• Non ci sono risultati.

Feasibility of a workflow for the molecular characterization of single cells by next generation sequencing

N/A
N/A
Protected

Academic year: 2021

Condividi "Feasibility of a workflow for the molecular characterization of single cells by next generation sequencing"

Copied!
7
0
0

Testo completo

(1)

ContentslistsavailableatScienceDirect

Biomolecular

Detection

and

Quantification

jou rn al h om e p a g e :w w w . e l s e v i e r . c o m / l o c a t e/ b d q

Research

paper

Feasibility

of

a

workflow

for

the

molecular

characterization

of

single

cells

by

next

generation

sequencing

Francesca

Salvianti

a

,

Giada

Rotunno

b

,

Francesca

Galardi

c

,

Francesca

De

Luca

c

,

Marta

Pestrin

c

,

Alessandro

Maria

Vannucchi

b

,

Angelo

Di

Leo

c

,

Mario

Pazzagli

a

,

Pamela

Pinzani

a,∗

aDepartmentofClinical,ExperimentalandBiomedicalSciences,UniversityofFlorence,Florence,Italy bDepartmentofClinicalandExperimentalMedicine,UniversityofFlorence,Florence,Italy

cSandroPitiglianiMedicalOncologyDepartment,HospitalofPrato,IstitutoToscanoTumori,Prato,Italy

a

r

t

i

c

l

e

i

n

f

o

Articlehistory: Received29April2015

Receivedinrevisedform24July2015 Accepted27July2015

Availableonline12September2015 Keywords:

Singlecell

Circulatingtumorcells NGS

Somaticmutations Microgenomics

a

b

s

t

r

a

c

t

Thepurposeofthestudywastoexplorethefeasibilityofaprotocolfortheisolationandmolecular characterizationofsinglecirculatingtumorcells(CTCs)fromcancerpatientsusingasingle-cellnext generationsequencing(NGS)approach.

Toreachthisgoalweusedasamodelanartificialsampleobtainedbyspikingabreastcancercellline (MDA-MB-231)intothebloodofahealthydonor.

TumorcellswereenrichedandenumeratedbyCellSearch®andsubsequentlyisolatedbyDEPArrayTMto

obtainsingleorpooledpuresamplestobesubmittedtotheanalysisofthemutationalstatusofmultiple genesinvolvedincancer.

Uponwholegenomeamplification,sampleswereanalysedbyNGSontheIonTorrentPGMTMsystem

(LifeTechnologies)usingtheIonAmpliSeqTMCancerHotspotPanelv2(LifeTechnologies),designedto

investigategenomic“hotspot”regionsof50oncogenesandtumorsuppressorgenes.

Wesuccessfullysequencedfivesinglecells,apoolof5cellsandDNAfromacellularpelletofthesame celllinewithameandepthofthesequencingreactionrangingfrom1581to3479reads.

Wefound27sequencevariantsin18genes,15ofwhichalreadyreportedintheCOSMICordbSNP databases.Weconfirmedthepresenceoftwosomaticmutations,intheBRAFandTP53gene,whichhad beenalreadyreportedforthiscellsline,butalsofoundnewmutationsandsinglenucleotide polymor-phisms.Threevariantswerecommontoalltheanalysedsamples,while18werepresentonlyinasingle cellsuggestingahighheterogeneitywithinthesamecellline.

Thispaperpresentsanoptimizedworkflowforthemolecularcharacterizationofmultiplegenesin singlecellsbyNGS.ThedescribedpipelinecanbeeasilytransferredtothestudyofsingleCTCsfrom oncologicpatients.

©2015TheAuthors.PublishedbyElsevierGmbH.ThisisanopenaccessarticleundertheCC BY-NC-NDlicense(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Themolecularanalysisofsolidtumorsisofgreatimpactinthe

fieldofoncologyresearchnotwithstandingsomeunsolved

chal-lengingaspectsinbothsampleselectionandtechnicalapproaches.

Solidtumorsareinfactaheterogeneousmixtureoftumorand

nor-malcellsdifferentiallycontributingtothefinalresultsofmolecular

biologytestsonnucleicacids.Asaresultmolecularsignatures

rep-∗ Correspondingauthorat:DipartimentodiScienzeBiomediche,Sperimentalie ClinicheUniversitàDegliStudidiFirenzeVialePieraccini,650139Firenze,Italy.

E-mailaddress:[email protected]fi.it(P.Pinzani).

resentanaveragevaluemaskingtheindividualsignalsderiving

fromeachsinglecancercell[1].Theanalysisofsomaticmutations

atthesingle-celllevelcanevidencewhetheroneormorevariants

detectedinthebulktissuearesimultaneouslypresentinthesame

cellorif,onthecontrary,derivefromdifferentcellclones.

