ContentslistsavailableatScienceDirect
Biomolecular
Detection
and
Quantification
jou rn al h om e p a g e :w w w . e l s e v i e r . c o m / l o c a t e/ b d q
Research
paper
Feasibility
of
a
workflow
for
the
molecular
characterization
of
single
cells
by
next
generation
sequencing
Francesca
Salvianti
a,
Giada
Rotunno
b,
Francesca
Galardi
c,
Francesca
De
Luca
c,
Marta
Pestrin
c,
Alessandro
Maria
Vannucchi
b,
Angelo
Di
Leo
c,
Mario
Pazzagli
a,
Pamela
Pinzani
a,∗aDepartmentofClinical,ExperimentalandBiomedicalSciences,UniversityofFlorence,Florence,Italy bDepartmentofClinicalandExperimentalMedicine,UniversityofFlorence,Florence,Italy
cSandroPitiglianiMedicalOncologyDepartment,HospitalofPrato,IstitutoToscanoTumori,Prato,Italy
a
r
t
i
c
l
e
i
n
f
o
Articlehistory: Received29April2015
Receivedinrevisedform24July2015 Accepted27July2015
Availableonline12September2015 Keywords:
Singlecell
Circulatingtumorcells NGS
Somaticmutations Microgenomics
a
b
s
t
r
a
c
t
Thepurposeofthestudywastoexplorethefeasibilityofaprotocolfortheisolationandmolecular characterizationofsinglecirculatingtumorcells(CTCs)fromcancerpatientsusingasingle-cellnext generationsequencing(NGS)approach.
Toreachthisgoalweusedasamodelanartificialsampleobtainedbyspikingabreastcancercellline (MDA-MB-231)intothebloodofahealthydonor.
TumorcellswereenrichedandenumeratedbyCellSearch®andsubsequentlyisolatedbyDEPArrayTMto
obtainsingleorpooledpuresamplestobesubmittedtotheanalysisofthemutationalstatusofmultiple genesinvolvedincancer.
Uponwholegenomeamplification,sampleswereanalysedbyNGSontheIonTorrentPGMTMsystem
(LifeTechnologies)usingtheIonAmpliSeqTMCancerHotspotPanelv2(LifeTechnologies),designedto
investigategenomic“hotspot”regionsof50oncogenesandtumorsuppressorgenes.
Wesuccessfullysequencedfivesinglecells,apoolof5cellsandDNAfromacellularpelletofthesame celllinewithameandepthofthesequencingreactionrangingfrom1581to3479reads.
Wefound27sequencevariantsin18genes,15ofwhichalreadyreportedintheCOSMICordbSNP databases.Weconfirmedthepresenceoftwosomaticmutations,intheBRAFandTP53gene,whichhad beenalreadyreportedforthiscellsline,butalsofoundnewmutationsandsinglenucleotide polymor-phisms.Threevariantswerecommontoalltheanalysedsamples,while18werepresentonlyinasingle cellsuggestingahighheterogeneitywithinthesamecellline.
Thispaperpresentsanoptimizedworkflowforthemolecularcharacterizationofmultiplegenesin singlecellsbyNGS.ThedescribedpipelinecanbeeasilytransferredtothestudyofsingleCTCsfrom oncologicpatients.
©2015TheAuthors.PublishedbyElsevierGmbH.ThisisanopenaccessarticleundertheCC BY-NC-NDlicense(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction
Themolecularanalysisofsolidtumorsisofgreatimpactinthe
fieldofoncologyresearchnotwithstandingsomeunsolved
chal-lengingaspectsinbothsampleselectionandtechnicalapproaches.
Solidtumorsareinfactaheterogeneousmixtureoftumorand
nor-malcellsdifferentiallycontributingtothefinalresultsofmolecular
biologytestsonnucleicacids.Asaresultmolecularsignatures
rep-∗ Correspondingauthorat:DipartimentodiScienzeBiomediche,Sperimentalie ClinicheUniversitàDegliStudidiFirenzeVialePieraccini,650139Firenze,Italy.
E-mailaddress:[email protected]fi.it(P.Pinzani).
resentanaveragevaluemaskingtheindividualsignalsderiving
fromeachsinglecancercell[1].Theanalysisofsomaticmutations
atthesingle-celllevelcanevidencewhetheroneormorevariants
detectedinthebulktissuearesimultaneouslypresentinthesame
cellorif,onthecontrary,derivefromdifferentcellclones.
