheexpectedvaluewascalculatedaddingOAvalueinblank sampletotheaddedamountofOAstandard,correctedbysample volumesusedtopreparethemixture(Table1).TheOAprecision (CV%)onthreeQClevelsrangedfrom3.2to13.2forplasma,from 0.8to9.6forDBS,andfrom1.9to2.7forurine,whiletheaccuracy (%)rangedfrom−3.4to9.5forplasma,from−11.1to−2.8forDBS, andfrom−3.4to11.6forurine.Thebetween-dayprecisionand accuracywerecalculatedbyanalyzingeach levelofQC samples onceadayfor12workingdays.Theprecision(CV%)wasestimated from8.0to18.5forplasma,from13.6to17.3forDBS,andfrom 5.8to9.7forurine.Theaccuracy(%)rangedfrom−4.1to15.0for plasma,from−7.4to3.6forDBS,andfrom7.8to16.5forurine (Table1).

3.2. Populationstudyresults

ThedescriptivestatisticofOAinplasma,DBSandurineof ref-erence populationis reported in Table2.Urinary OA rawdata ofeachgroupshowedanon-Gaussiandistribution;therefore,all datawereelaborated bytherobuststatisticmethodtoidentify and torejecttheoutliersabove thehighTukeyfence.The val-uesexcluded were 2/51(3.9%) from group1, 3/40 (7.5%) from group2,5/40(12.5%)fromgroup3,and3/78(3.8%)fromgroup 4.Aftertheeliminationof outliers,data setswerere-testedfor distributionandaGaussiandistributionwasobtainedforgroups 1, 2, and 3; instead, thegroup 4 still showed a non Gaussian distribution.However,parametricandnon-parametricresultsin each group are very close; instead, comparing urinary excre-tion ofOA among thegroups,it wasevident that thelevelsin group 1 were at least two times higher than in groups 2, 3, and4.Theanalysisofvarianceamonggroupsshowedsignificant differencesbetweengroup1vs2,group1vs3,andgroup1vs4 (p<0.0001).Wealsocorrelatedtheageofpatientsandtheurinary

(4)

4 O.D’Apolitoetal./J.Chromatogr.Bxxx (2011) xxx–xxx

Table2

Descriptivestatisticofage-relatedoroticacidconcentrationsinplasma,driedbloodspot,andurinefromunaffectedsubjects. Populationstudy(ageintervals,years)

Group1(<1) Group2(1–12) Group3(13–19) Group4(20–40)

Plasma(␮M) (n) (23) (40) (39) (73) Mean(SD) 0.30(0.12) 0.30(0.09) 0.15(0.07)a 0.28(0.16) Mean±2SD 0.06–0.54 0.12–0.48 0.01–0.29 0.0–0.60 Median 0.27 0.27 0.13 0.22 Min–max 0.12–0.60 0.15–0.48 0.03–0.31 0.06–0.82 1st–99th%ile 0.13–0.59 0.16–0.48 0.04–0.30 0.09–0.77 DBS(␮M) (n) (43) (40) (39) (77) Mean(SD) 0.38(0.24)b 0.12(0.06) 0.11(0.04) 0.14(0.05) Mean±2SD 0.0–0.86 0.0–0.24 0.03–0.19 0.04–0.24 Median 0.35 0.10 0.10 0.13 Min–max 0.07–0.91 0.04–0.25 0.04–0.22 0.05–0.31 1st–99th%ile 0.07–0.89 0.04–0.24 0.04–0.21 0.07–0.29

Urine(mmol/molofcreatinine)

(n) (49) (37) (35) (75) Mean(SD) 1.65(0.80)c 0.63(0.26) 0.39(0.12) 0.50(0.25) Mean±2SD 0.05–3.25 0.11–1.15 0.15–0.63 0.0–1.00 Median 1.49 0.60 0.39 0.45 Min–max 0.40–3.47 0.22–1.39 0.17–0.65 0.01–1.27 1st99th%ile 0.49–3.44 0.23–1.30 0.18–0.64 0.13–1.21

ANOVAwithBonferroni’sposttest.

ap<0.0001group3vsgroup1,group2,andgroup4. b p<0.0001group1vsgroup2,group3,andgroup4. c p<0.0001group1vsgroup2,group3,andgroup4.

OAexcretionand,asreportedinFig.1,thereisasignificantnegative polynomialcorrelation(p<0.0001).