Next-generationsequencing(NGS)hasbecomeamajortoolfor

nucleic acidanalysisand promises todisclose the basis of

dis-eases,openingperspectivesforincreasedpersonalizedtherapies

andscreening[2].NGShasbeensofarappliedtonucleicacids

deriv-ingfromahighnumberofcellsprovidingglobalinformationon

theaveragestateoftheentirepopulationofcells[1].Bycombining

wholegenomeamplification(WGA)withNGS,itisnowpossibleto

achieveindividualcancercellsequencing[3].

http://dx.doi.org/10.1016/j.bdq.2015.07.002

2214-7535/©2015TheAuthors.PublishedbyElsevierGmbH.ThisisanopenaccessarticleundertheCCBY-NC-NDlicense(http://creativecommons.org/licenses/by-nc-nd/ 4.0/).

(2)

Single-cell sequencing has the potential to address some

importantquestionsinoncologysuchasunderstandingtumor

het-erogeneity,reconstructingcelllineagesanddefiningthegenomeof

raretumorcellpopulations[3–5].

Inaddition,single-celltechnologieswillcontributetoelucidate

rarecelleventssuchasscarcecancercellsinclinicalsamplesand

thedisseminationofcirculatingtumorcells(CTCs)inthebloodof

cancerpatients[1,6].SinceCTCsreflecttheheterogeneityof

pri-maryormetastatictumors,theiranalysisatthesingle-celllevel

representarealtimeliquidbiopsyofthediseasegivinganinsight

incancerprogression,helpinginthechoiceoftargettherapiesor

inthepredictionoftheefficacyof chemotherapeuticagents [1]

andthusrepresentingakeytoolinthedevelopmentofprecision

medicine.

Anotheraspect that can be considered as an application of

single-cellsequencing isthe analysisof celllines derived from

tumorsthatarecommonlyusedasmodelsincancerresearch.This

approachcanbesuccessfullyadoptedtoidentifythosecelllines

thatmorecloselyresemblethecharacteristicsofthetumorunder

study[7].Evenifatamuchlowerextentthantissues,thecellline

populationusuallyconsideredascomposedofidenticalcellular

ele-mentscanhidea heterogeneitythatcouldbedisclosedonlyby

single-cellanalysis.

TheMDA-MB-231isanadherenthumanbreastcancercellline

ofepithelialorigin,whichishighlyaggressive,invasiveandpoorly

differentiated.MDA-MB-231cellsdisplayamesenchymal-like

phe-notypethusrepresentingagoodmodelformetastaticbreastcancer

[8].

Inthepresentstudyweinvestigatedthemutationalstatusof

multiplegenesonanartificialsampleobtainedbyspikingthe

MDA-MB-231cell lineintotheblood of a healthy donor. Thetumor

cellswereimmunomagneticallyisolatedbyCellSearch®(Veridex,

USA),sortedbya dielectrophoreticsystem(DEPArrayTM,Silicon

Biosystems,Italy)andthensubmittedtoWGAandtargeteddeep

sequencing.Weusedthismodelwiththeaimtodemonstratethe

feasibilityofaworkflowfortheisolationandmolecular

character-izationofsinglecirculatingtumorcellsfromcancerpatientsusing

asingle-cellNGSapproach.

2. Methods

2.1. Cellcultureandspikingexperiments

Experiments were conducted on the MDA-MB-231 human

breast cancer cellline. MDA-MB-231cells were obtainedfrom

Di.V.A.L.Toscana(LaboratoryforDrugValidationandAntibody

pro-duction,UniversityofFlorence)andmaintainedinDMEM(Lonza,

Basel,Switzerland)+10%FBS(PAALaboratories,Austria)at37◦Cin

5%CO2.CellsweredetachedfromplasticsurfacebyAccutase(PAA

Laboratories)tobetterpreservemembraneantigens.MDA-MB-231

cells(n=500)werespikedinbloodsamplesfromahealthy

vol-unteercollectedinCellSave®tubes(VeridexLLC,Raritan,NJ)and

processedasdescribedbelow.Theremainingcellsfromthesame

culturewerecentrifugedandtheresultingcellpelletwassubmitted

toDNAextractionbyQIAampDNAMiniKit(Qiagen,Germany).