Next-generationsequencing(NGS)hasbecomeamajortoolfor
nucleic acidanalysisand promises todisclose the basis of
dis-eases,openingperspectivesforincreasedpersonalizedtherapies
andscreening[2].NGShasbeensofarappliedtonucleicacids
deriv-ingfromahighnumberofcellsprovidingglobalinformationon
theaveragestateoftheentirepopulationofcells[1].Bycombining
wholegenomeamplification(WGA)withNGS,itisnowpossibleto
achieveindividualcancercellsequencing[3].
http://dx.doi.org/10.1016/j.bdq.2015.07.002
2214-7535/©2015TheAuthors.PublishedbyElsevierGmbH.ThisisanopenaccessarticleundertheCCBY-NC-NDlicense(http://creativecommons.org/licenses/by-nc-nd/ 4.0/).
Single-cell sequencing has the potential to address some
importantquestionsinoncologysuchasunderstandingtumor
het-erogeneity,reconstructingcelllineagesanddefiningthegenomeof
raretumorcellpopulations[3–5].
Inaddition,single-celltechnologieswillcontributetoelucidate
rarecelleventssuchasscarcecancercellsinclinicalsamplesand
thedisseminationofcirculatingtumorcells(CTCs)inthebloodof
cancerpatients[1,6].SinceCTCsreflecttheheterogeneityof
pri-maryormetastatictumors,theiranalysisatthesingle-celllevel
representarealtimeliquidbiopsyofthediseasegivinganinsight
incancerprogression,helpinginthechoiceoftargettherapiesor
inthepredictionoftheefficacyof chemotherapeuticagents [1]
andthusrepresentingakeytoolinthedevelopmentofprecision
medicine.
Anotheraspect that can be considered as an application of
single-cellsequencing isthe analysisof celllines derived from
tumorsthatarecommonlyusedasmodelsincancerresearch.This
approachcanbesuccessfullyadoptedtoidentifythosecelllines
thatmorecloselyresemblethecharacteristicsofthetumorunder
study[7].Evenifatamuchlowerextentthantissues,thecellline
populationusuallyconsideredascomposedofidenticalcellular
ele-mentscanhidea heterogeneitythatcouldbedisclosedonlyby
single-cellanalysis.
TheMDA-MB-231isanadherenthumanbreastcancercellline
ofepithelialorigin,whichishighlyaggressive,invasiveandpoorly
differentiated.MDA-MB-231cellsdisplayamesenchymal-like
phe-notypethusrepresentingagoodmodelformetastaticbreastcancer
[8].
Inthepresentstudyweinvestigatedthemutationalstatusof
multiplegenesonanartificialsampleobtainedbyspikingthe
MDA-MB-231cell lineintotheblood of a healthy donor. Thetumor
cellswereimmunomagneticallyisolatedbyCellSearch®(Veridex,
USA),sortedbya dielectrophoreticsystem(DEPArrayTM,Silicon
Biosystems,Italy)andthensubmittedtoWGAandtargeteddeep
sequencing.Weusedthismodelwiththeaimtodemonstratethe
feasibilityofaworkflowfortheisolationandmolecular
character-izationofsinglecirculatingtumorcellsfromcancerpatientsusing
asingle-cellNGSapproach.
2. Methods
2.1. Cellcultureandspikingexperiments
Experiments were conducted on the MDA-MB-231 human
breast cancer cellline. MDA-MB-231cells were obtainedfrom
Di.V.A.L.Toscana(LaboratoryforDrugValidationandAntibody
pro-duction,UniversityofFlorence)andmaintainedinDMEM(Lonza,
Basel,Switzerland)+10%FBS(PAALaboratories,Austria)at37◦Cin
5%CO2.CellsweredetachedfromplasticsurfacebyAccutase(PAA
Laboratories)tobetterpreservemembraneantigens.MDA-MB-231
cells(n=500)werespikedinbloodsamplesfromahealthy
vol-unteercollectedinCellSave®tubes(VeridexLLC,Raritan,NJ)and
processedasdescribedbelow.Theremainingcellsfromthesame
culturewerecentrifugedandtheresultingcellpelletwassubmitted
toDNAextractionbyQIAampDNAMiniKit(Qiagen,Germany).