PlasmaOAraw datashowedanon-Gaussiandistributionfor group1,3,and4;therefore,aftertherejectionofoutliersabove thehighTukeyfence,thevaluesexcludedwere1/24(4.2%)from group1,nonefromgroup2,1/40(2.5%)fromgroup3,and5/78 (6.4%)fromgroup4.Aftertheeliminationofoutliers,datasetswere re-testedforGaussiandistribution,thegroup4stillshowedanon Gaussiandistribution.Alsofor plasma,theparametricand non-parametricresultsareverycloseineachgroup(Table2).Thegroup 3showedOAplasmalevelslowerthangroup1,group2,andgroup 4.Fig.2reportsthedot-plotofplasmaOAlevelsinallgroups,and

Fig.1.Scatter-plotofreferenceurinaryoroticacidvaluesingroups1–4vsage (months).

theanalysisofvarianceamonggroupsshowedsignificant differ-encesbetweengroup3vsgroup1,group3vs2,andgroup3vs4 (p<0.0001).

OAraw datainDBSshoweda non-Gaussiandistributionfor group1,3,and4;therefore,aftertherejectionofoutliersabove thehighTukeyfence,thevaluesexcludedwere1/44(2.3%)from group1,nonefromgroup2,1/40(2.5%)fromgroup3,and1/78 (1.3%)fromgroup4.Aftertheeliminationofoutliers,datasetswere re-testedforGaussiandistribution,whichstillwasabnormalfor group4.AlsoforDBS,theparametricandnon-parametricresults areverycloseineachgroup(Table2).Group1showedOADBS lev-elshigherthangroups2–4.Fig.3reportsthedot-plotofOAinDBS ofallgroups,andtheanalysisofvarianceamonggroupsshowed

(5)

O.D’Apolitoetal./J.Chromatogr.Bxxx (2011) xxx–xxx 5

Fig.3. Dot-plotofDBSoroticacidvaluesinallreferencegroups.

significantdifferencesbetweengroup1vsgroup2,group1vs3, andgroup1vs4(p<0.0001).

Resultsfromaffectedpatients(group5)arereportedinTable3. OAlevels(␮M)rangedfrom0.12to117inplasmaandfrom12.8to 46.6inDBSofpatientswithASSdeficiency,from4.8to86.3inDBS ofpatientswithOTCdeficiency,andfrom0.02to0.03inplasma ofpatientswithASLdeficiencyduringtherapeutictreatment.Two patientswithCPSdeficiencyshowedOAlevelsof0.28inplasmaand of0.35inDBS.Inaddition,theurinaryexcretionofOA(mmol/mol ofcreatinine)measuredatmomentofdiagnosisinASSpatients# 1,and#2wasof1.34,and1.63,respectively.

4. Discussion

Themain purposeof this studywastoestablishagerelated referenceintervalsofOAinDBS,plasma,andurineinunaffected

Table3

OroticacidlevelsinplasmaandDBSsamplesofaffectedpatients. Patient

samples

Age (days)

Defects Oroticacid(␮M)

Plasma DBS mf#1 4 ASS-I 0.17 mf#2 4 ASS-I 0.12 mf#3 3 CPS 0.35 mf#5 7 CPS 0.28 mf#6 4 ASS-I 46.5 mf#7 4 ASS-I 62.0 mf#10 4 ASS-I 6.1 mf#11 4 ASL* 0.03 mf#12 3 OTC 86.3 mf#13 4 ASLa 0.02 mf#14 3 OTC 4.83 mf#15 4 ASS-I 46.6 mf#16 4 ASS-I 12.8 mf#17 4 ASS-I 15.0 mf#18 4 ASS-I 1.0 mf#19 4 ASS-I 60.1 fg#39 5 ASS-I 116.8 Reference intervals Group1 <1year 0.13–0.59 0.07–0.89

aBothpatientswereundertherapeutictreatment.

children, teenagers, and adults. Both parametric and non-parametric results have been reported. The urinary values for unaffectedpatientssuggestedasignificantbutcontinuousnegative polynomialcorrelationofOAconcentrations(mmol/molof creati-nine)withageinchildrenfromthree daysuptoadults(Fig.1). Inagreementwithpreviousreportsthistrendislikelyduetothe increaseofcreatinineexcretionwithage[5,13–16].Wedefinedthe limitsofOAreferenceintervalsbetweenthe1st%ileand99th%ile, althoughinclinicalpracticethe99th%ilelimitismostlyof inter-est.UrinaryOAlimitsinunaffectedchildrenbetweenthreedaysof birthand1year(group1)wouldbefrom0.49to3.44mmol/molof creatinine,andingroup2,between1yearand12years,thelimits wouldbefrom0.23to1.30mmol/molofcreatinine.Inunaffected teenagers,between13and19years(group3),thelimitswouldbe from0.18to0.64mmol/molofcreatinine,andinadults,between20 and40years(group4),wouldbefrom0.13to1.21mmol/molof cre-atinine.ThelevelsofurinaryOAingroup1aresignificantlyhigher thangroup2,3,and4.Theageperiodfrombirthto12 months (group1)ismorecriticalforthedetectionofmanyinborn patholo-gies.Instead,thevariationsofOAlevelsamonggroups2,3,and4 appearrelativelysmallandnotstatisticallysignificant.