2.2. Cellenrichmentandenumeration

Cell enrichment and enumeration was performed by the

CellSearch®System.7.5mLofwholebloodwereprocessedusing

theCellSearchTM EpithelialCell kit (VeridexLLC), whichselects

EpCAMpositivecellsusingferrofluidsparticlescoatedwithEpCAM

antibody.Cellswerestainedwiththenucleardye4,6

-diamino-2-phenylindole(DAPI),anti-cytokeratin8,18and19-phycoerythrin

(PE)labelledantibodies,andCD45antibodylabelledwith

allophy-cocyanin(APC).Afterenrichment,isolatedandstainedcellswere

resuspendedintheMagNestDevice(VeridexLLC),labelledcells

wereanalyzedintheCellTracks®AnalyzerII(VeridexLLC)andcells

identifiedandenumeratedaccordingtothecriteriaspecifiedbythe

manufacturer’sinstructions.

2.3. Singlecellsorting

FollowingCellSearch® enrichmentthesamplewasrecovered

fromtheVeridexcartridgeandloadedintotheDEPArrayTMA300K

chip(SiliconBiosystems)accordingtothemanufacturer’s

instruc-tions.The chipis asingle-use, microfluidic cartridgecontaining

an array of individually controllable electrodes, each one with

embedded sensors. Chip scanning was performed by an

auto-matedfluorescencemicroscopetogenerateanimagegallery,with

cellsselectedaccordingtotheirmorphology(roundshape,round

nucleuswithinthecytoplasm)andstainingpatternderivingfrom

thatoftheCellSearch® system:DAPIpositive,PEpositive (CK8,

CK18,CK19positivecells),APCnegative(CD45negativecells).

Aftertumorcellidentification,singlecellsorgroupsoffewcells

wererecoveredinto200␮ltubes.

2.4. Wholegenomeamplification

SinglecellsorpoolsofcellsweresubmittedtoWGAusingthe

Ampli1TMWGAkit(SiliconBiosystems)accordingtothe

manu-facturer’sinstructions, in order toobtain a sample suitable for

sequencinganalysis.Theprocedureisbasedonaligation-mediated

PCRfollowingasitespecificDNAdigestionbyMseIenzyme.The

kithasnoneedsforprecipitationstepsavoidingDNAlossand

pro-videsalibraryoffragmentsofabout0.2-2kbrepresentingtheentire

genome.ThekitusesamixtureofTaqpolymerasewitha

proofread-ingenzyme,Pwopolymerase,thathasbeenreportedtohaveerror

ratesmorethan10timeslowerthantheerrorrateobservedwith

Taqpolymerase[9].

2.5. WGAqualitycontrol

Thequality of theoutputproduct ofthe WGAreaction was

assessedbytheAmpli1TMQCkit(SiliconBiosystems)accordingto

themanufacturer’sinstructions.ThekitisaPCR-basedassaywhich

implies theamplification of two distinct regionsof the human

genometoproducetwoamplicons(Aand B)of373and167bp

respectively. PCR productsA and B wereanalyzed by capillary

electrophoresisontheAgilent2100Bionalyzer.Thepresenceof

bothamplificationproductsindicatesasuccessfulWGAand

con-sequentlythesuitabilityofthesamplefordownstreamanalysis.

2.6. Nextgenerationsequencing

SequencinganalysiswasperformedontheIonTorrentPGMTM

system(LifeTechnologies).WeamplifiedthesamplesusingtheIon

AmpliSeqTMCancerHotspotPanelv2(LifeTechnologies)designed

totarget207ampliconscoveringmutationsfrom50oncogenesand

tumorsuppressorgenes.DNAquantificationwasassessedusing

theQubit2.0Fluorometer(LifeTechnologies,Carlsbad,CA,USA).

TennanogramsofDNAwereusedtopreparebarcodedlibraries

usingtheIonAmpliSeqTM Librarykit2.0 andIonXpressTM

bar-codeadapters(LifeTechnologies).Thelibrarieswerepurifiedwith

AgentcourtAMPureXP(BeckmanCoulter)andquantifiedwiththe

IonLibraryQuantitationKit(LifeTechnologies)ontheStepOnePlus

system(AppliedBiosystem).

TemplatepreparationwasperformedwiththeIonOneTouchTM

2SystemandIonOneTouchES.Finallysequencingwasperformed

(3)

Table1

ClassificationofgenesoftheAmpliSeqTMCancerHotspotPanelv2onthebasisof

thepresenceoftheMseIrestrictionsiteinoneormoreamplicons.

31Unaffectedgenes 17Partiallyaffectedgenes 2Totallyaffectedgenes

ABL1 APC NPM1

AKT1 ATM JAK2

ALK CDH1 BRAF EGFR CDKN2A ERBB4 CSF1R FBXW7 CTNNB1 FGFR2 ERBB2 KDR EZH2 KIT FGFR1 KRAS FGFR3 MET FLT3 PIK3CA GNA11 PTEN GNAQ RB1 GNAS RET HNF1A SMAD4 HRAS VHL IDH1 IDH2 JAK3 MLH1 MPL NOTCH1 NRAS PDGFRA PTPN11 SMARCB1 SMO SRC STK11 TP53

ontheIon316chipV1.Therunwassetinordertoachievea1000X coverageforeachsample.

DuetotheWGAmethod,involvinganenzymaticcleavageof DNAbytheMseIrestrictionenzyme,wecouldnotsequence49/207 ampliconsofthepanel.Table1liststhegenesoftheAmpliSeqTM

CancerHotspotPanelv2whicharerespectivelytotally,partiallyor

non-affectedbytheenzymaticdigestion.31geneshadnoamplicon

cleavedbytheenzyme;17geneshadsomeampliconscutbyMseI,

andtwogenes(NPM1andJAK2)wereimpossibletoanalysebecause

oftheenzymaticcleavage.

2.7. Dataanalysis

AllsampleswereprocessedusingtheTorrentSuiteSoftware

3.6andvariantcallingwasperformedrunningtheTorrentVariant

Callerpluginversion3.6.56708.Moreover,sampleswereanalysed

usingNextGENe®software2.3.1(SoftGenetics,LLC,StateCollege,

PA).Weconsideredonlyvariantswithbalancednumbersof

for-wardandreversereads.

Eachvariantwasinvestigatedaboutitspotentialpathogenetic

roleusingavailablegenemutationsandSNPsdatabasesand

predic-tionalgorithms(COSMIC,dbSNP,1000GENOME,SIFT,Polyphen).

3. Results

3.1. Designoftheworkflowforsinglecellrecovery

WedefinedaworkflowfortargetedNGSsequencingcomposed

ofthefollowingstepscoveringtheprocedurefromtheblooddraw

tothe deep sequencing data analysis.Fig. 1 reports the entire

pipeline.

3.1.1. Tumorcellenrichmentandrecovery

Thepreanalyticalvariablesaretakenintoaccountbytheuse

ofastabilizingbloodcollectiontubewhichalsoprovidescell

fix-ation.Cellsspikedintothebloodofahealthydonorareenriched,

fluorescentlylabelledandcountedbytheCellSearch®system.The

platformprovidestheimmunomagneticcaptureofcellsandtheir

selectiononthebasisofpositivestainingforcytokeratinsand

neg-ativesignalforCD45.Theleft-overcartridgeishandledinorderto

achievetherightvolumeforsinglecellsortingbytheDEPArrayTM,

whichcombinesimagingtechnologieswiththeabilityto

manipu-lateandrecoverindividualcellsfromaheterogeneoussample.The

systemperformsascanningofthesamplebyanautomated

fluo-rescencemicroscopegeneratinganimagegallery.Cellsareselected

accordingtotheirmorphology(roundshape,roundnucleuswithin

thecytoplasm)andfluorescencestainingpatternderivingfromthat

of theCellSearch® system.Selected cells aretrapped in

dielec-trophoretic “cages” and moved singularly by manipulating the

appliedelectricfield[10].

Theworkflowhasseveralcriticalpointsrelatedtothecomplete

CTCrecoveryfromtheCellsearch® cartridge,tothesubsequent

volumereductiontofittheinputvolumeoftheDEPArrayTMchip

(14␮l)andtothevolumereductionofsinglecellsamplesafter

DEPArrayTMrecovery.

Inparticular,afterenrichmentbytheCellSearch® systemwe

identified130cells(percentageofrecovery=26%).Thecell

suspen-sionrecoveredfromtheCellSearch®wasinjectedintheDEPArray

chip: we identified 86 cells with a recovery ratio (defined as

the ratio betweenthe number of single cells identified by the

DEParrayTMafterCellSearch®enrichmentandthetotalnumberof

cellscountedbytheCellSearch®)of66%asalreadyreportedina

previousstudy[11].

Wesorted5singleMDA-MB-231cellsandapoolof5cellstobe

submittedtodeepsequencing.Fig.2Ashowstheimagesof2single

cells.

3.1.2. WGAandqualitycontrol

Weamplifiedthewholegenomeofoursamplesina3-day

pro-cedurerequired for theAmpli1WGATM kit.Handling time was

reduced,buttwoovernightincubationswererequired.Afterthe

WGAreactionweverifiedthequalityoftheoutputproductbefore

proceedingtosequencingbyaPCRbasedassayusingtheAmpli1TM

QCkit.Thefivesinglecellsandthepoolof5cells showedboth

theexpectedPCRproductsAandBbycapillaryelectrophoresis.

Fig.2Bshowsthecapillaryelectrophoresisofthetwoproductsof

theAmpli1TMQCkitintwosinglecells.

3.1.3. Nextgenerationsequencingonsingleandpooledcells

Wesuccessfullysequenced5singlecells,apoolof5cellsand

DNAfromapelletofMDA-MB-231cellswithameandepthofthe

sequencingreactionof2966,2862,1581,1884,1854,3479and

2100readsrespectively.

Onthewhole27sequencevariantsweredetectedin18genes

(Table2).FifteenvariantshadbeenalreadyreportedintheCOSMIC

ordbSNPdatabases,while12weredescribedforthefirsttime.

Onlytwosomaticmutations,p.G464Vinexon11oftheBRAF

geneandp.R280Kinexon7oftheTP53gene,hadbeenalready

described in this cells line, while theothermutations and

sin-glenucleotidepolymorphisms(SNPs)havenever beenreported

before.

Twosomaticmutations(p.G464Vinexon11oftheBRAFgene

andp.R280Kinexon7oftheTP53gene)andaSNP(p.P72Rinexon

3oftheTP53gene),weredetectedinsingleandpooledcellsas

wellasinthereferencecellularpellet;threesynonymousvariants

(pQ787QinEGFR,p.P567PinPDGFRAandp.L769LinRET)andthe

deleteriousmutationp.N116IfsinIDH1weredetectedinatleast

(4)

Fig.1.FlowchartrepresentingthesinglestepsoftheproposedprocedureforsinglecellanalysisbyNGS.

Fig.2.(A)CellstainingpatternvisualizedbytheDEPArrayTM:thecellshowpositivefluorescentsignalsfornuclearDAPIandcytokeratins(PE)andnosignalforCD45(APC).

(B)AnalysisofAmpli1TMQCPCRproductsforMDA-MB-231singlecell1and2bycapillaryelectrophoresis.“A=PCRproductA;“B”=PCRproductB.

18variantswerepresentonlyinasinglecellsample(Table2).Two

variants(p.S614IinATMandp.R927LinERBB4)werefoundonly

inthepool(Table2).Allthevariantsdetectedinthecellularpellet

werepresentinatleastonesinglecellsample(Table2).

Inadditiontotheidentifiedvariants,Table2reportsforall

sam-plesthenumberofforwardandreversereadsofthemutatedbase

andthehomozygousorheterozygousstatusofthevariantdetected

ineachsinglecell.

Sequencevariantscommontothe6samplesweredetectedwith

ahighnumberofreads,whileafewvariantsfoundjustinasingle

samplehadalownumberofreadsofthemutatednucleotide.

Table3reportsthemeancoverageofeachampliconper

sam-ple.Inaddition,forsampleswithadetectedsequencevariant,we

reportedthecoverageofthespecificposition.

4. Discussion

Wedescribed a workflowfor themolecularcharacterization

ofmultiplegenesinsinglecellsbyNGS.Thestudyrepresentsa

proof-of-principledemonstratingthepossibilitytoinvestigatethe

molecularstatusofabout50genesrelatedtocancerdevelopment

inasingletumorcell.Thedescribedpipelinecanbeeasily

trans-ferredtothestudyofsinglecirculatingtumorcellsfromoncologic

patients.Infact,wedemonstratedthefeasibilityofdeep

sequenc-ingonsingleandpooledpureMDA-MB-231cellswhichrepresent

amodelofmetastaticbreastcancercells.

Oneofthepurposesofthestudywastobypasssomeofthe

limi-tationsoftheCellSearch®,oneofthemostwidelyusedsystemsfor

CTCenrichment,inthemolecularanalysisofpatientssamples.In

fact,whiletheinstrumentwasextensivelyevaluatedforitsability

toaccuratelycountCTCsinbloodandfortheconsequent

prognos-ticperformances[12–14],itisunabletoprovidepuresamplesto

besubmittedtomolecularcharacterization:contaminating

leuco-cytesarestillpresentintheenrichedsamplesandthelownumber

ofisolatedCTCssubstantiallylimitssubsequentmolecularanalyses

[15,16].

WealreadydemonstratedthepossibilitytosequencebySanger

methodpureCTCsamplesenrichedbyCellSearch®andsortedby

DEPArrayTM[11]andnowwewouldliketoextendtheprocedure

toahigherthroughputsequencingsystemliketargetedNGS.

Inalloursamplesweverifiedthepresenceof twoexpected

(5)

Table2

ListofthesequencevariantsdetectedinsingleandpooledMDA-MB-231cells.Whiteboxesrepresentwildtypesequences,whilegreyboxesindicatethepresenceofthe mutation.Insinglecellsamples,“homo”and“het”indicatethepresenceofthemutationinhomozygosisorheterozygosisrespectively.Forallsamples,thenumberofforward andreversereadsofthemutatedbasehasbeenreportedforeachsequencevariant.Sequencevariantswithpossibledeleteriouseffectontheproteinphenotypearewritten inbold,whilebenignvariantsarereportedinplaintext.SomaticmutationsspecificallyinvestigatedbytheIonAmpliSeqTMCancerHotspotPanelarehighlightedinlight

grey.

panelonthebasisofwhatisreportedforMDA-MB-231inthe COS-MICdatabase,demonstratingthatNGSfulfilstheanalyticalfeatures ofspecificityandaccuracyrequiredforsinglecellanalysis.

Withtheexceptionoftheabovementionedmutationsandthe p.P72RSNPintheTP53gene,weevidencedahighheterogeneity amongdifferentcellsofthesamecancercellline:nineteen vari-antswereinfactpresentinonlyoneofthefiveanalyzedsingle

cells.Thisfindingmodifiestheideaofcelllinesasapoolofisogenic andhomogeneouscells,infactcellsinaculturemaybesubjected todivergentclonalevolutionresultinginaheterogeneousmixture ofdifferentgenomes.Moreover,allthevariantsdetectedin the cellularpelletwereconfirmedinatleastonesinglecell indicat-ingthatsinglecellsrepresentthedifferentclonesoftheoriginal population.

(6)

Table3

ListofthesequencevariantsdetectedinsingleandpooledMDA-MB-231cellswithdetailsaboutthecoverageofthenextgenerationsequencingreaction.Forsinglewild typecellswereportedthemeancoverageofthesequencedamplicon;whileformutatedsingleorpooledcellswereportedthemeancoverageoftheampliconaswellasthe coverageofthespecificmutatednucleotideposition.Whenmorethanacellisconsideredforcalculation,thenumberofcellsisreportedinbrackets.

Gene Sequencevariant Singlewildtypecells Singlemutatedcells Pool5cells

Meancoverage Meancoverage Singlebasecoverage Meancoverage Singlebasecoverage

ABL1 p.M337IM 9965(n=4) 5493 4718 8377 APC p.P1458A 7483(n=4) 5721 4784 11545 ATM p.S614I 336(n=5) 1101 985 ATM p.T616A 372(n=4) 191 176 1101 BRAF p.G464V 1937(n=5) 1712(n=5) 4363 3688 BRAF p.S607P 549(n=4) 808 739 EGFR p.Q787Q 6050(n=2) 1664(n=3) 1423(n=3) ERBB4 p.R927L 558(n=5) 1356 1200 ERBB4 p.P942H 538(n=4) 640 559 1356 FBXW7 p.H495N 2788(n=4) 600 545 4475 FLT3 p.E588Vfs 1932(n=4) 1095 975 3502 IDH1 p.C114F 9337(n=4) 4856 3306 15573 IDH1 p.N116Ifs 8012(n=4) 10155 9003 15573 KIT p.L526M 1227(n=4) 929 818 2405 KRAS p.R135G 597(n=4) 416 350 1980 MLH1 p.E414E 7435(n=4) 4831 4222 14523 PDGFRA p.P567P 2586(n=2) 3513(n=3) 2973(n=3) 3933 PTEN p.K6K 3823(n=4) 3066 2837 7575 PTEN p.D19Y 3562(n=4) 4109 3380 7575 RET p.L769L 52(n=4) 167 150 45 SMARCB1 p.A55DA 9550(n=4) 6130 5279 10136 SMARCB1 p.R201Efs 7089(n=4) 4686 4055 6902 SMO p.T640A 3114(n=4) 9737 8450 4748 TP53 p.P72R 3321(n=5) 2668(n=5) 1989 1514 TP53 p.S166L 14711(n=4) 6567 5564 17535 TP53 p.R280K 2886(n=5) 2508(n=5) 5417 4670 TP53 p.G356W 3243(n=4) 3998 3408 2897

Previous studies showed that amplification and sequencing errorsareaconcernforsinglecellmutationanalysis[17],butthe

punctualandmeanhighcoveragereachedforoursamplesmake

usconfidentonthereliabilityofevenminorvariantsfoundonlyin

singlesamples.Infactachievinghighphysicalcoverageofthe

tar-getedsequencesiscrucialforcallingmutationsatthesameregions

acrossmultiplesinglecellsNavine,[3].

Asamatteroffact,wecannotexcludetechnicalerrorsderiving

fromtheWGAprocedure.Asalreadypointedoutbyotherauthors,

WGAcouldaffectsubsequentsequencingresultsbyintroducinga

numberoftechnicalvariablessuchasallelicdropout,inadequate

coverage,falsepositiveandnegativeresults[3].Forthisreasonwe

chosetoadoptaWGAmethodwhichhasbeenshowntoreliably

amplifytheentirecellulargenomehomogeneously[18].

Itisgenerallyacceptedthat,duetohigherrorratesinNGS,

muta-tionsmustbedetectedinmultiplesinglecells(atleast3cells)to

makeamutant call[3].Nonethelesswiththeaimtoreportthe

entireresultsoftheproposedworkflowandtohighlightcell

het-erogeneity,wedecidedtoreportallthevariantsdetectedineach

singlecellprovidedthatthenumberofforwardandreversereads

forthemutatedbasewasbalanced.

The feasibility of high-resolution single cell analysisis very

importantwhenappliedtothestudyofCTCswhichareextremely

rareinthebloodstreamand,due tothechallengeinthe

devel-opmentof isolation procedures, can beoften recoveredin low

numbersfromasingleblooddraw.

Singlecellanalysismayassumeeven higherrelevancewhen

dealingwithsamplesfromcancerpatientsinwhomsuchmethods

couldhelpelucidatingtumorheterogeneityinavarietyof

speci-mens,suchasprimarytissues,metastasesandcirculatingtumor

cells. CTCs in particular are rare in the circulation and require

highlysensitiveandspecificmethodsfortheirisolationandhigh

throughputproceduresfornucleicacidcharacterizationinorderto

highlighttheirmetastaticpotentialandtheirusefulnessasdynamic

markersoftumordevelopment.

Ourstudyisanexampleofoptimizationofsingle-cell

analy-sisprocedureswhicharestillindevelopmentandholdpromise

toestablishrobustsingle-celldiagnosticswhichwillbecrucialfor

therealizationofprecisionmedicineimplyingnoveltherapeutic

approaches[6].

Conflictofinterest

Alltheauthorsdeclaretohavenoconflictofinterest.

Acknowledgement

ThisworkhasreceivedfinancialsupportfromEnteCassa di

Risparmio di Firenze (Firenze, Italy) (2011.1035) and Regione

Toscana(project“CYTOPEM”PORCROFSE2007-2013).

References

[1]N.Navin,J.Hicks,Futuremedicalapplicationsofsingle-cellsequencingin cancer,GenomeMed.3(2011)31.

[2]C.Richards,Hownext-generationsequencingcametobe,DrugTargetRev.2 (2015)36–37.

[3]N.E.Navin,Cancergenomics:onecellatatime,GenomeBiol.15(2014)452. [4]E.Shapiro,T.Biezuner,S.Linnarsson,Single-cellsequencing-based

technologieswillrevolutionizewhole-organismscience,Nat.Rev.Genet.14 (2013)618–630.

[5]Y.Wang,J.Waters,M.L.Leung,A.Unruh,W.Roh,X.Shi,K.Chen,P.Scheet,S. Vattathil,H.Liang,A.Multani,H.Zhang,R.Zhao,F.Michor,F.Meric-Bernstam, N.E.Navin,Clonalevolutioninbreastcancerrevealedbysinglenucleus genomesequencing,Nature512(7513)(2014)155–160.

[6]M.R.Speicher,Single-cellanalysis:towardtheclinic,GenomeMed.5(2013) 74.

[7]S.Domcke,R.Sinha,D.A.Levine,C.Sander,N.Schultz,Evaluatingcelllinesas tumourmodelsbycomparisonofgenomicprofiles,Nat.Commun.4(2013) 2126.

[8]K.B.Yin,TheMesenchymal-LikePhenotypeoftheMDA-MB-231CellLine,in: M.GunduzProf.(Ed.),BreastCancer—FocusingTumorMicroenvironment, StemcellsandMetastasis,InTech.,2011,pp.385–402.

[9]P.McInerney,P.Adams,M.Z.Hadi,Errorratecomparisonduringpolymerase chainreactionbyDNApolymerase,Mol.Biol.Int.2014(2014)287430.

(7)

[10]A.B.Fuchs,A.Romani,D.Freida,G.Medoro,M.Abonnenc,L.Altomare,I. Chartier,D.Guergour,C.Villiers,P.N.Marche,M.Tartagni,R.Guerrieri,F. Chatelain,N.Manaresi,Electronicsortingandrecoveryofsinglelivecells frommicrolitresizedsamples,Lab.Chip6(2006)121–126.

[11]M.Pestrin,F.Salvianti,F.Galardi,F.DeLuca,N.Turner,L.Malorni,M.Pazzagli, A.DiLeo,P.Pinzani,HeterogeneityofPIK3CAmutationalstatusatthesingle celllevelincirculatingtumorcellsfrommetastaticbreastcancerpatients, Mol.Oncol.9(2015)749–757.

[12]M.Cristofanilli,D.F.Hayes,G.T.Budd,M.J.Ellis,A.Stopeck,J.M.Reuben,G.V. Doyle,J.Matera,W.J.Allard,M.C.Miller,H.A.Fritsche,G.N.Hortobagyi,L.W. Terstappen,Circulatingtumorcells:anovelprognosticfactorfornewly diagnosedmetastaticbreastcancer,J.Clin.Oncol.23(2005)1420–1430. [13]S.J.Cohen,C.J.Punt,N.Iannotti,B.H.Saidman,K.D.Sabbath,N.Y.Gabrail,J.

Picus,M.Morse,E.Mitchell,M.C.Miller,G.V.Doyle,H.Tissing,L.W. Terstappen,N.J.Meropol,Relationshipofcirculatingtumorcellstotumor response,progression-freesurvival,andoverallsurvivalinpatientswith metastaticcolorectalcancer,J.Clin.Oncol.26(2008)3213–3221.

[14]J.S.deBono,H.I.Scher,R.B.Montgomery,C.Parker,M.C.Miller,H.Tissing,G.V. Doyle,L.W.Terstappen,K.J.Pienta,D.Raghavan,Circulatingtumorcells predictsurvivalbenefitfromtreatmentinmetastaticcastration-resistant prostatecancer,Clin.CancerRes.14(2008)6302–6309.

[15]A.M.Sieuwerts,J.Kraan,J.Bolt-deVries,P.vanderSpoel,B.Mostert,J.W. Martens,J.W.Gratama,S.Sleijfer,J.A.Foekens,Molecularcharacterizationof circulatingtumorcellsinlargequantitiesofcontaminatingleukocytesbya multiplexreal-timePCRBreast,CancerRes.Treat.118(2009)455–468. [16]A.M.Sieuwerts,B.Mostert,J.Bolt-deVries,D.Peeters,F.E.deJongh,J.M.

Stouthard,L.Y.Dirix,P.A.vanDam,A.VanGalen,V.deWeerd,J.Kraan,P.van derSpoel,R.Ramírez-Moreno,C.H.vanDeurzen,M.Smid,J.X.Yu,J.Jiang,Y. Wang,J.W.Gratama,S.Sleijfer,J.A.Foekens,J.W.Martens,mRNAand microRNAexpressionprofilesincirculatingtumorcellsandprimarytumors ofmetastaticbreastcancerpatients,Clin.CancerRes.17(2011)3600–3618. [17]E.Heitzer,M.Auer,C.Gasch,M.Pichler,P.Ulz,E.M.Hoffmann,S.Lax,J.

Waldispuehl-Geigl,O.Mauermann,C.Lackner,G.Höfler,F.Eisner,H.Sill,H. Samonigg,K.Pantel,S.Riethdorf,T.Bauernhofer,J.B.Geigl,M.R.Speicher, Complextumorgenomesinferredfromsinglecirculatingtumorcellsby array-CGHandnext-generationsequencing,CancerRes.73(2013) 2965–2975.

[18]C.A.Klein,O.Schmidt-Kittler,J.A.Schardt,K.Pantel,M.R.Speicher,G. Riethmüller,Comparativegenomichybridization,lossofheterozygosityand DNAsequenceanalysisofsinglecells,Proc.Natl.Acad.Sci.U.S.A.96(8) (1999)4494–4499.

Riferimenti

Documenti correlati

La traducción de nuevos modelos literarios para niños , Isabel Pascua Febles afronta una tema de gran interés y actualidad, tanto desde un punto de vista

The experimental design included four factors ( Fig 1 ): Location (fixed, with two levels, “Marittima” and “Torre Guaceto”), Site (random, with two levels, nested within

Come è possibile vedere in figura 43, la dispersione dei CNT (1 % in peso) nel composito in cui si usa il tensioattivo è migliore rispetto al composito senza tensioattivo. Come

Università degli studi di Pisa, Facoltà di Ingegneria, Corso di Laurea Specialistica in Ingegneria Elettronica, A:A:2006-2007. [35] Rohm & Haas Electronics Materials, Megaposit ®

La prima relativa a un cilindro di raggio 1 cm presenta la RCS prevalentemente in zona di Rayleigh ovvero crescente con la quarta potenza della frequenza e si può vedere come

Depuis une dizaine d'années, les structures juridiques de l'agriculture sont en pleine évolution pour ne pas dire en révolu- tion. A coté de l'exploitation

Tuttavia poichè nella regione mediorientale il problema idrico rappresenta uno degli elementi più delicati delle politiche di cooperazione tra i popoli, dove oltre alla necessità

The observation of the diffuse Galactic gamma-ray flux is the most powerful tool to study cosmic rays in different regions of the Galaxy, because the energy and angular distributions