2.2. Cellenrichmentandenumeration
Cell enrichment and enumeration was performed by the
CellSearch®System.7.5mLofwholebloodwereprocessedusing
theCellSearchTM EpithelialCell kit (VeridexLLC), whichselects
EpCAMpositivecellsusingferrofluidsparticlescoatedwithEpCAM
antibody.Cellswerestainedwiththenucleardye4,6
-diamino-2-phenylindole(DAPI),anti-cytokeratin8,18and19-phycoerythrin
(PE)labelledantibodies,andCD45antibodylabelledwith
allophy-cocyanin(APC).Afterenrichment,isolatedandstainedcellswere
resuspendedintheMagNestDevice(VeridexLLC),labelledcells
wereanalyzedintheCellTracks®AnalyzerII(VeridexLLC)andcells
identifiedandenumeratedaccordingtothecriteriaspecifiedbythe
manufacturer’sinstructions.
2.3. Singlecellsorting
FollowingCellSearch® enrichmentthesamplewasrecovered
fromtheVeridexcartridgeandloadedintotheDEPArrayTMA300K
chip(SiliconBiosystems)accordingtothemanufacturer’s
instruc-tions.The chipis asingle-use, microfluidic cartridgecontaining
an array of individually controllable electrodes, each one with
embedded sensors. Chip scanning was performed by an
auto-matedfluorescencemicroscopetogenerateanimagegallery,with
cellsselectedaccordingtotheirmorphology(roundshape,round
nucleuswithinthecytoplasm)andstainingpatternderivingfrom
thatoftheCellSearch® system:DAPIpositive,PEpositive (CK8,
CK18,CK19positivecells),APCnegative(CD45negativecells).
Aftertumorcellidentification,singlecellsorgroupsoffewcells
wererecoveredinto200ltubes.
2.4. Wholegenomeamplification
SinglecellsorpoolsofcellsweresubmittedtoWGAusingthe
Ampli1TMWGAkit(SiliconBiosystems)accordingtothe
manu-facturer’sinstructions, in order toobtain a sample suitable for
sequencinganalysis.Theprocedureisbasedonaligation-mediated
PCRfollowingasitespecificDNAdigestionbyMseIenzyme.The
kithasnoneedsforprecipitationstepsavoidingDNAlossand
pro-videsalibraryoffragmentsofabout0.2-2kbrepresentingtheentire
genome.ThekitusesamixtureofTaqpolymerasewitha
proofread-ingenzyme,Pwopolymerase,thathasbeenreportedtohaveerror
ratesmorethan10timeslowerthantheerrorrateobservedwith
Taqpolymerase[9].
2.5. WGAqualitycontrol
Thequality of theoutputproduct ofthe WGAreaction was
assessedbytheAmpli1TMQCkit(SiliconBiosystems)accordingto
themanufacturer’sinstructions.ThekitisaPCR-basedassaywhich
implies theamplification of two distinct regionsof the human
genometoproducetwoamplicons(Aand B)of373and167bp
respectively. PCR productsA and B wereanalyzed by capillary
electrophoresisontheAgilent2100Bionalyzer.Thepresenceof
bothamplificationproductsindicatesasuccessfulWGAand
con-sequentlythesuitabilityofthesamplefordownstreamanalysis.
2.6. Nextgenerationsequencing
SequencinganalysiswasperformedontheIonTorrentPGMTM
system(LifeTechnologies).WeamplifiedthesamplesusingtheIon
AmpliSeqTMCancerHotspotPanelv2(LifeTechnologies)designed
totarget207ampliconscoveringmutationsfrom50oncogenesand
tumorsuppressorgenes.DNAquantificationwasassessedusing
theQubit2.0Fluorometer(LifeTechnologies,Carlsbad,CA,USA).
TennanogramsofDNAwereusedtopreparebarcodedlibraries
usingtheIonAmpliSeqTM Librarykit2.0 andIonXpressTM
bar-codeadapters(LifeTechnologies).Thelibrarieswerepurifiedwith
AgentcourtAMPureXP(BeckmanCoulter)andquantifiedwiththe
IonLibraryQuantitationKit(LifeTechnologies)ontheStepOnePlus
system(AppliedBiosystem).
TemplatepreparationwasperformedwiththeIonOneTouchTM
2SystemandIonOneTouchES.Finallysequencingwasperformed
Table1
ClassificationofgenesoftheAmpliSeqTMCancerHotspotPanelv2onthebasisof
thepresenceoftheMseIrestrictionsiteinoneormoreamplicons.
31Unaffectedgenes 17Partiallyaffectedgenes 2Totallyaffectedgenes
ABL1 APC NPM1
AKT1 ATM JAK2
ALK CDH1 BRAF EGFR CDKN2A ERBB4 CSF1R FBXW7 CTNNB1 FGFR2 ERBB2 KDR EZH2 KIT FGFR1 KRAS FGFR3 MET FLT3 PIK3CA GNA11 PTEN GNAQ RB1 GNAS RET HNF1A SMAD4 HRAS VHL IDH1 IDH2 JAK3 MLH1 MPL NOTCH1 NRAS PDGFRA PTPN11 SMARCB1 SMO SRC STK11 TP53
ontheIon316chipV1.Therunwassetinordertoachievea1000X coverageforeachsample.
DuetotheWGAmethod,involvinganenzymaticcleavageof DNAbytheMseIrestrictionenzyme,wecouldnotsequence49/207 ampliconsofthepanel.Table1liststhegenesoftheAmpliSeqTM
CancerHotspotPanelv2whicharerespectivelytotally,partiallyor
non-affectedbytheenzymaticdigestion.31geneshadnoamplicon
cleavedbytheenzyme;17geneshadsomeampliconscutbyMseI,
andtwogenes(NPM1andJAK2)wereimpossibletoanalysebecause
oftheenzymaticcleavage.
2.7. Dataanalysis
AllsampleswereprocessedusingtheTorrentSuiteSoftware
3.6andvariantcallingwasperformedrunningtheTorrentVariant
Callerpluginversion3.6.56708.Moreover,sampleswereanalysed
usingNextGENe®software2.3.1(SoftGenetics,LLC,StateCollege,
PA).Weconsideredonlyvariantswithbalancednumbersof
for-wardandreversereads.
Eachvariantwasinvestigatedaboutitspotentialpathogenetic
roleusingavailablegenemutationsandSNPsdatabasesand
predic-tionalgorithms(COSMIC,dbSNP,1000GENOME,SIFT,Polyphen).
3. Results
3.1. Designoftheworkflowforsinglecellrecovery
WedefinedaworkflowfortargetedNGSsequencingcomposed
ofthefollowingstepscoveringtheprocedurefromtheblooddraw
tothe deep sequencing data analysis.Fig. 1 reports the entire
pipeline.
3.1.1. Tumorcellenrichmentandrecovery
Thepreanalyticalvariablesaretakenintoaccountbytheuse
ofastabilizingbloodcollectiontubewhichalsoprovidescell
fix-ation.Cellsspikedintothebloodofahealthydonorareenriched,
fluorescentlylabelledandcountedbytheCellSearch®system.The
platformprovidestheimmunomagneticcaptureofcellsandtheir
selectiononthebasisofpositivestainingforcytokeratinsand
neg-ativesignalforCD45.Theleft-overcartridgeishandledinorderto
achievetherightvolumeforsinglecellsortingbytheDEPArrayTM,
whichcombinesimagingtechnologieswiththeabilityto
manipu-lateandrecoverindividualcellsfromaheterogeneoussample.The
systemperformsascanningofthesamplebyanautomated
fluo-rescencemicroscopegeneratinganimagegallery.Cellsareselected
accordingtotheirmorphology(roundshape,roundnucleuswithin
thecytoplasm)andfluorescencestainingpatternderivingfromthat
of theCellSearch® system.Selected cells aretrapped in
dielec-trophoretic “cages” and moved singularly by manipulating the
appliedelectricfield[10].
Theworkflowhasseveralcriticalpointsrelatedtothecomplete
CTCrecoveryfromtheCellsearch® cartridge,tothesubsequent
volumereductiontofittheinputvolumeoftheDEPArrayTMchip
(14l)andtothevolumereductionofsinglecellsamplesafter
DEPArrayTMrecovery.
Inparticular,afterenrichmentbytheCellSearch® systemwe
identified130cells(percentageofrecovery=26%).Thecell
suspen-sionrecoveredfromtheCellSearch®wasinjectedintheDEPArray
chip: we identified 86 cells with a recovery ratio (defined as
the ratio betweenthe number of single cells identified by the
DEParrayTMafterCellSearch®enrichmentandthetotalnumberof
cellscountedbytheCellSearch®)of66%asalreadyreportedina
previousstudy[11].
Wesorted5singleMDA-MB-231cellsandapoolof5cellstobe
submittedtodeepsequencing.Fig.2Ashowstheimagesof2single
cells.
3.1.2. WGAandqualitycontrol
Weamplifiedthewholegenomeofoursamplesina3-day
pro-cedurerequired for theAmpli1WGATM kit.Handling time was
reduced,buttwoovernightincubationswererequired.Afterthe
WGAreactionweverifiedthequalityoftheoutputproductbefore
proceedingtosequencingbyaPCRbasedassayusingtheAmpli1TM
QCkit.Thefivesinglecellsandthepoolof5cells showedboth
theexpectedPCRproductsAandBbycapillaryelectrophoresis.
Fig.2Bshowsthecapillaryelectrophoresisofthetwoproductsof
theAmpli1TMQCkitintwosinglecells.
3.1.3. Nextgenerationsequencingonsingleandpooledcells
Wesuccessfullysequenced5singlecells,apoolof5cellsand
DNAfromapelletofMDA-MB-231cellswithameandepthofthe
sequencingreactionof2966,2862,1581,1884,1854,3479and
2100readsrespectively.
Onthewhole27sequencevariantsweredetectedin18genes
(Table2).FifteenvariantshadbeenalreadyreportedintheCOSMIC
ordbSNPdatabases,while12weredescribedforthefirsttime.
Onlytwosomaticmutations,p.G464Vinexon11oftheBRAF
geneandp.R280Kinexon7oftheTP53gene,hadbeenalready
described in this cells line, while theothermutations and
sin-glenucleotidepolymorphisms(SNPs)havenever beenreported
before.
Twosomaticmutations(p.G464Vinexon11oftheBRAFgene
andp.R280Kinexon7oftheTP53gene)andaSNP(p.P72Rinexon
3oftheTP53gene),weredetectedinsingleandpooledcellsas
wellasinthereferencecellularpellet;threesynonymousvariants
(pQ787QinEGFR,p.P567PinPDGFRAandp.L769LinRET)andthe
deleteriousmutationp.N116IfsinIDH1weredetectedinatleast
Fig.1.FlowchartrepresentingthesinglestepsoftheproposedprocedureforsinglecellanalysisbyNGS.
Fig.2.(A)CellstainingpatternvisualizedbytheDEPArrayTM:thecellshowpositivefluorescentsignalsfornuclearDAPIandcytokeratins(PE)andnosignalforCD45(APC).
(B)AnalysisofAmpli1TMQCPCRproductsforMDA-MB-231singlecell1and2bycapillaryelectrophoresis.“A=PCRproductA;“B”=PCRproductB.
18variantswerepresentonlyinasinglecellsample(Table2).Two
variants(p.S614IinATMandp.R927LinERBB4)werefoundonly
inthepool(Table2).Allthevariantsdetectedinthecellularpellet
werepresentinatleastonesinglecellsample(Table2).
Inadditiontotheidentifiedvariants,Table2reportsforall
sam-plesthenumberofforwardandreversereadsofthemutatedbase
andthehomozygousorheterozygousstatusofthevariantdetected
ineachsinglecell.
Sequencevariantscommontothe6samplesweredetectedwith
ahighnumberofreads,whileafewvariantsfoundjustinasingle
samplehadalownumberofreadsofthemutatednucleotide.
Table3reportsthemeancoverageofeachampliconper
sam-ple.Inaddition,forsampleswithadetectedsequencevariant,we
reportedthecoverageofthespecificposition.
4. Discussion
Wedescribed a workflowfor themolecularcharacterization
ofmultiplegenesinsinglecellsbyNGS.Thestudyrepresentsa
proof-of-principledemonstratingthepossibilitytoinvestigatethe
molecularstatusofabout50genesrelatedtocancerdevelopment
inasingletumorcell.Thedescribedpipelinecanbeeasily
trans-ferredtothestudyofsinglecirculatingtumorcellsfromoncologic
patients.Infact,wedemonstratedthefeasibilityofdeep
sequenc-ingonsingleandpooledpureMDA-MB-231cellswhichrepresent
amodelofmetastaticbreastcancercells.
Oneofthepurposesofthestudywastobypasssomeofthe
limi-tationsoftheCellSearch®,oneofthemostwidelyusedsystemsfor
CTCenrichment,inthemolecularanalysisofpatientssamples.In
fact,whiletheinstrumentwasextensivelyevaluatedforitsability
toaccuratelycountCTCsinbloodandfortheconsequent
prognos-ticperformances[12–14],itisunabletoprovidepuresamplesto
besubmittedtomolecularcharacterization:contaminating
leuco-cytesarestillpresentintheenrichedsamplesandthelownumber
ofisolatedCTCssubstantiallylimitssubsequentmolecularanalyses
[15,16].
WealreadydemonstratedthepossibilitytosequencebySanger
methodpureCTCsamplesenrichedbyCellSearch®andsortedby
DEPArrayTM[11]andnowwewouldliketoextendtheprocedure
toahigherthroughputsequencingsystemliketargetedNGS.
Inalloursamplesweverifiedthepresenceof twoexpected
Table2
ListofthesequencevariantsdetectedinsingleandpooledMDA-MB-231cells.Whiteboxesrepresentwildtypesequences,whilegreyboxesindicatethepresenceofthe mutation.Insinglecellsamples,“homo”and“het”indicatethepresenceofthemutationinhomozygosisorheterozygosisrespectively.Forallsamples,thenumberofforward andreversereadsofthemutatedbasehasbeenreportedforeachsequencevariant.Sequencevariantswithpossibledeleteriouseffectontheproteinphenotypearewritten inbold,whilebenignvariantsarereportedinplaintext.SomaticmutationsspecificallyinvestigatedbytheIonAmpliSeqTMCancerHotspotPanelarehighlightedinlight
grey.
panelonthebasisofwhatisreportedforMDA-MB-231inthe COS-MICdatabase,demonstratingthatNGSfulfilstheanalyticalfeatures ofspecificityandaccuracyrequiredforsinglecellanalysis.
Withtheexceptionoftheabovementionedmutationsandthe p.P72RSNPintheTP53gene,weevidencedahighheterogeneity amongdifferentcellsofthesamecancercellline:nineteen vari-antswereinfactpresentinonlyoneofthefiveanalyzedsingle
cells.Thisfindingmodifiestheideaofcelllinesasapoolofisogenic andhomogeneouscells,infactcellsinaculturemaybesubjected todivergentclonalevolutionresultinginaheterogeneousmixture ofdifferentgenomes.Moreover,allthevariantsdetectedin the cellularpelletwereconfirmedinatleastonesinglecell indicat-ingthatsinglecellsrepresentthedifferentclonesoftheoriginal population.
Table3
ListofthesequencevariantsdetectedinsingleandpooledMDA-MB-231cellswithdetailsaboutthecoverageofthenextgenerationsequencingreaction.Forsinglewild typecellswereportedthemeancoverageofthesequencedamplicon;whileformutatedsingleorpooledcellswereportedthemeancoverageoftheampliconaswellasthe coverageofthespecificmutatednucleotideposition.Whenmorethanacellisconsideredforcalculation,thenumberofcellsisreportedinbrackets.
Gene Sequencevariant Singlewildtypecells Singlemutatedcells Pool5cells
Meancoverage Meancoverage Singlebasecoverage Meancoverage Singlebasecoverage
ABL1 p.M337IM 9965(n=4) 5493 4718 8377 APC p.P1458A 7483(n=4) 5721 4784 11545 ATM p.S614I 336(n=5) 1101 985 ATM p.T616A 372(n=4) 191 176 1101 BRAF p.G464V 1937(n=5) 1712(n=5) 4363 3688 BRAF p.S607P 549(n=4) 808 739 EGFR p.Q787Q 6050(n=2) 1664(n=3) 1423(n=3) ERBB4 p.R927L 558(n=5) 1356 1200 ERBB4 p.P942H 538(n=4) 640 559 1356 FBXW7 p.H495N 2788(n=4) 600 545 4475 FLT3 p.E588Vfs 1932(n=4) 1095 975 3502 IDH1 p.C114F 9337(n=4) 4856 3306 15573 IDH1 p.N116Ifs 8012(n=4) 10155 9003 15573 KIT p.L526M 1227(n=4) 929 818 2405 KRAS p.R135G 597(n=4) 416 350 1980 MLH1 p.E414E 7435(n=4) 4831 4222 14523 PDGFRA p.P567P 2586(n=2) 3513(n=3) 2973(n=3) 3933 PTEN p.K6K 3823(n=4) 3066 2837 7575 PTEN p.D19Y 3562(n=4) 4109 3380 7575 RET p.L769L 52(n=4) 167 150 45 SMARCB1 p.A55DA 9550(n=4) 6130 5279 10136 SMARCB1 p.R201Efs 7089(n=4) 4686 4055 6902 SMO p.T640A 3114(n=4) 9737 8450 4748 TP53 p.P72R 3321(n=5) 2668(n=5) 1989 1514 TP53 p.S166L 14711(n=4) 6567 5564 17535 TP53 p.R280K 2886(n=5) 2508(n=5) 5417 4670 TP53 p.G356W 3243(n=4) 3998 3408 2897
Previous studies showed that amplification and sequencing errorsareaconcernforsinglecellmutationanalysis[17],butthe
punctualandmeanhighcoveragereachedforoursamplesmake
usconfidentonthereliabilityofevenminorvariantsfoundonlyin
singlesamples.Infactachievinghighphysicalcoverageofthe
tar-getedsequencesiscrucialforcallingmutationsatthesameregions
acrossmultiplesinglecellsNavine,[3].
Asamatteroffact,wecannotexcludetechnicalerrorsderiving
fromtheWGAprocedure.Asalreadypointedoutbyotherauthors,
WGAcouldaffectsubsequentsequencingresultsbyintroducinga
numberoftechnicalvariablessuchasallelicdropout,inadequate
coverage,falsepositiveandnegativeresults[3].Forthisreasonwe
chosetoadoptaWGAmethodwhichhasbeenshowntoreliably
amplifytheentirecellulargenomehomogeneously[18].
Itisgenerallyacceptedthat,duetohigherrorratesinNGS,
muta-tionsmustbedetectedinmultiplesinglecells(atleast3cells)to
makeamutant call[3].Nonethelesswiththeaimtoreportthe
entireresultsoftheproposedworkflowandtohighlightcell
het-erogeneity,wedecidedtoreportallthevariantsdetectedineach
singlecellprovidedthatthenumberofforwardandreversereads
forthemutatedbasewasbalanced.
The feasibility of high-resolution single cell analysisis very
importantwhenappliedtothestudyofCTCswhichareextremely
rareinthebloodstreamand,due tothechallengeinthe
devel-opmentof isolation procedures, can beoften recoveredin low
numbersfromasingleblooddraw.
Singlecellanalysismayassumeeven higherrelevancewhen
dealingwithsamplesfromcancerpatientsinwhomsuchmethods
couldhelpelucidatingtumorheterogeneityinavarietyof
speci-mens,suchasprimarytissues,metastasesandcirculatingtumor
cells. CTCs in particular are rare in the circulation and require
highlysensitiveandspecificmethodsfortheirisolationandhigh
throughputproceduresfornucleicacidcharacterizationinorderto
highlighttheirmetastaticpotentialandtheirusefulnessasdynamic
markersoftumordevelopment.
Ourstudyisanexampleofoptimizationofsingle-cell
analy-sisprocedureswhicharestillindevelopmentandholdpromise
toestablishrobustsingle-celldiagnosticswhichwillbecrucialfor
therealizationofprecisionmedicineimplyingnoveltherapeutic
approaches[6].
Conflictofinterest
Alltheauthorsdeclaretohavenoconflictofinterest.
Acknowledgement
ThisworkhasreceivedfinancialsupportfromEnteCassa di
Risparmio di Firenze (Firenze, Italy) (2011.1035) and Regione
Toscana(project“CYTOPEM”PORCROFSE2007-2013).
References
[1]N.Navin,J.Hicks,Futuremedicalapplicationsofsingle-cellsequencingin cancer,GenomeMed.3(2011)31.
[2]C.Richards,Hownext-generationsequencingcametobe,DrugTargetRev.2 (2015)36–37.
[3]N.E.Navin,Cancergenomics:onecellatatime,GenomeBiol.15(2014)452. [4]E.Shapiro,T.Biezuner,S.Linnarsson,Single-cellsequencing-based
technologieswillrevolutionizewhole-organismscience,Nat.Rev.Genet.14 (2013)618–630.
[5]Y.Wang,J.Waters,M.L.Leung,A.Unruh,W.Roh,X.Shi,K.Chen,P.Scheet,S. Vattathil,H.Liang,A.Multani,H.Zhang,R.Zhao,F.Michor,F.Meric-Bernstam, N.E.Navin,Clonalevolutioninbreastcancerrevealedbysinglenucleus genomesequencing,Nature512(7513)(2014)155–160.
[6]M.R.Speicher,Single-cellanalysis:towardtheclinic,GenomeMed.5(2013) 74.
[7]S.Domcke,R.Sinha,D.A.Levine,C.Sander,N.Schultz,Evaluatingcelllinesas tumourmodelsbycomparisonofgenomicprofiles,Nat.Commun.4(2013) 2126.
[8]K.B.Yin,TheMesenchymal-LikePhenotypeoftheMDA-MB-231CellLine,in: M.GunduzProf.(Ed.),BreastCancer—FocusingTumorMicroenvironment, StemcellsandMetastasis,InTech.,2011,pp.385–402.
[9]P.McInerney,P.Adams,M.Z.Hadi,Errorratecomparisonduringpolymerase chainreactionbyDNApolymerase,Mol.Biol.Int.2014(2014)287430.
[10]A.B.Fuchs,A.Romani,D.Freida,G.Medoro,M.Abonnenc,L.Altomare,I. Chartier,D.Guergour,C.Villiers,P.N.Marche,M.Tartagni,R.Guerrieri,F. Chatelain,N.Manaresi,Electronicsortingandrecoveryofsinglelivecells frommicrolitresizedsamples,Lab.Chip6(2006)121–126.
[11]M.Pestrin,F.Salvianti,F.Galardi,F.DeLuca,N.Turner,L.Malorni,M.Pazzagli, A.DiLeo,P.Pinzani,HeterogeneityofPIK3CAmutationalstatusatthesingle celllevelincirculatingtumorcellsfrommetastaticbreastcancerpatients, Mol.Oncol.9(2015)749–757.
[12]M.Cristofanilli,D.F.Hayes,G.T.Budd,M.J.Ellis,A.Stopeck,J.M.Reuben,G.V. Doyle,J.Matera,W.J.Allard,M.C.Miller,H.A.Fritsche,G.N.Hortobagyi,L.W. Terstappen,Circulatingtumorcells:anovelprognosticfactorfornewly diagnosedmetastaticbreastcancer,J.Clin.Oncol.23(2005)1420–1430. [13]S.J.Cohen,C.J.Punt,N.Iannotti,B.H.Saidman,K.D.Sabbath,N.Y.Gabrail,J.
Picus,M.Morse,E.Mitchell,M.C.Miller,G.V.Doyle,H.Tissing,L.W. Terstappen,N.J.Meropol,Relationshipofcirculatingtumorcellstotumor response,progression-freesurvival,andoverallsurvivalinpatientswith metastaticcolorectalcancer,J.Clin.Oncol.26(2008)3213–3221.
[14]J.S.deBono,H.I.Scher,R.B.Montgomery,C.Parker,M.C.Miller,H.Tissing,G.V. Doyle,L.W.Terstappen,K.J.Pienta,D.Raghavan,Circulatingtumorcells predictsurvivalbenefitfromtreatmentinmetastaticcastration-resistant prostatecancer,Clin.CancerRes.14(2008)6302–6309.
[15]A.M.Sieuwerts,J.Kraan,J.Bolt-deVries,P.vanderSpoel,B.Mostert,J.W. Martens,J.W.Gratama,S.Sleijfer,J.A.Foekens,Molecularcharacterizationof circulatingtumorcellsinlargequantitiesofcontaminatingleukocytesbya multiplexreal-timePCRBreast,CancerRes.Treat.118(2009)455–468. [16]A.M.Sieuwerts,B.Mostert,J.Bolt-deVries,D.Peeters,F.E.deJongh,J.M.
Stouthard,L.Y.Dirix,P.A.vanDam,A.VanGalen,V.deWeerd,J.Kraan,P.van derSpoel,R.Ramírez-Moreno,C.H.vanDeurzen,M.Smid,J.X.Yu,J.Jiang,Y. Wang,J.W.Gratama,S.Sleijfer,J.A.Foekens,J.W.Martens,mRNAand microRNAexpressionprofilesincirculatingtumorcellsandprimarytumors ofmetastaticbreastcancerpatients,Clin.CancerRes.17(2011)3600–3618. [17]E.Heitzer,M.Auer,C.Gasch,M.Pichler,P.Ulz,E.M.Hoffmann,S.Lax,J.
Waldispuehl-Geigl,O.Mauermann,C.Lackner,G.Höfler,F.Eisner,H.Sill,H. Samonigg,K.Pantel,S.Riethdorf,T.Bauernhofer,J.B.Geigl,M.R.Speicher, Complextumorgenomesinferredfromsinglecirculatingtumorcellsby array-CGHandnext-generationsequencing,CancerRes.73(2013) 2965–2975.
[18]C.A.Klein,O.Schmidt-Kittler,J.A.Schardt,K.Pantel,M.R.Speicher,G. Riethmüller,Comparativegenomichybridization,lossofheterozygosityand DNAsequenceanalysisofsinglecells,Proc.Natl.Acad.Sci.U.S.A.96(8) (1999)4494–4499.