The1stand99th%ileofOAinplasmaofunaffectedchildrenof group1wouldbefrom0.13to0.59␮M,andinthegroup2would befrom0.16to0.48␮M.Inunaffectedteenagers,thelimitswould befrom0.04to0.30␮M,andinadults,from0.09to0.77␮M.The levelsofplasmaOAingroup3aresignificantlylowerthanother groups(1,2,and4),andthevariationsofOAlevelsamonggroups 1,2,and4werenotstatisticallysignificant.

The1stand99th%ileofOAinDBSofunaffectedchildrenofgroup 1wouldbefrom0.07to0.89␮M,andinthegroup2wouldbefrom 0.04to0.24␮M.Limitsofgroup3wouldbefrom0.04to0.21␮M, andinadultsfrom0.07to0.29␮M.ThelevelsofplasmaOAingroup 1aresignificantlyhigherthanothergroups(2–4).Instead,the vari-ationsofOAlevelsamonggroups2,3,and4appearverysmalland notstatisticallysignificant.DBSandnormalizedurinaryOAlevelsof group1bothshowsignificantlyhigherOAlevelsthanothergroups. AssessmentofurinaryOAisfacilitatedbyitsremarkable stabil-ity.NormalhumanurinecontainstraceamountsofOA[17]and, aspreviouslyreportedbyus[8]andconfirmedinthiswork,the compoundisquantifiableatsub-micromolarlevelalsoinplasma andbloodofunaffectedpatients.

TheearlycolorimetricmethodsforOAdeterminationinurine weresimpleandrapid,yetnon-selective,whichmaygiveriseto false-positiveresults.OAreferenceintervalsobtainedby colorimet-ricmethods[18,19]arewiderthanthoseobtainedbyourmethod, and also by gas chromatography–mass spectrometry (GC–MS) methods[5,16,20],andbyion-exchangechromatographymethods withUVdetection[13,14].Unfortunately,eachoftheselasttwo methodshavedifficultiesandlimitations,aretimeconsumingand notadaptableasscreeningmethods.

Todate,sinceItoetal.[21]describedaLC–ESI-MS/MSmethod for a large number of urinary metabolites, including OA, oth-ers have proposed a more specific, high-throughput, sensitive stable-isotope-dilutionLC–ESI-MS/MSmethodforthe determina-tionofurinaryOAandintermediatemetabolitesinurinespecimens [6,15,22].EventhoughreferenceintervalsofurinaryOAobtained byLC–ESI-MS/MSarecomparabletothosereportedinthisstudy byHILIC–ESI-MS/MS,ourreferencelimitsarenarrowerandwell overlappedwiththoseobtainedbystableisotopeGC–MS meth-ods[5,16].Inthemethodreportedhere,theOAfromDBS,plasma, andurinewaselutedfromcolumnpumpinganisocraticmixtureof solvents,whichimprovesthereproducibilityofretentiontimeand thesensitivity;moreover,nointerferenceswereobservedduring ananalyticalbatchof100samples.

Forthefirsttimewereportthereferenceintervalsinplasmaand DBSfromapparentlyhealthysubjectsagedfromthreedaysto40

(6)

6 O.D’Apolitoetal./J.Chromatogr.Bxxx (2011) xxx–xxx

years,demonstratingthatthismethodallowsaquantitative anal-ysisofOAalsointhesebiologicalfluids.Inaddition,thismethod hasbeenemployedtoanalyzesamplesfrompatientsaffectedby fourdifferentdefectsofureacycle.LevelsofOAinplasmaandDBS frompatientsaffectedbyASS(n=9/11)andOTC(n=2/2) deficien-ciesweresignificantlyoverthe99th%ileofourreferenceintervals; tonotethatonlytwopatientsaffectedbyASSdeficiency(plasma samples#1and#2)showednormalvalues,anexpectedresult becauseatmomentofsamplecollectiontheyalsoshowednormal excretionoforoticacidinurine(1.34,and1.63mmol/molof creati-nine,respectively).Whereas,twopatientsaffectedbyCPS,adefect withoutoroticaciduria,andtwopatientsaffectedbyASLunder therapeutictreatmentshowednormalandlowOAlevels, respec-tively.Therefore,thesefindingssuggestthatdeterminationofOA inplasmaandDBScouldbeusedasanadditionaltesttoscreen severalmetabolicdiseases,eventhoughfurtherevaluationshould beperformedonahighernumberofpositivesamples.

5. Conclusions

Althoughthefrequencyofdisorderspresentingoroticaciduria islow,afastandaccurateanalysisofOAusingasmallandeasily transportablesample,suchasDBS,shouldbeusefulandclinically relevant,inparticularfornewbornscreening.

Acknowledgements

We are grateful tocolleagues Maria Assunta Schiavone and Clelia Scarano (Clinical Biochemistry Laboratory, University-HospitalofFoggia,Italy),andMonicaGelzo(UniversityFedericoII

ofNaples)fortheirvaluablecollaboration.Theauthorsalsothank theUniversityofFoggiaforfunding(PremialitàPRIN2008).

References

[1]L.H.Smith,M.Sullivan,C.M.Huguley,J.Clin.Invest.40(1961)656. [2]C.Salerno,C.Crifò,J.Chromatogr.B781(2002)57.

[3]M.E.Brosnan,J.T.Brosnan,J.Nutr.137(2007)1656S. [4]J.O.Sass,D.Skladal,Pediatr.Nephrol.13(1999)912.

[5] M.T.McCann,M.M.Thompson,I.C.Gueron,M.Tuchman,Clin.Chem.41(1995) 739.

[6] A.B.P.vanKuilenburg,H.vanLenthe,M.Loffler,A.H.vanGennip,Clin.Chem. 50(2004)2117.

[7] J.Rajantie,Pediatr.Res.15(1981)115.

[8]O.D’Apolito,D.Garofalo,G.Paglia,A.Zuppaldi,G.Corso,J.Sep.Sci.33(2010) 966.

[9]H.R.Yoon,Arch.Pharm.Res.30(2007)387. [10] O.Folin,J.Biol.Chem.17(1914)475.

[11] J.W.Tukey,ExploratoryDataAnalysis,Addison-Wesley,Reading,MA,1977,p. 506.

[12] P.S.Horn,L.Feng,Y.Li,A.J.Pesce,Clin.Chem.47(2001)2137. [13]C.Bachaman,J.P.Colombo,J.Clin.Chem.Clin.Biochem.18(1980)293. [14]M.Asai,S.Sumi,K.Kidouchi,H.Imaeda,H.Togari,Y.Wada,Pediatr.Int.42

(2000)499.

[15] M.S.Rashed,M.Jacob,M.Al-Amoudi,Z.Rahbeeni,M.A.D.Al-Sayed,L. Al-Ahaidib,etal.,Clin.Chem.49(2003)499.

[16]J.Chen,M.J.Bennett,MethodsMol.Biol.603(2010)445. [17]M.Lotz,H.J.Fallon,L.H.Smith,Nature197(1963)194. [18] M.L.Harris,V.G.Oberhoizer,Chin.Chem.26(1980)473.

[19]D.ElKhiari,N.Tebib,N.Kaabachi,M.Feki,Y.BenHamouda,A.Mebazaa,Arch. Pediatr.5(1998)15.

[20]M.Rimoldi,P.Bergomi,A.Romeo,S.Diflinato,J.Inherit.Metab.Dis.17(1994) 243.

[21]T.Ito,A.B.P.vanKuilenburg,A.H.Bootsma,A.J.Haasnoot,A.vanCruchten,Y. Wada,etal.,Clin.Chem.46(2000)445.

[22]S.Hartmann,J.G.Okun,C.Schmidt,C.D.Langhans,S.F.Garbade,P.Burgard, etal.,Clin.Chem.52(2006)1127.

Riferimenti

Documenti correlati

The exergy analysis method has been contemplated to evaluate the energy impact on the environment of an urban district.. The second Law analysis evaluates rational energy use from

[r]

Una volta affermatosi, nella configurazione del nuovo modello proces- suale, il principio della separazione tra la fase delle indagini preliminari – affi- data al pubblico ministero

Chemicals; Monitoring of the time trend of SMX and 3A5MI by HPLC; Accuracy and detection limit of LC-IRMS method; Quantification of apparent kinetic

Focusing on the relation between the “cultures within” and taking on the challenge to articulate intercultural discourse, these essays have accepted the risk of exploring

With the end of the Middle Bronze Age and the beginning of the Late Bronze Age, shields made of a single piece of bronze sheet come into use. About 86 of these metal shields

At first glance, this book seems to tell a familiar story: during the 1970s, human rights moved to the centre of American foreign policy as a reaction to a number of radical

A web application called Flickrpedia is given as a practical example, using Flickr as the folksonomy and diverse natural language Wikipedias as the knowledge base.. Key words: