• Non ci sono risultati.

Non-coding RNAs as a new dawn in tumor diagnosis

N/A
N/A
Protected

Academic year: 2021

Condividi "Non-coding RNAs as a new dawn in tumor diagnosis"

Copied!
14
0
0

Testo completo

(1)

Contents lists available atScienceDirect

Seminars

in

Cell

&

Developmental

Biology

j o u r n a l h o m e p a g e :w w w . e l s e v i e r . c o m / l o c a t e / s e m c d b

Review

Non-coding

RNAs

as

a

new

dawn

in

tumor

diagnosis

Anna

Grimaldi

a,1

,

Mayra

Rachele

Zarone

a,1

,

Carlo

Irace

b,1

,

Silvia

Zappavigna

a

,

Angela

Lombardi

a

,

Hiromichi

Kawasaki

a,c

,

Michele

Caraglia

a,∗

,

Gabriella

Misso

a,∗

aDepartmentofBiochemistry,BiophysicsandGeneralPathology,UniversityofCampania“LuigiVanvitelli”,ViaL.DeCrecchio7,80138Naples,Italy bDepartmentofPharmacy,UniversityofNaples“FedericoII”,ViaD.Montesano49,80131Naples,Italy

cWakunagaPharmaceuticalCo.LTD,4-5-36Miyahara,Yodogawa-ku,Osaka532-0003Japan

a

r

t

i

c

l

e

i

n

f

o

Articlehistory: Received23May2017

Receivedinrevisedform19July2017 Accepted21July2017 Availableonlinexxx Keywords: Non-codingRNA Biomarker Cancer Diagnosis Exosome Delivery

a

b

s

t

r

a

c

t

Thecurrentknowledgeaboutnon-codingRNAs(ncRNAs)asimportantregulatorsofgeneexpressionin bothphysiologicalandpathologicalconditions,hasbeenthemainengineforthedesignofinnovative platformstofinalizethepharmacologicalapplicationofncRNAsaseithertherapeutictoolsoras molecu-larbiomarkersincancer.Biochemicalalterationsofcancercellsare,infact,largelysupportedbyncRNA disregulationinthetumorsite,which,inturn,reflectsthecancer-associatedspecificmodificationof cir-culatingncRNAexpressionpattern.Theaimofthisreviewistodescribethestateoftheartofpre-clinical andclinicalstudiesthatanalyzetheinvolvementofmiRNAsandlncRNAsincancer-relatedprocesses, suchasproliferation,invasionandmetastases,givingemphasistotheirfunctionalrole.Acentralnode ofourworkhasbeenalsotheexaminationofadvantagesandcriticismscorrelatedwiththeclinicaluse ofncRNAs,takingintoaccountthepressingneedtorefinetheprofilingmethodsaimedatidentifynovel diagnosticandprognosticmarkersandtherequesttooptimizethedeliveryofsuchnucleicacidsfora therapeuticuseinanimminentfuture.

©2017ElsevierLtd.Allrightsreserved.

Contents

1. Introduction...00

2. Biogenesisandfunctionalroleofnon-codingRNAs ... 00

3. Mechanismandclinicalrelevanceofexosome-mediatedmiRNAsecretion ... 00

4. ncRNAdysregulationincancer:preclinicalstudiesandtherapeuticimplications...00

5. PotentialofncRNAsasnovelbiomarkersforsolidandhematologicmalignancies...00

5.1. miR155...00 5.2. miR-29...00 5.3. miR-17-92family...00 5.4. NEAT1...00 5.5. MALAT-1 ... 00 5.6. HOTAIR...00 5.7. DLEU1/DLEU2...00

6. miRNAdetectionandquantificationinbodyfluids...00

7. Challenges,opportunitiesandpitfallsofmiRNAprofiling...00

8. Conclusions...00

Conflictofinterest...00

References...00

∗ Correspondingauthors.

E-mailaddresses:michele.caraglia@unicampania.it,michele.caraglia@fastwebnet.it(M.Caraglia),gabrymisso@yahoo.it,gabriella.misso@unicampania.it(G.Misso). 1 Theseauthorscontributedequallytothiswork.

http://dx.doi.org/10.1016/j.semcdb.2017.07.035 1084-9521/©2017ElsevierLtd.Allrightsreserved.

(2)

1. Introduction

In the last years it has become increasingly clear that the mammaliantranscriptomeisextremelycomplexduetothe inclu-sionofalargenumberofsmallnon-codingRNAs(sncRNAs)and longnoncodingRNAs(lncRNAs).Non-codingRNAs(ncRNAs)are a heterogeneousclass oftranscribed RNA moleculesfrom non-(protein)-codingregions,whichlackanopenreadingframeand consequentlyhavenoapparentprotein-codingability.Basedon thesize ofthefunctionalRNAmolecule, regulatoryncRNAsare classifiedanalyticallyaslongncRNAs(lncRNAs,>200nt),andsmall ncRNAs(sncRNAs,18–200nt)[1–3].

RNAbiomoleculeshavebeenidentifiedsincethelate1800s,but theirfundamentalrolesincellfunctionshavelongbeen overshad-owedbyDNAandproteins.From1950s,withtheclarificationofthe molecularstructureofDNA,itwasproposedthatRNAwouldbean intermediatemoleculeintheflowofgeneticinformationfromDNA toproteins,asassuredinthecentraldogmaofmolecularbiology. Onthebasisoftheacceptedimportanceofproteinsinexerting bio-logicalfunctions,RNAshavebeenregardedforalongtimeasmerely mediatorsinpassinggeneticcodestofinalproteinmolecules.As aconsequence,thefunctionalactivitiesofRNAsthemselveswere largelyneglected.RibosomeRNAs(rRNA)andtransferRNAs(tRNA) areamongtheearly-discoverednon-codingRNAtranscripts. How-ever,giventheirrolesinfacilitatingproteintranslation,theyare stillconsideredpartofthemachinerytranslatinggenomiccode intoproteinsynthesis.Nonetheless,thediscoveryofthesencRNAs openedthefieldofregulatoryRNAswithnoorlittleprotein-coding potential.Sincethenmanynewclassesofregulatorynon-coding RNAshavebeenidentifiedandremarkableprogresseshavebeen madeinelucidatingtheirexpression,biogenesis,mechanismsand functioninmany,ifnotall,biologicalprocesses,includingcancer developmentandprogression[4,5].

TheideathatRNAsaremuch morethanmoleculesinvolved instorage/transferofinformationemergedsincethediscoveryof ribozymes,endowedwithactiverolesascatalystsofchemical reac-tionsincells.Indeed,RNAhasbeensuggestedtobetheearliest moleculeoflifeandthoughttopossessbothinformationaland cat-alyticfunction[6–8].Thesediscoveriesclearlyencouragedavariety ofstudiestosearchforpotentialnewrolesofRNAmoleculesinvivo, andledtothere-evaluationofRNAsascrucialmoleculesinthe evolutionoflife.Currentadvancesonthesequencingtechnologies revealedthatvastmajorityofthehumangenomeistranscribed, whiletheprotein-codinggenesoccupyonlyabout3%ofthehuman genome[9].Therefore,thewidespreadtranscriptionofthegenome intonon-protein-codingRNAsstronglyimplythatRNAsarecapable ofprocessfunctionsotherthanmeremediatorsbetweenDNAand proteins,andemergingevidencesfromthelasttwodecadeshave unambiguouslyprovedthefunctionalimportanceofnon-coding RNAsin human biology and diseases. As a result, the involve-mentofRNAsinothercriticalmolecularprocessesineukaryotic cellswasprogressivelyrevealed,as inthecase ofDNA replica-tion,proteintranslationandRNAtranscriptmaturation.Withtime, manysmallnon-codingRNA moleculeswereisolatedand char-acterized;amongthefirst,U1,U2,U4,U5andU6smallnuclear RNA(snRNA)asfundamentalpartsofribonucleoproteiccomplexes (RNP),lateridentifiedasthecomponentsofthesplicesome[10]. Thereafter,it wasshowedthat RNAediting mechanisms,based onproteinor protein-RNAcomplexes and regulatingthe infor-mationcontent of tRNA,rRNA and mRNAmolecules, require a “guideRNA”molecule,which,throughbase-pairingwiththetarget RNAmolecule,determinestheeditingsite[11].Inaddition, post-transcriptionalprocessingandmodificationsofrRNAs,essentialfor theproductionofefficientribosomes,isdirectedbytwolargeguide familiesofsmallnucleolarRNAs(snoRNA)[12].

Inthewakeofthesefindings,inthemid-1980sBlackburnand Greidercametothediscoveryoftelomerasebydemonstratingthe existenceofanenzymaticactivitywithincellextractsinserting tan-demhexanucleotidestochromosomeends[13,14].Morerecently itwashypothesizedthattelomerasearisebytheassociationofan ancientribozymewiththereverse-transcriptasesubunit,showing amechanismresemblingthatofpureribozymes,andplacingthe telomeraseasamissinglinkintheevolutionfromRNAenzymesto proteinenzymes[15].

Alreadyatthispoint,thegrowingdescriptionsoftheimportance ofRNAmoleculesforcelllifestartedtopushthemtopublicand scientificinterest,butthecomplexityoftheirrolesandthewide multiplicityofmolecularmechanismsinwhichRNAmoleculesare criticalplayerswasstillfarfromclear.ThediscoveryofmicroRNAs (miRNAs) in early 1990s openeda new chapterof gene regu-lation bynon-coding RNAsand represented a crucial boost for investigationsontheRNAmoleculesnotcodingforproteins[16]. Concurrently,theobservationsthatexogenouslyintroduced dou-blestrandedRNA(dsRNA)andplasmidsexpressingshorthair-pin RNA(shRNA)specificallybase-pairingwithtargetmRNAmolecules wereabletotriggermRNAdegradation(RNAinterference,RNAi) revealed,forthefirsttime,thatspecificsilencingpathwaysbased onsncRNAsareoperatingineukaryoticcells[17,18].These obser-vationsledtothedevelopment oftheRNA interference(RNAi) techniquethathasbeenextensivelyusedinthestudyofgene

func-tion[19,20].

Asmentionedbefore,inrecentyearstheuseofgenomewide approachesandthelargeoutputofgenomesequencing technolo-gieshave revealedthat the mammaliantranscriptome is much morecomplexthanpreviouslyhypothesized,since itincludesa largenumberofsmallnon-codingRNAs(sncRNAs)andlong non-codingRNAs(lncRNAs)[21,22].miRNAsareanabundantclassof endogenousnon-codingsmallRNAmolecules,20÷25nucleotides inlength,whichactaseitheroncogenesortumorsuppressorsgenes and thus have crucial rolesin carcinogenesis[23,24]. Different othertypesofsmallnon-codingRNAshavealsobeensubsequently identified, includingendogenous smallinterfering RNAs (endo-siRNAs), PIWI-associated small RNAs (piRNAs), small nucleolar RNAs(snoRNAs),sno-derivedRNAs(sdRNAs),transcription initia-tionRNAs(tiRNAs),miRNA-offsetRNAs(moRNAs),andothers[25]. Conversely,thelncRNAsfamilycontainsmultipleclassesofRNAs, whicharenuclearRNAstranscriptslongerthan200nucleotides, involvedin theregulationofcellularprocessessuchas apopto-sis,proliferationandmetastasesdevelopment,therebyemerging as important regulators in a wide range of biological activities andhumandiseases[26].Currently,asystematicclassificationof longnon-codingRNAismissing;nevertheless,accordingtotheir genomiclocalizationorotherbiologicalfeatures,theyare classi-fiedasnaturalantisensetranscripts,long intergenicnon-coding RNAs,transcribedultraconservedregions(T-UCRs),circularRNAs, enhancer-associatedRNAs,promoter-associatedRNAs,andothers

[27].SimilartomiRNAs,thedysregulationoflncRNAsisassociated withmanyhumancancersanddefinestheirphenotypes[28].The expressionprofilingofbothlncRNAandmiRNAisdeeplydifferent dependinguponboththehistologicaltypeofthetissuesand patho-logic/notpathologicconditionsastheirexpressionisdifferentin cancertissuesifcomparedtonormalcounterparts.Therefore, lncR-NAsandsncRNAs,bymeansoftheirabilityinpost-transcriptional regulationofgeneexpressionandintargetgenetranslation,may becomeusefulnon-invasivediagnosticbiomarkersandpowerful toolsincancerpreventionandtreatment.Indeed,several emerg-ingevidenceshaverevealedforbothlncRNAsandsncRNAsaclose correlationwithcancerdevelopmentandprogression,sothatsome ncRNAshavealreadybeenusedasbiomarkersandtargetsincancer management,fordiagnosisandtargetedtherapy,respectively[29]. Hence,thediscoveryofthebiologicalfunctionsrelatedtoncRNAs

(3)

haveundoubtedlyanimatedthescientificcommunityand stimu-latedbiomedicalstudiesthatarenowadayschangingthewayfor cancerdiagnosisandtreatment.

2. Biogenesisandfunctionalroleofnon-codingRNAs

Theparadoxthatlessthanabout2%ofthetotalhumangenome isrecruitedforproteinexpression,canbepartlyexplainedbythe increase in diversity and functionality of the humanproteome achievedthroughalternativepre-mRNAsplicing,aswellasthrough post-translationalmodificationsofproteins[30].Inrecentyears,it hasincreasinglybecomemoreevidentthatthenonprotein-coding portionofthegenomeisofcriticalfunctionalrelevanceinseveral mechanismsofgeneregulation,bothfornormaldevelopmentand physiology,andforhumandiseases[31].Inparticular,thediscovery that,incomplexorganismsmanytranscribedgenomesequences aredevelopmental-andtissue-regulated,hasstimulated investi-gationsaimedatthecharacterizationofallthedifferenttypesof non-codingregions,originatingnon-codingRNAs[32].

DependingonthencRNAcategory,transcriptioncanbedriven byanyofthethreeRNApolymerases(RNAPolI,II,orIII).Among sncRNAs,shortinterferingRNAs(siRNAs),miRNAsandpiRNAshave beenextensivelystudiedsofarandhavebeenassociatedwith path-waysthatleadultimatelytosilencingofspecificgenesresultingin theprotectionofthecell/genomeagainstviruses,mobilerepetitive DNAsequences,retro-elementsandtransposons[33].

siRNAsand miRNAs(∼20÷30 nucleotides long) derivefrom double-strandedRNA(dsRNA)precursorsthatareintroducedinto cells, or produced endogenously, bygene transcription of both senseandanti-senseDNAstrandsandofpseudogenesandinverted repeats.ThesemoleculesarecriticalinpathwaysengagedinmRNA degradationandtranslationalrepression,therebyregulatinggene expression.Inparticular,miRNAsareconstitutedbyabout22nt andregulatehundredstothousandsofprotein-codingand non-codinggenesbypost-translationalgenesilencing.Itisbelievedthat thehumangenomeencodesthousandsofmiRNAs,butonly1100 havebeendescribedsofar[34].Anumberofevidencehasrevealed up-and/ordown-modulationofmiRNAsinhumanneoplasms, sug-gestingthatmiRNAscanactascanonicaltumorsuppressorsand/or promoters[23–25]. Thus, miRNAexpression profiles havebeen determinedandemployedfordiseaseprognosticationand early diagnosis. Furthermore, most recently, polymorphisms in both miRNAsandtheirbindingsiteshavebeenrelatedto pharmacoge-nomicdifferencesthatcouldexplainchangesin drugactivation andmetabolism[35].Moreindetail,siRNAsaresmallRNAduplex moleculesproducedbytheactionofDicer,aribonucleaseIII(RNase III) enzyme that creates RNA duplexes with2-nt overhangs at their3 ends and phosphate groupsat their5 ends [36]. Con-versely,miRNAsaremostlytranscribedbyRNApolymeraseIIas primary-miRNA(pri-miRNA)moleculeprecursorsequippedwitha characteristicstemloopstructure,andaresubsequentlysubjected toprocessingmechanisms[37].

Inanimals,thefirststepoccursinthenucleuswheretheRNase III Droshaacts over pri-mRNAs (long several hundredsnt still boundtothegeneratingDNA)originatinga pre-miRNA,asmall RNAduplexof∼65÷70nucleotidescontainingthehairpin.This stepcanbeassistedbyRNAprocessingproteins,suchashnRNPA1. Thepre-miRNAsarethenexportedbyanucleartransport recep-torcomplex,exportin-5-RanGTP,tothecytoplasmwheretheyare processedbyDicerinto∼22-ntmaturemiRNAs(miRNA-miRNA* duplexes,wheremiRNAistheantisense,orguide/maturestrand, andmiRNA*isthesense,orpassengerstrand)[38].Thenextstep, forbothsiRNAandmiRNAproduction,isthesubsequent associa-tionwithmembersoftheArgonauteproteinfamilythatdiverge into specialized subfamilies, each recognizingdifferent sncRNA

typesandconferringthespecificfeaturesofthevarioussilencing pathwaysoperatingincells[39].Argonauteloadingoccursinthe RNA-inducedsilencingcomplex(RISC)-loadingcomplex,aternary complexthatconsistsofanArgonauteprotein,Diceranda dsRNA-bindingprotein(knownasTRBPinhumans).Duringloading,the non-guidestrandiscleavedbyanArgonauteprotein.The selec-tionofthedifferentArgonauteproteinsseemstobebasedonthe smallinterferingRNAduplexstructure[40].Thematurationand finalfunctionofcertainmiRNAscanbealsoassociatedto enzy-matic post-transcriptional modifications, like mono-uridylation

[41].ThesemodificationswillincreasethevarietyofmiRNAsand theirprecursor poolsallowingmore complexschemes of regu-lationindifferentbackgrounds.InbothsiRNAsandmiRNAsthe guidestrandsdrivestheRISCstothetargetmRNAsthatcontain complementarysequencesthereby causingtheirdegradationor translationinhibition[42].Ithastobeunderlinedthatinhumans andmammaliansmiRNAsarenotabletoinducedegradationofthe targetmRNAsbuttheycauseonlyitstranslationalrepression.In fact,inmammalstheyassembleonlyattheopenreadingframeat the5ofthemRNAtargetwithpartialcomplementarityinducing thelockofthetranslationofthetarget.Intheloweranimalsandin plants,miRNAscanalsobindtothetargetwithacomplete comple-mentarityinducingitsdegradationbyaRNAsenamedslicer.This modeofactionofmiRNAsinhumanshasanimportanteffect:the amplificationofthebiologicaleffectsinducedbyasinglemiRNA duetotheinhibitionofmultipletargetmRNAs.ThismakesmiRNA potentregulatorsofthecellularfunctionsandpotentialuseful tar-getsincancertherapy[23,24,34].

The piRNA is the largest class of small non-coding RNA molecules expressed in animal cells. The piRNAs (∼24÷31 nucleotides),whose namederives fromthe ability to associate exclusivelytothePIWIsubfamilyoftheArgonauteprotein fam-ily (Piwiproteins),usually have a uridine atthe5 end, holda 5 monophosphate,andpresenta2-O-methyl(2-O-Me) modifi-cationonthenucleotideatthe3 end[43].ComparedtosiRNAs andmiRNAs,widelyexpressedindifferenttissuesandcelltypes, piRNAslackofsequenceconservationandincreasedcomplexity, andhavebeenessentiallydetectedingermcellsofmammals,fish andDrosophilamelanogaster[44].ThisclassofsncRNAshasbeen linkedtobothepigeneticandpost-transcriptionalgenesilencingof retrotransposonsandothergeneticelementsingermlinecells, par-ticularlythoseinspermatogenesis.Indeed,mutationsthatdisrupt thepiRNAbiogenesispathwayarerelatedtogermline-specificcell death,andarealsoassociatedwithincreasedtransposon expres-sion[45].AlthoughpiRNAsbiogenesisandtranscriptionregulation stillneedtobeclarified,itisnowwelldocumentedthattheirorigin differsfromsiRNAsandmiRNAs,becausepiRNAaregeneratedby RNaseIII-independentpathwayswithouttheinvolvementdsRNA precursors.Infact,thesesncRNAsaregeneratedfromlong single-strandedprecursorsthatarepreferentiallycleavedatUresidues andloadedontoPiwiproteins.Inmammals,themajorityof piR-NAsaretranscribedfromdiscretegenomiclocithatareclusteredin largepericentromericorsubtelomericdomains,generallyspanning from100÷100kb,thatcomprisemainlyvarioustransposableDNA elementsandtheirremnants[46].Interestingly,otherstudieshave revealedthat,besidesbeinginvolvedinkeepinggenomeintegrity, asubsetofpiRNAgeneshavebeenimplicatedintheassemblyof thetelomereprotectioncomplex.Recentinvestigationshave fur-thershownthat,inadditiontotheirroleingermlinetransposon regulationandgenomestability,piRNAshaveabroaderfunction inheterochromatinformationanddevelopmentalgeneregulation

[47].

Aspreviouslydiscussed,theotherprominentclassofncRNAs makingupawideportionofthemammaliannon-coding transcrip-tomeisrepresentedbylncRNAs.Thenumber ofgenemembers

(4)

integratingthisclassofncRNAsisstillunderdebateandranges from10,000to>200,000.

Differentmechanismsoftranscriptionalregulationof lncRNAs-mediated gene expression have been proposed. Among them, lncRNAsarewell-knowntobeinvolvedinepigeneticDNA mod-ifications through the recruitment of chromatin remodelling complexestospecificloci[48,49].

BiogenesisoflncRNAsisrelativelycomplex.Generally,lncRNA transcriptionandprocessingisextremelycomparableto protein-coding RNAs. Although some lncRNAs could be transcribed by polymeraseIII,themajority oflncRNAsaretranscribed byRNA polymeraseIIfromintergenicregions,promoterregionsor inter-leaved, overlapping or antisense to annotated protein-coding genes [50]. Moreover, there are growing evidences that lncR-NAsmoleculesmightbealsoproduced bytranscriptionalactive pseudogenesand, interestingly,it wasdemonstrated thatsome lncRNAscanbeaswellgeneratedfrommitochondrialgenes[51]. Likecodinggenes,lncRNAsundergopost-transcriptional process-ing, including 5capping, alternative splicing, RNA editing, and polyadenylation.The referred transcriptional origins have been usedtoestablishclassification classesfor lncRNA,as for exam-plepromoter-associatedlongRNAs(lpaRNAs), naturalantisense transcripts(NATs)oropposite-strandtranscripts,largeintervening noncodingRNA(lincRNA),andenhancerassociatedRNAs(eRNA)

[52,53].However,othercriteriashouldprobablybeusedsince

fre-quentlyonelncRNAmoleculecanbeassociatedwithmorethan oneclass.Interestingly,severallncRNAsareantisensetranscripts, alsonamednaturalantisensetranscripts(NATs)[54].NATscanbe classifiedintwosubtypes:cis-NATs,whicharetranscribedfrom oppositeDNAstrandsatthesamegenomiclociandtrans-NATs, whicharetranscribedfromdistalloci[55].Interestingly, numer-ouscancergenes,mainlyofoncosuppressor type, producelong antisensencRNAs,anddespitemRNAandstructuralncRNAs,many lncRNAsaresituatedinthenucleus,someothersarelocalizedin bothcytoplasmandnucleusandothersareexclusivelylocatedin cytoplasm[56].

3. Mechanismandclinicalrelevanceofexosome-mediated

miRNAsecretion

About15yearsafterthefirstidentificationofmiRNAs,ithas beendiscoveredthattheyweredetectableinbodyfluids encap-sulated in lipid microvesicles [57]. Extracellular vesicles (EVs), characterized according to the size into exosomes (<100nm), microvesicles(1000nm)andapoptoticbodies(1–4␮m)[58], orig-inatefromcellsandareableoftransferringmiRNAs,mRNAsand proteinsinbothparacrine(connectingcellsbelongingtothesame tissue)andendocrine(todistanttargetcells)manner[58].In addi-tiontoEV,circulatingmiRNAscanbealsoloadedintohigh-density lipoprotein(HDL)[59,60],orboundinaproteincomplexcomposed ofArgonaute(AGO)familymembersoutsideofvesicles[61]. Col-lectively,eachofthesemechanismsisabletoprotectmiRNAsfrom degradationensuringtheirstability,sincethenakedRNAwouldbe readilytargetedbytheendonucleasesthatareabundantlypresent inextracellularfluids.Amongthesemechanisms,exosomeshave beendefinedascrucialmediatorsoftheintercellular communica-tionandpromisingvehiclesformiRNAdeliveryandgenetherapy. Infact,accumulatingevidencesuggestthatmiRNAsplayan impor-tantroleinexchanginginformationbetweencellsand,therefore, theymayserveasnewandpotentiallyusefulmarkersand pow-erfultargetsfortherapeuticinterventionsagainstvarioushuman diseases.Themostabundantcomponentsofexosomemembranes arerepresentedbylipidsandproteins[62–64],giventheir deriva-tionfromplasmamembrane. Asshownin Fig.1,exosomesare firstlyproducedbyendocytosis,whenthecellularmembrane is

internalizedtoproduceendosomes;thereafter,theinvaginationof endosomemembranesoriginatesmanysmallvescicleswithinthe sameendosome,whichisthusnamedmultivescicularbody(MVB). MVBsarethenreleasedfromthecellintotheextracellularspace byfusingwiththecellmembrane,leadingtotheformationof exo-somes[65].Allthesestepsofformationandsecretionrequirethe involvementofenzymes[66,67]andATP[68].Withinthesetof regulatorymoleculesimplicatedinthesecretionphase,thereare Rab27aandRab27b,whoseknockdownhasbeencorrelatedwith theinhibitionofthisprocessinHeLacells[69].Furthermore,the oncosupressorproteinp53anditsdownstreameffectorTSAP6are alsoinvolved inthisregulatorynetworkbeingabletostimulate exosomeproduction[70].

ConcerningmiRNAsortingintoexosomes,currentliteraturehas describedatleastfourpotentialmechanisms.Thefirstmodeof sort-ingtobediscoveredisbasedontheneuralsphingomyelinase2 (nSMase2)-dependentpathway;overexpressionofnSMase2was, infact, putincorrelation withtheincreasednumberof exoso-malmiRNAsand,ontheotherhand,theinhibitionof nSMase2 wasassociatedwiththereductionofexosomalmiRNAlevels[67]. Thesecondmechanisms,discoveredbyVillarroya-Beltrietal.,view theinvolvement of theGGAG miRNA motif (in the30 portion ofmiRNAsequence)thatcanberecognizedbysumoylated het-erogeneousnuclearribonucleoproteins(hnRNPs)responsiblefor thespecificpackagingofmiRNAsintoexosomes[71].The30-end miRNAsequence-dependentpathwayisthethirdmodeofsorting, describedbyKoppers-Lalicetal.;indetail,30endsofuridylated miRNAsweremostlyrecognizedinexosomesderivedfromBcells or urine, whereas the30 ends of adenylated endogenous miR-NAswereprincipallyfoundinBcells[72].Thefourthmechanism involvesthemiRNAinducedsilencingcomplex(miRISC).Indetail, miRISCsco-localizewiththesitesofexosomebiogenesis(MVBs) andtheircomponents,suchasAGO2protein(whichpreferentially bindstoUorAatthe50endofmiRNAs)andmRNAtarget,arealso correlatedwithsortingofmiRNAsintoexosomes[73].

Exosomespresentinbodyfluidscaninteractwithrecipientcells throughthreemainmechanisms:i)thedirectinteractionbetween transmembraneproteinsofexosomesandthesignalingreceptors oftargetcells[74];ii)theexosomesfusionwiththecellular mem-braneofrecipientcellswiththefollowingdeliverytothecytosol

[75];iii)theinternalizationofexosomeswithintherecipientcells. Subsequently,the fateofexosomesmay followtwo alternative routes:i)fusionwithendosomesandtranscytosis,withfollowing releaseofthecontent,representedbymiRNA,withintherecipient cellor,otherwise, ii)maturationofendosomes,fusedwith exo-somes,intolysosomesandsubsequentdegradationoftheircontent

[75,76].Globally,theuptakeofthislipidvesciclesbyrecipientcells

seemstoinvolve clathrin-and caveolin-dependentmechanisms

[77,78].Anyhow,ithasbeenproventhatdisruptionofexosomal

lipidraftscounteracts theinternalizationofexosomesand that annexins,which areassociated withcell-to-celladhesion,were crucialforexosomesuptakeinbreastcancercells[79].Moreover, inovariancancercells,treatmentwithproteaseKdetermineda cleardecreaseofexosomeuptake, thusconfirmingthe involve-mentofsurfaceproteinsintheinternalizationofexosomes[80]. However,thedetailedmechanismofexosomeinternalizationstill needsfurtherclarification.

Clinicalapplicationofexosomesdetectableincirculation con-sists in the analysis of their cargo, expressly represented by miRNAs,whichmayspecificallyreflectthepathogenesisofthecell oforiginthatcanbetransferredtorecipient cellsaltering their molecularcharacteristicswithinevitableeffectsoncellfunction. CirculatingmiRNAs stabilized in exosomes are,therefore, ideal candidatesfortheidentificationofnon-invasivecancer biomark-ersdetectableinbodyfluidssuchasserum,blood,saliva,urine, tearfluidandbreastmilk[81,82].Aclearadvantageinemploying

(5)

Fig.1. ExosomeformationandmiRNAsorting.

Exosomesarefirstlyproducedbyendocytosis,whenthecellularmembraneisinternalizedtoproduceendosomes;thereafter,theinvaginationofendosomemembranes originatesmanysmallvescicleswithinthesameendosome,whichisthusnamedmultivescicularbody(MVB).MVBsarethenreleasedfromthecellintotheextracellular spacebyfusingwiththecellmembrane,leadingtotheformationofexosomes.AllthesestepsofformationandsecretionrequiretheinvolvementofproteinsandATP. miRNAsortingintoexosomescanfollowatleastfourpotentialmechanisms:1)basedontheneuralsphingomyelinase2(nSMase2)-dependentpathway;2)bysumoylated heterogeneousnuclearribonucleoproteins(hnRNPs);3)basedontherecognizionofthe30-endofuridylatedmiRNA;4)bymiRNAinducedsilencingcomplex(miRISC). Exosomesreleasedinbodyfluidscaninteractwithrecipientcellsthroughthreemainmechanisms:thedirectinteractionbetweentransmembraneproteinsofexosomes andthesignalingreceptorsoftargetcells;theexosomesfusionwiththecellularmembraneofrecipientcellswiththefollowingdeliverytothecytosol;theinternalization ofexosomeswithintherecipientcells.

exosomalmiRNAsinsteadofAGO-miRNAsasbiomarkersis repre-sentedbytheirstabilityduringtheprocessingofgeneticmaterial incirculation.Infact,theseprocessescauseanextensivehemolysis thatmayinducethereleaseofadditionalAGO-miRNAsfromcells withsubsequentcontaminationofbloodwithirrelevantmiRNAs, thuscomplicatingtheanalysis.Instead,theseissuesarereduced whentheanalysisisperformedonmiRNAinternalizedinexosomes

[83].SeveralexosomalmiRNAshavebeenidentifiedasbiomarkers forcancer,provingtheirclinicalutilityandtheirpotentialinthe fieldofpersonalizedmedicineanddiagnostics.Particularly, exo-somal miRNAshave severalfunctionsrelated withcell growth, migration, invasion,metastasisand impairment of theimmune systemresponse[84].Insomecasesithasbeenidentifieda cell-independentmiRNA biogenesis,associatedwithexosomes,able toalterthetranscriptomeofnon-cancercellstransformingthem incancercellsinaDicer-dependentmechanism[85].Theprocess ofmetastaticcascadeactivationduringtumorprogressioncanbe coordinatedbyexosome-mediatedsecretionofmiRNAs. Particu-larly,itwasobservedanaugmentedamountoftheoncosuppressor miRNAs,suchasmiR-23b,secretedfrommetastaticcellsderived frombladdercancer,suggestingthatthereleasefromexosomes maycontroltheamountofintracellularmiRNAsindonorcellsand affectthelevelsofthesamemiRNAsinrecipientcells[86].Basedon thecentralroleofexosomalmiRNAsincell-tocellcommunication, theycoulddrivethedevelopmentofanovelclinicalapplication foundedontheemployofanewclassoftarget-basedanticancer agentsdirectedversusmiRNApathways.Alongsidetherestoring

of oncosuppressor miRNAs with syntheticmiRNA mimics – an emblematiccaseisrepresentedbymiR-34athatisthefirst cancer-targetedmiRNAdrug(MRX34)enteringPhaseIclinicaltrials[87]

–andtheblockageofoncogenicmiRNAswithantisense oligonu-cleotides,anothertherapeuticapplicationmightbetheblockage ofthesecretionoftumorcell-derivedexosomes.Nevertheless,this procedurecouldnotberecommendable,sinceexosomesincludea broadrangeofothermoleculesasidefromoncogenicmiRNAs.For thatreason,apossiblestrategycouldconsistinthetherapeuticuse ofcellsthatpreferentiallysecreteaspecificcategoryofexosomal miRNA,suchasmesenchymalstemcells(MSCs),whosesecreted miRNAsaremainlyinvolvedintissuerepair[88].Moreover,the relativeabundanceofcirculatingmiRNAswithpredominanttumor suppressoractivityinthebloodofhealthyindividuals,actingasa surveillancemechanism,andthespecificalterationofmiRNA sig-natureincancerpatientsrepresentsanencouragingperspective inviewofidentifyingstableandreliablebiomarkers.Overall,the current scientificreports analyzingtheexosomalmiRNAsagree ontheirpromisinguseforvariousclinicalapplications,including treatmentanddiagnosisofneoplasms,althoughitisclearthatitis necessaryanintensiveinvestigationofexosomalmiRNAsbiology.

4. ncRNAdysregulationincancer:preclinicalstudiesand

therapeuticimplications

RecentstudiesindicatethatmiRNAsarederegulatedinmany typesoftumors,beinginvolvedinseveralcancerprocesses,such

(6)

ascellproliferation,invasionandmetastasis.miRNAscan,infact, inhibittheexpressionof genesinvolved inmany cellular path-waysregulatingcrucialmechanismslikecellcycle,celldeathand cellmigration. Numerousexperiments and clinic analyses sug-gest that miRNAs may function as a novelclass of oncogenes (oncomirs) or tumor suppressor genes. Oncomirs are overex-pressedintumorsandactbypromotingtumordevelopmentand bynegativelyinhibitingonco-suppressivegenesand/orgenesthat controlcelldifferentiationandcelldeath.Agoodexampleforan oncogenic miRNA is miR-21. It is overexpressed in most types ofmalignancies,includingbreastcancer,glioblastoma,colorectal cancer,lungcancer,pancreaticcancer,andleukemia[89–91]. Func-tionalstudiesincancercelllines indicatethatmiR-21 playsan importantroleintheoncogenicprocessasindicatedbyits asso-ciationwithhighproliferation,lowapoptosis,highinvasion,and metastaticpotential[92–94]. Anumber of miR-21 targetgenes havebeen identified, includingPTEN, PDCD4, and BTG2, which playimportantrolesintheoncogenesis[95].Inglioblastoma, miR-21wasrevealedtotargetseveralimportantcomponentsofthe epidermal growth factor receptor (EGFR) and phosphatase and tensinhomolog(PTEN)signalingpathways.InhibitionofmiR-21by specificantisenseoligonucleotidesinU251MGglioblastomacells decreasedtheexpressionofEGFRandactivatedAKT,CYCLIND,and

BCL2[96,97].AnotherwellknownoncosuppressormiRNAis

miR-34a,whoseenforcedexpressioninmultiplemyeloma(MM)cells andinMMmousemodels,inducessequentialinhibitionofErkand Aktactivitiesandcaspase-3and-6cleavage,aswellasBcl-2and NOTCH1downregulation[98].PreclinicalmodelsofMMhavealso allowedtoidentifyatumorsuppressorrolealsoformiR-29b.Itacts asepigeneticregulatorthroughtheinhibitionofHDAC4,whichis highlyexpressedinMMand,therefore,representsarelevant tar-getfortherapy[99].AnotheroncogenictargetofmiR-29bisthe transcriptionfactorSp1,whichhasbeendemonstratedtobe,in turn,anegativeregulatorofmiR-29b,thusestablishinganegative feedbackloop[100].

During tumorigenesis, the expression of some miRNAs is decreased,sothesetypesofmiRNAsareconsideredtumor sup-pressorgenes.TumorsuppressormiRNAsnegativelyinterferewith tumordevelopmentinhibitingoncogenesand/orgenesthatcontrol celldifferentiationorapoptosis.AmiRNAconsideredastumor sup-pressorgeneislet-7.Itplaysapivotalroleintumorsuppressionin manycancers,includingesophagealsquamouscellcarcinoma,lung cancer,nasopharyngealcarcinoma,andprostatecancer[101–104]. Takamizawaetal.[105]foundthatlet-7waspoorlyexpressedin lungcancers;moreover,reducedlet-7expressionwassignificantly associatedwithshortenedpost-operativesurvivalindependentof diseasestage.Thissuggestedthatlet-7maybeatumor suppres-sorgene.Toconfirmthisconclusion, theauthorsoverexpressed let-7geneinA549lungadenocarcinomacelllinesandinducedthe inhibitionoflungcancercellgrowthinvitro[105].

InadditiontomiRNAs,lncRNAshavealsoemergedas impor-tantregulatorsinbothoncogenicandtumorsuppressorpathways

[106].Somestudiesallowedtheanalysisof ncRNArolein

can-cer,evaluatingtheexpressionofmorethan10,000lncRNAgenes inmorethan1000tumorsamples.In thesestudiestheauthors identifiedthelncRNAsassociatedwithspecifictumorsandtheir role in oncogeniccell growth [107]. Otherstudies have shown thatsomelnRNAsaremoreexpressedandmoreactiveintumors thaninnormalcells[108–110].Accumulatingevidenceprovides mechanisticinsightdemonstratinghowlncRNAsregulate impor-tantcellularsignalingpathwaysincancercellsattranscriptional, post-transcriptional,andepigeneticlevels[111].Inarecentstudy, theauthorsanalyzedtheexpressionandfunctionofPCAT-14in hepatocellularcarcinomaHCC.LncRNAprostatecancer-associated transcripts(PCATs) wereoriginallyidentified as biomarkers for prostatecancer[112].Inparticularinthisstudytheauthorsshowed

thatthelncRNAPCAT-14isoverexpressedinpatientswithHCC,and isassociatedwithapoorprognosisaftersurgery.PCAT-14promotes proliferation,invasion,andcellcyclearrestinHCCcellsandinhibits miR-372expressionbyinducingmethylationofthemiR-372 pro-moter [113]. Other lncRNAs have been associated with tumor suppressorfunctions.Inliteratureitisdemonstratedthatseveral lncRNAsaredirecttranscriptionaltargetsofp53,andknockdown ofspecificlncRNAsmodulatesp53-inducedapoptosis.Indetail,a studyrevealedthatthelncRNANEAT1isadirecttranscriptional targetofp53.ThesuppressionofNEAT1inductionbyp53 atten-uatestheinhibitoryeffectofp53oncancercellgrowthandalso modulatesgenetransactivation,includingthatofmanylncRNAs. Furthermore,lowexpressionofNEAT1isrelatedtopoor progno-sisinseveralcancers.Theseresultsindicatethattheinductionof NEAT1expressioncontributestothetumor-suppressorfunctionof p53andsuggestthatp53andNEAT1formatranscriptional net-workcontributingtovariousbiologicalfunctionsincludingtumor suppression[114].

OtherncRNAspeciessuchaspiRNAsandsnoRNAsare obtain-ingagreaterappreciationfortheirroleincarcinogenesis[115].In detail,piRNA-651wasfoundtobeup-regulatedinseveralcancer celllinesincludinggastric,lung,mesothelial,breast,liver,and cer-vicalcancercells[116];moreover,itwasreportedalsoforhuman snoRNAsanimportantroleintumorigenesis[117].

InthelightofthisevidenceitcanbestatedthatncRNAshave beenrecognizedaspromising therapeutictargetsforanticancer treatments.Inparticulara miRNAcansimultaneouslymodulate itsmultipletargetgenes,alteringoncogenicandtumorsuppressor pathways.Cancer-associatedupregulationofoncogenicmiRNAs, canbecounteractedbyseveralmeans.Basedontheevidencethat miRNAscontroltheirtargetsthroughbasepaircomplementarity, antisenseoligonucleotides(ASOs)havebeendevelopedtoinhibit theirfunction.InordertoincreaseASOs’stabilityandefficacy, dif-ferentchemicalmodifications,suchaslockednucleicacids(LNAs), anti-miRNAoligonucleotides (AMOs),andantagomirs,are intro-duced.Forexample,aspecificantagomirwasusedtoknockdown theoncogenemiR-21inbreastcancerMCF-7cells,resultingin sig-nificantinhibitionofMCF-7growthinvitroandintumorxenografts throughinhibitingcellproliferationandinducingapoptosis[118]. AsfarasitisconcernedtumorsuppressormiRNAs,miRNAmimics orlentiviralvectorscanbeusedtorestoretheirexpressionlevels. Therequestoflongcirculationinthebloodandofpreferential accumulationinthetargetsiteasasafetyrequirementhas stim-ulatedtheexplorationofnonviralvectors,suchasnanocarriers. Nanocarriersaresmallparticles(rangingfrom1to300nm)that cancarryanddeliverdrugs,oligonucleotides,peptidesordesired cargostotargettissues.Variousnanocarriershavebeenusedfor ncRNAdeliveryinbiomedicalapplications.Basedonsurfacecharge, sizeandhydrophobicity,theyhaveuniquetissuebiodistribution, toxicity,andtumorcelluptakeprofiles[119].Recently,ithasbeen reportedthatdirectconjugationofsmalldrugmoleculesto ncR-NAscanimprovetheinvivopharmacokineticbehaviorofncRNAs. LncRNAsrepresentanimportantresourceintermsofdeveloping diagnostics andtherapies becausemany of themare expressed ina tissue-andcancer-type specificmannerandcouldbecame novelbiomarkers.ThediscoverythatlncRNAcouldbedetectedin thebody fluidofcancerpatientsopenedupa newandexciting possibilityofusinglncRNAsasnon-invasivebiomarkers.The devel-opmentofmoreefficientandspecificdeliverysystemisnecessary toachievehightherapeuticefficiencyandtargetspecificity.Also forthelncRNAstherearedeliverysystemstargetingtherapeutics: viraldeliveryandnon-viraldelivery.Viraldeliverygenerally pro-videshighgenetransferefficiency,butisdeficientinbiosafetyand, therefore,notappropriateforhumanusedespitethepromising resultsinanimalmodels.Currently,numeroussyntheticdelivery systemshavebeendevelopedtomanipulatethegenetransfer

(7)

effi-ciency,andsomeofthemhavedemonstratedpromisingresultson humans[120,121].

5. PotentialofncRNAsasnovelbiomarkersforsolidand

hematologicmalignancies

ImprovedknowledgeofncRNAs’expressionpatternand func-tionmayleadtoabetterunderstandingoftheheterogeneityof malignanciesand,mostlikely,alsoleadtotheiruseas diagnos-tic,prognosticandtherapeutictargets.Thebest-studiedncRNAs categoryisrepresentedbymiRNAs,whichhaveemergedas suit-ablediagnosticand prognosticbiomarkers withthecapacityto drivetreatmentdecisionsintheclinicalsetting.Researchershave identifiedmiRNA signaturesin serum,plasma,peripheralblood mononuclear cells and whole blood, giving theopportunity to distinguishpatientswithdifferentcancers,suchasprostate (miR-141),lung(miR-21,miR-210andmiR-486-5p),breast(miR-195 andlet-7a)andlymphoma,fromhealthyindividuals[122].Some ofthemostderegulatedmiRNAsarelistedinTable1.

5.1. miR155

Emergingevidence suggestthat miR-155is significantly up-regulatedinlung cancertissues,plasmaandsputum,and could serve as a promising marker for the diagnosis and poor prog-nosisofnon-small celllungcancer(NSCLC)[123].On theother hand,overexpressionofmiR-155inhumanbreastcancercellshas shownaprotectiveroleintriple-negativebreastcancersthrough RAD51targeting,alsoaffectingthecellularresponsetoionizing radiation.Furthermore,highmiR-155levelswereassociatedwith lowerRAD51expressionandwithbetteroverallsurvivalofpatients in a largeseriesof triple-negative breast cancers [124]. A high numberofstudieshaveinvestigateditspotentialasabiomarker inseveralB-cellmalignancies,but conflictingresultshavebeen presented. Costinean et al., demonstrated that transgenicmice over-expressingmiR-155inB-cells,developedapre-leukemic pre-B-cellproliferation,followedbyaB-cellmalignancy[125].Astudy ofmiR-155KOmiceshowedthatmiR-155regulatesgerminal cen-terreactionandT-helpercelldifferentiationbyaffectingcytokine production,andthatBIC/miR-155regulatesthefunctionofboth lymphocytes and dendritic cells leading to defective immune response[126].Therefore,inmicemodels,miR-155deregulation in Bcells causes acutelymphoblastic leukemiaand high-grade lymphomas[126],whereasinmyeloidcellsitisassociatedwith myeloproliferative disorders [127,128]. In addition, high levels ofmiR-155werealsofoundinnewlydiagnosedcytogenetically normal acute myeloid leukemia bearing FLT3-internal tandem duplications,associatedwithpoorprognosis[129].

5.2. miR-29

ThemiR-29 family comprises of three membersin humans, miR-29a,miR-29bandmiR-29c,differentlyexpressedin several solidorhematologictumors,suchas,nasopharyngealcarcinoma

[130],non-smallcelllungcancer[131],hepatocellularcarcinoma

[132],breastcancer[133],cutaneousmelanoma[134]anddiffuse

largeBcelllymphoma[135].Performingasystematicreviewofthe literaturewithameta-analysisaimedtoevaluatetheprognostic valueofthemiR-29familyexpressionindifferenttypesof can-cers,Qietal.foundthatthelowexpressionofmiR-29isassociated withaggressivenessandpoorprognosisofmalignantneoplasms

[136].In 2005,Calinetal.[137]reportedforthefirsttimethat

the miR-29 family could discriminate good or poor prognosis between chronic lymphocytic leukemia samples. Also in man-tlecelllymphomamiR-29wasidentifiedasaprognosticmarker and pathogenic factor that targeted cyclin-dependent kinase 6

(CDK6) [138]. Moreover, Garzon et al. [139] reported that the expressionofmiR-29familywasdownregulatedinacutemyeloid leukemia(AML)patientswitht(11q23)chromosome rearrange-mentsvsallotherAMLpatients,althoughmiR-29familyexpression wasupregulated inAMLwithpositivecytoplasmic nucleophos-min(NPMc+AML)[140].Recently,severalstudieshaveidentified miR-29asanon-invasivediagnosticandprognostictoolfor col-orectalcancer(CRC).SerumlevelsofmiR-29bandmiR-194were foundtobesignificantlylowerinCRCpatientsascomparedwith controlsubjects.Furthermore,serumlevelsofthismiRNA were inverselycorrelated withtheadvancedtumour-node-metastasis (TNM)stages[141].Inoueetal.evaluatedtheassociationbetween miR-29bexpressionandsurvivalin245patientswithCRC.They noticedlowermiR-29blevelsinserumofCRCpatients,alsofinding furtherdecreasedexpressioninadvancedclinicalstagesoftumor

[142].RegardingmiR-29a,upregulatedexpressionwasdetectedin

serumfromcolorectallivermetastastaticpatientscomparedwith non-metastasizedCRCpatients[143].Moreover,reduced expres-sionofmiR-29a,withmiR-223andmiR-224,wasfoundinthefeces fromtheCRCpatients,thusprovidinginformativebiomarkersfor bothscreeningandearlydiagnosisofCRC[144].

5.3. miR-17-92family

TheoncogenicmiR-17-92familyiscomposedof3related poly-cistronicmiRNAgeneclusters:miR-17-92clusteranditsparalogs miR-106b-25 and miR-106a-363clusters [145].The miR-17-92 cluster,transcriptionallyactivatedbyc-MycandE2F,isupregulated inchroniclymphocyticleukemiacellsandinvariouslymphoma celllines [146].In mantlecell lymphoma,upregulationof miR-17-92antagonizeschemotherapy-inducedapoptosisbyinhibiting proteinphosphatase PHLPP2,anadditional targetofmiR-17-92 and an important negative regulator of the PI3K/AKTpathway

[147].ThefindingthatmiR-17-92expressioncontributestothe

signatureofhematologictumorcelllinesprovidesevidencethat miRNAexpressionpatternsreflectthepatternsobservedinprimary hematologicmalignancies[148].miR-17-92clusterhasalsobeen demonstratedtoplayacrucialroleinvariousotherhumancancers. Highexpressionlevelshavebeenfoundinosteosarcomatissues witharelationshipbetweenmiR-17-92clusterupregulationand advanced TNMstage,aswellaspoorer recurrence-freesurvival ofosteosarcomapatients.[148].Moreover,miR-17-92clusterhas beenidentifiedaspotentialserumbiomarkerfortheearlydetection ofbothgastriccancerandintestinalmetaplasia[150].

Along withmiRNAs, alsolncRNAs couldact asnon-invasive tumor markers in both diagnosis and prognosis prediction

[151,152].LncRNAshavebeenshowntoregulatecellularprocesses

thatarepertinenttocancerdevelopment,includingcellcycle pro-gression[153],apoptosis[154]andmetastasis[155](Table2). 5.4. NEAT1

Nuclear enriched abundant transcript 1 (NEAT1) is a novel lncRNA specificallylocalizedto nuclearparaspeckles[156]that seemstobeinvolvedinregulatinggeneexpressionbyretaining mRNAsforeditinginthenucleus[157].InNSCLC,NEAT1 expres-sionwasrelatedtopatientage,vascularinvasionandclinicalTNM staging[158].AnotherstudyshowedthatcirculatingNEAT1levels weresignificantly higher in NSCLCpatients’ plasma [159], sug-gestingthatincreasedNEAT1expressionmightbeassociatedwith progressionofNSCLC,wherecirculatingNEAT1couldbeusedas a diagnosticmarker.In addition, NEAT1couldinduce hsa-miR-377-3ptoderepressE2F3,whichisakeyoncogeneinpromoting NSCLC[160].Inlaryngealsquamouscellcarcinoma(LSCC),NEAT1 overexpressionwasassociatedwithadvancedclinicalstageand lymphnodemetastasis.Moreover,Wangetal.,showedthatNEAT1

(8)

Table1

miRNAderegulationincancerdiseases.

miRNA DiseaseAssociation Expression Role BiomarkerApplication References

miR-155

Non-smallcelllungcancer upregulated Oncogene Diagnosisandpoorprognosis [123–129]

Breastcancer Oncosuppressor Predictsbettersurvival

B-cellmalignancy Oncogene Myeloproliferativedisorders

Acutemyeloidleukemia Oncogene Predictspoorprognosis

miR-29

Nasopharyngealcarcinoma downregulated Oncosuppressor Aggressivenessandpoorprognosis [130–144] Non-smallcelllungcancer

Hepatocellularcarcinoma Breastcancer

Cutaneousmelanoma Prognosticmarker

Bcelllymphoma

Chroniclymphocyticleukemia Diagnosisandmonitoring

Acutemyeloidleukemia Colorectalcancer

miR-17-92

Chroniclymphocyticleukemiacells upregulated Oncogene Riskfactor [145–155]

Mantlecelllymphoma Predictstherapeuticresponsiveness

Osteosarcoma PredictsadvancedTNMstageaand

poorerRecurrence-freesurvival.

Gastriccancer Potentialserumbiomarkerforthe

earlydetection Intestinalmetaplasia

Table2

lncRNAderegulationincancerdiseases.

LncRNA DiseaseAssociation Expression Role BiomarkerApplication References

Neat-1

Non-smallcelllungcancer upregulated Oncogene Prognosisandclinical

tumour-node-metastasisstaging.

[156–170] Laryngealsquamouscellcarcinoma Poordifferentiation,metastasis,invasion

Colorectalcancer,Hepatocellular carcinoma,Breastcancer,Oesophageal squamouscell

Prostatecancer Predictstherapeuticresponsiveness

Ovariancarcinoma Diagnosis

Glioma Shortenedoverallsurvivalandtumour

recurrence.

Acutemyeloidleukemia Potentialtherapeuticuse

Malat-1

Non-smallcelllungcancer upregulated Oncogene Metastasesandprognosisinearlystage. [171–180] Predictstherapeuticresponsiveness.

Osteosarcoma Recurrenceafterlivertransplantation.

Hepatocellularcarcinoma

ClearcellrenalcellcarcinomaGlioma Tumorprogressionandpoorprognosis.

Pancreaticcancer Diagnosisandmonitoring

Colorectalcancer Multiplemyeloma

Hotair

Breastcancer upregulated Oncogene Prognosticvalueformetastasisand survival

[181–186]

Hepatocellularcarcinoma Stagemarkerandhistological

differentiation

OralsquamouscellcarcinomaB Pooroverallsurvivalandrelapse-free survivaltimes

Acutemyeloidleukemia

Cmultirow20.5inDLEU1/2 Chroniclymphocyticleukemia downregulated Oncosuppressor Predictspoorprognosis [187,188] B-celllymphomasMultiplemyeloma

regulatesCDK6expressionthroughmodulatingmiR-107andits knockdowninducestheapoptosisofLSCCcellsinvivo[161].NEAT1 expressionwasassociatedwithpoordifferentiation,metastasis, invasion,aswellasTNMstagingincolorectalcancer[162], hep-atocellularcarcinoma[163],breast cancer[164]andesophageal squamouscellcarcinoma[165].Inprostatecanceritinduces resis-tancetoandrogenreceptorantagonists[166].Inaddition,NEAT1 wassignificantlyupregulatedinstageIIIserousovariancarcinoma

[167]. Pils and colleagues performed genome-wide expression

analysisinleucocytesisolatedfrom44epithelialovariancancer patientsand 19 normalcontrols, showing that NEAT1, in com-bination of 12 remaining genes and 6 plasma proteins, might discriminatepatientswithepithelialovariancancerfromnormal controlswithasensitivityof95.6%andaspecificityof99.6%[168]. Inglioma,highNEAT1expressionwasalsoindependently asso-ciatedwithshortenedoverallsurvivaland tumorrecurrence,as

wellaslargertumorsizeandWHOgrade.Moreover,highNEAT1 expressioninpatientswithstageIII–IVgliomaindicatedpoor prog-nosis[169].NEAT1expressionlevelissignificantlyrepressedby PML-RAR␣oncoproteinindenovoacutepromyelocyticleukemia (APL).When all-trans retinoic acid(ATRA) has been used as a leukemiatherapytotargetthetranscriptionalrepressionmediated bythePML-RAR␣fusionprotein,asignificantNEAT1upregulation wasobserved,inparallelwithATRA-inducedNB4cell differentia-tion;thiseffectwasblockedbyNEAT1inhibition.Thesefindings indicatedthataberrantNEAT1downregulationcontributestothe blockadeofdifferentiationinAPL[170].

5.5. MALAT-1

MALAT-1 (metastasis associated lung adenocarcinoma tran-script1)isanintergenictranscript(7kb)locatedonchromosome

(9)

11[171]implicatedinseveralmalignancies.Itwasfirstlycorrelated withmetastasesandprognosisinearlystageNSCLC[172]and sub-sequentlywithchemotherapeuticresponseinosteosarcoma[173]

andrecurrenceofhepatocellularcarcinomainpatientsundergoing livertransplantation[174].Itissignificantlyoverexpressedinmany typesofsolidcancersinwhichitcorrelateswithtumorprogression andpoorprognosis:inclearcellrenalcellcarcinoma[175]through theinteractionwithEzh2andmiR-205[176],inglioma[177]and pancreaticcancer[178],inCRCthroughthebindingtoSFPQand thereleasingofPTBP2oncogenefromSFPQ/PTBP2complex[179]. MALAT-1isalsooverexpressedinhematologicmalignanciesasin MMandmayserveasamarkertopredictdiseaseprogression[180]. 5.6. HOTAIR

HOXtranscriptantisenseRNA(HOTAIR)isa2.2kb,long inter-genic non-coding RNA (lincRNA) localized to the HOXC locus (12q13.3)[181].Itfunctionsasamolecularscaffoldtolinkthe poly-combrepressivecomplexes2andthelysinespecificdemethylase1 complexes,andregulatesgeneexpressionbymediatingthe mod-ulationofchromatinstructuresintransacrossthe40-kbHOXD locus[182],promotingcancermetastasis[183].HOTAIRis system-aticallydysregulatedinbreastcancer[183]andinhepatocellular carcinoma[184],andit hasprognosticvalueformetastasisand survival.HOTAIRexpressionincreasedalsoinoralsquamouscell carcinoma(OSCC),whereitisassociated withmetastasis,stage, histologicaldifferentiation,pooroverallsurvivalandpoor disease-freesurvivalinOSCCpatients.Furthermore,thislncRNApromotes epithelial-mesenchymaltransition(EMT)byrepressingE-cadherin expressionthroughtherecruitmentofEZH2andH3K27me3[185]. Moreover,HOTAIRmayrepresentabiomarkerforpooroverall sur-vivalandpoorrelapse-freesurvivalinAMLpatientswithhigher HOTAIR expression levels, withrespect to patients withlesser expressionlevelsofthelncRNA[186].

5.7. DLEU1/DLEU2

Deletedinleukemia1(DLEU1)and2(DLEU2)genesare tran-scribedina30-kbregionsituatedinthelongarmofchrormosome 13(13q14),whichismissinginmorethan50%ofpatientswith chroniclymphocyticleukemia(CLL)andcanbeassociated with thepredictionofpoorprognosis[187]inthisneoplasm,aswell asinotherB-cellmalignancies,includingdenovoandtransformed diffuselargeB-celllymphomas,andMM[188].Ithasbeen demon-stratedthatintron4ofDLEU2encodesformiR-15aandmiR-16-1 clusterthat,aspreviouslyreported,canexertacrucialroleinthe tumorigenesisofCLL,inpartthroughtheregulationoftheoncogene

BCL2[187].

6. miRNAdetectionandquantificationinbodyfluids

miRNAs,unlike other biomarkers,are highly stable and can beisolatedfromtumortissuesamplesafterformalinand paraf-finpassages,andfromserumandplasmasamplesafterbeingat roomtemperaturefor24handafterfreezingandde-freezingcycles

[189].Inaddition,miRNAsappeartoberesistanttoRNAsespresent

intheplasmaprobablyduetotheirsmallsizeormolecular struc-ture,aswellasinvirtueoftheirloadinginEV.Thepresenceof circulatingmiRNAshasbeendemonstrated inseveralbiological samples suchas serum, tears, urine, amnioticand ascitic fluid

[190]. The correlationbetween differentprofiles in body fluids

andthetumorprogression,thepresenceofmetastasesand, conse-quently,theprognosis,makeitpossibletousethesemoleculesas biomarkers.TheexpressionprofileofcirculatingmiRNAsishighly influencedbysamplepreparationmethods[191,192].The extrac-tionofRNAisusuallyperformedbyusingcommerciallyavailable

techniquesincludingphenol/guanidiniumproducts,suchasTRIzol (LifeTechnologies),andcolumn-basedextractionkits,suchas mir-Vana(LifeTechnologies)andmiRNeasy(QIAGEN).Inmoststudies, theextractedmiRNAsaresubjectedtonext-generationsequencing (NGS)ormiRNAmicroarraystoobtainlarge-scaleprofilesof cir-culatingmiRNAsandtodeterminecandidatemiRNAsforfurther quantification.Thesemethodshavebothadvantagesand limita-tions.NGShasapotentialtoidentifynovelmiRNAsbutitisless cost-effectiveandless efficientcomparedwithmicroarrays.The candidatemiRNAsaregenerallysubjectedtofurthervalidationby quantitativereversetranscriptionpolymerasechainreaction (qRT-PCR)in largercohorts. Toquantify it reliablyit is necessary to identifyendogenouscontrols.RNU-6B,RNU-48,and miR-16are commonlyusedfor thisaim,butnodefinitivecontrolgene has beenestablished[193,194].Recentstudieshavesuggestedmore reliableendogenouscontrolsforthequantificationofcirculating miRNAs.Chenetal.reportedthatacombinationoflet-7d,let-7g andlet-7iservesasanendogenouscontrolofserummiRNAsand it issuperiortothecommonlyusedreferencegenes[195].Kok etal.suggestednormalizationpanelsforthebetterquantification ofcirculatingmicroRNAsbyRT-qPCR[196].

Currentlythereareseveralstudiesfocusingontheuseof miR-NAsasdiagnosticandprognosticbiomarkersfordifferenttypes oftumors,suchascolon,prostate,breast,lung,andhematologic cancers.Intheliteratureithasbeenreportedthatanaberrant alter-nationofmiRNA wasobserved intheserumofNSCLCpatients, ascomparedtohealthycontrolsbyusingSolexiadeep

sequenc-ing[197];theauthorsaffirmthatmiR-25andmiR-223couldbe

usedasmarkersfordiagnosingNSCLC.Thecurrentlyknown circu-latingmiRNAsignaturesforNSCLCcancerincludeseveralmiRNA panelsandarrays[198].Recentresearchhasalsoshownthat cir-culating miRNAscan play an importantrole alsoas prognostic markers for NSCLC patients. For instance, a four miRNA panel (miR-486,miR-30d,miR-1andmiR-499)wasrelatedtotheoverall survival ofNSCLCpatientsundergoingsurgery,aswellas adju-vantchemotherapy[199],andincreasedserumlevelsofmiR-125b inNSCLCpatientswereassociatedwithnon-responsive cisplatin-basedchemotherapy[200].

SomestudieshaveevaluatedtheuseofcirculatingmiRNAsas biomarkersformonitoringtheresponsetotherapyalsoforbreast cancercells;infact,manystudiesconfirmedthatcirculating miR-155waselevatedintheserumofbreastcancerpatients[201].The alteredlevelsofcirculatingmiRNAscanalsobeusedtopredictthe effectofchemotherapy;forexample,elevatedlevelsofmiR-125bin breastcancerpatientscanindicatealowertherapeuticresponseto 5-Florouracil(5-FU),epirubucinorcyclophosphamide(FEC)[202]. StudieshavealsoconsideredtoemploycirculatingmiRNAsas diagnosticandprognosticmarkersforCRC.miR-92wasfoundtobe significantlyelevatedintheplasmaofCRCpatientsandintumor tissues,ascomparedtotheirnormalcounterparts,suggestingthat thismiRNAcouldbeusedasapotentialnon-invasivemarkerfor CRCdiagnosis[203].SeveralcirculatingmiRNAshavebeenshown toberelatedtoCRCmetastasis.AhighlevelofserummiR-200c showedasignificantcorrelationwiththelymphnodeanddistant metastasis,therebysuggestingthatitcouldbeusedasanindicator forpredictingCRCmetastasis[204].Overall,thesestudiesallowto affirmthatcirculatingmiRNAscouldserveaspromisingmarkers forcancerdiagnosisandprognosis.

7. Challenges,opportunitiesandpitfallsofmiRNAprofiling

Tissuebiopsiesarestillconsideredthegoldstandardfor molec-ularevaluationofcancer,althoughthisprocedureisinvasiveand hasseverallimitsrelatedtothelowpossibilityofsamplingandto theheterogeneityoftissues,thereasonwhybiopsyonlygivesa

(10)

smallsamplingoftheentiretumor.Theselimitationsaccountfor thepotentiallymissingclinicalinformation comingfrombioptic tissues.Moreover,anothersevererestrictionisrepresentedbythe littleopportunitytogainmultiplesamplesfollowingthevarious treatmentcycles,thusprecludingthepossibilitytoanalyzetumor evolutionovertimeandinresponsetotherapy.Inaddition,for cer-tainmalignanciesitisimpossibletoaccesstothetissueduetothe localization.Thisseriesofissueshasgeneratedtheboosttofind alternativemethodsforearlydetection,diagnosisandtherapeutic monitoringofcancer.

miRNAprofilingcanprovidearichamountofbiological infor-mation,inviewofthemultiplicityofmessangerRNAsthatmay bemodulatedasaconsequenceoftheprecisealterationinmiRNA expressionpattern.Themostimportantapplicationsrangefrom theanalysisofawidevarietyofphysiologicalprocesses–suchas organismsdevelopment,aswellasestablishmentandpreservation oftissuedifferentiation–tothemonitoringofpathological condi-tions–ascancer,cardiovascularandautoimmunediseases–for whichmiRNAsarebecominghelpfulbiomarkersandinnovative reagentsforre-programmingcellfateintherapeuticapplications

[205].AconsiderableinterestinmiRNAprofilinghasbeen

devel-opedalsointheforensicfield,wherehighlysensitivemeasurement ofthesemoleculesmayprovideinformationsuchasthecellular compositionofinquiredsamples.Abigsourceofinformationabout generegulationmayderivefromthecombinedanalysisofmiRNAs, mRNAsandproteinprofileonagenomicscale,althoughmiRNAs aremuchmorestablethanmRNAsinabroadvarietyofspecimens –includingcelllines,blood,plasma,serum,urine,freshtissuesand formalin-fixedtissueblocks–andarealsoquantifiablewithhigher sensitivitythanproteins, sincetheycanbeamplifiedbyRT-PCR

[206].SampleprocessingandRNAextractionmethodsplaya

lead-ingroleinthesuccessfuloutcomeofmiRNAprofiling,especiallyfor samplessusceptibletodegradation[207,208].Aspreviouslysaid, miRNAscanbeextractedwithhighqualityfromseveralcelland tissuesources[209];theisolationmethodsaregenerallythesame asfortheisolation oftotalRNA,apartfromthat protocolsused formiRNAisolationcanbemodified,tosomeextent,inorderto retainand/ortoenrichthesmallRNAfraction[209];theglobalyield inmiRNAfromfreshtissuesandcelllinesisgenerallygoodand suitableforprofilingstudies.Instead,concerningmiRNAcoming fromformalin-fixedparaffinembeddedtissues(FFPE),itis surpris-inglystableandintactindependentlyfromformalinfixationtime anddurationoftissueblockstorage[210],differentlyfrommRNA, whichisgenerallyfragmentedandlessreliableinFFPEcomparedto freshtissue.ThisstabilityconferstomiRNAsagreatadvantageover mRNAsastissuemarkersintheclinicalsetting,whereFFPEis gen-erallytheonlykindofsampleavailable.Someissuesmayarisein thecaseofmiRNAextractionfromsamplesthatrequirethetuning ofprotocolsaimedatoptimizingtheefficiencyandatincreasingthe qualityofproducts.Achallengingspecimenisrepresentedbybody fluids,wheretherearehighlevelsofendogenousRNasethatmay rapidlyinactivatemiRNAsinthecaseofextractioncarriedoutwith methodsthatfailtocompletelyinactivateRNase[211].Moreover, thequalityandtheamountofmiRNAextractedfrombloodmayalso beinfluencedbyothervariablesascentrifugationsettings,white bloodcellcounts,andredbloodcellhemolysis[212].Therefore,it isstrictlynecessary,forreproducibilityandaccuratenessofresults, toassessbothintegrityand yieldofextractedmiRNAbymeans ofspectrophotometry and/orautomated capillary electrophore-sisinstruments;anotherstrategyaimedatverifyRNAextraction efficiency,consistsintheaddition,intheearlystageofmiRNA iso-lation,ofaknownamountofsyntheticmiRNAsunexpressedin thebiologicalsample[213],sincetheirmeasurementcangive use-fulinformationabouttheaccuracyoftheextractionmethodand thepreservationofmiRNAintegrity.Detectionandquantification undergoalsootherissuescorrelatedwiththeshortnessofmature

miRNAandtheconsequentdifficultyencounteredinthe anneal-ingtotraditionalprimersdesignedforreversetranscriptionand

PCR[214];moreover,theabsenceofacommonsequence,suchas

poli(A)-tailformRNA,furthercomplicatesthepossibilityofa selec-tiveenrichment,thatisnecessary,giventhescarceabundanceof miRNAfraction(∼0.01%)respecttothetotalamountofRNA[215]

andtheexistenceofmiRNAfamiliesandvariantswhosemembers differeachotherfor singleor fewnucleotides.Inspiteofthese issues,theexigencyofprofilinghasgivenrisetothedevelopment ofthreemainapproaches–qRT-PCR,hybridisation-based meth-ods(e.g.,DNAmicroarrays)andhigh-throughputsequencing(i.e., RNAseq)–whichallowthedefinitionoftissue-basedand circulat-ingmiRNAbiomarkerswithhighaccuracy[216,217].

8. Conclusions

Theremarkableimportanceofanearlycancerdiagnosis, moni-toringandtreatment,inviewofanefficientpatient’smanagement, hasprovidedastrongboosttotherecognitionoftumor-specific, noninvasive,and easytodetectand quantifybiomarkers.Both blood-basedandtissuebiopsies-obtained proteinmarkers,until nowconsideredthegoldstandardformolecularevaluationof can-cer,haveshownlimitedspecificityandsensitivity.Inthisreview wehave focusedonthepossibility tocomplement theexisting biomarkerswiththedetectionofspecificncRNAsfromcancer tis-suesand,moreimportantly,wehaveanalysedtheopportunityto obtainapanelofclinicalrelevantcirculatingncRNAsfora mini-mallyinvasivediagnosisandmonitoringofneoplasms.Basedonthe functionalroleofnonprotein-codingportionofgenomeinalarge numberofmechanismsofgeneregulation–fromthetransmission oftransgenerational epigeneticinformation totheregulationof normalphysiologyandhumandiseases–wehavehereinreported avarietyofmiRNAsandlncRNAsparticularlyderegulatedin pre-clinicalandclinicalcancermodels,analysingtheirinhibitoryor promotingroleintheregulationofsolidandhematologic malig-nancies. We have also described the most common methods employedforncRNAdetectionandquantificationinbodyfluids focusingontheiradvantagesandlimitations;theexpressionprofile ofcirculatingmiRNAsis,infact,highlyinfluencedbysample prepa-rationmethods.IssuesarisingfromncRNAextractionrequirethe fine-tuningofprotocolsfortheoptimizationoftheefficiencyand fortheimprovementofbothamountandqualityofproducts. Any-way,apromisingperspectivecomesfromtheemployofexosomal miRNAsforvariousclinicalapplications,includingtreatmentand diagnosisofneoplasms;exosomalcargomay,infact,specifically reflectthepathogenesisofthedonorcellthatcanbetransferred torecipientcellsalteringtheirmolecularcharacteristicsanditcan alsobeeasilydetectedinbodyfluidsprovidingprecious informa-tionwithanon-invasiveapproach.Moreover,anothertopichere coveredistherecognitionofncRNAsaspromisingtherapeutic tar-getsforanticancertreatmentsandtheneedtoincreasetheirtime ofcirculationintheblood,aswellastopotentiatetheir preferen-tialaccumulationincancertissues.Therapeuticstrategiesaimedat modulatemiRNAsexpressionarerecentlyemergingjustinvirtue ofncRNAs’abilitytoinfluencecellularbehaviour[218].miRNAs cancontributetotumorinitiationandprogressionthrough sev-eralmechanismsand,therefore,multipletherapeuticapproaches havebeenproposedtotargettheseprocesses.Indetail,the inhi-bitionofoncogenicmiRNAscanbeobtainedbyusingantisense oligonucleotides(ASOs)thatareabletoadheretothemiRNAtarget formingmiRNA-anti-miRNAbindingcomplexes.Thesemolecules canbegroupedintothreemajorcategories:antagomirs,locked nucleicacids(LNAs)andASOswithchemicalalterationsto opti-mizeefficacy.Anothertherapeuticapproachforreducingthelevels ofoncogenicmiRNAsconsistsintheuseofcompetitiveinhibitors,

(11)

suchas vectors bearing multiple artificialmiRNA binding sites underthecontrolofstrongpromoters.Asregardsoncosuppressor miRNAs,restorationoftheirbasallevelsisthemostusedstrategy, whichcanbeobtainedeitherbyusingmiRNAmimics,oravailingof theso-calledepigeneticmodifiers-thatactonhypermethylationand histonemodificationpatterns,whichhavebeenlinkedtomiRNA dysregulation-andenhancersofthemiRNAprocessingmachinery - anotherclass of smallmolecules that has beendeveloped to enhanceRNAiandtoinducemiRNAprocessing[218,219].These requirementshavestimulatedthedevelopmentofbothviraland non-viraldeliverysystemsandsomeofthemhavedemonstrated promisingresultsonhumans.Certainly,deliverystrategiesforthe employofncRNA-baseddrugsinclinicalpracticeandncRNA pro-filingfortheidentificationofnovelbiomarkers,stillrepresentan importantchallengeforbothcliniciansandresearchersandrequire furtherimprovementsforasuccessfulclinicaltranslation. How-ever,theencouragingpremisesderivedfromthegrowinginterest provenbyscientificcommunityofferanexcellentperspectivefor thenearfuture.

Conflictofinterest

None.

References

[1]A.Q.Gomes,S.Nolasco,H.Soares,Non-codingRNAs:multi-tasking moleculesinthecell,Int.J.Mol.Sci.14(2013)16010–16039.

[2]J.W.Nam,S.W.Choi,B.H.You,IncredibleRNA:dualfunctionsofcodingand noncoding,Mol.Cells39(2016)367–374.

[3]T.M.Eidem,J.F.Kugel,J.A.Goodrich,NoncodingRNAs:regulatorsofthe mammaliantranscriptionmachinery,J.Mol.Biol.428(2016)2652–2659. [4]J.X.Yang,R.H.Rastetter,D.Wilhelm,Non-codingRNAs:anintroduction,

Adv.Exp.Med.Biol.886(2016)13–32\.

[5]J.S.Mattick,I.V.Makunin,Non-codingRNA,Hum.Mol.Genet.15(2006) 17–29,SpecNo.1.

[6]N.Sankaran,TheRNAworldatthirty:alookbackwithitsauthor,J.Mol. Evol.83(2016)169–175.

[7]K.Y.Lee,B.J.Lee,Structuralandbiochemicalpropertiesofnovelself-cleaving ribozymes,Molecules(2017)22,pii:E678.

[8]N.Lehman,RNAinevolution,WileyInterdiscip.Rev.1(2010)202–213. [9]H.Ling,L.Girnita,O.Buda,G.A.Calin,Non-codingRNAs:thecancergenome

darkmatterthatmatters!,Clin.Chem.Lab.Med.55(2017)705–714. [10]D.A.Wassarman,J.A.Steitz,InteractionsofsmallnuclearRNA’swith precursormessengerRNAduringinvitrosplicing,Science257(1992) 1918–1925.

[11]A.Brennicke,A.Marchfelder,S.Binder,RNAediting,FEMSMicrobiol.Rev.23 (1999)297–316.

[12]J.P.Bachellerie,J.Cavaille,A.Huttenhofer,TheexpandingsnoRNAworld, Biochimie84(2002)775–790.

[13]C.W.Greider,E.H.Blackburn,Identificationofaspecifictelomereterminal transferaseactivityinTetrahymenaextracts,Cell43(1985)405–413. [14]C.W.Greider,E.H.Blackburn,AtelomericsequenceintheRNAof

Tetrahymenatelomeraserequiredfortelomererepeatsynthesis,Nature337 (1989)331–337.

[15]F.Qiao,T.R.Cech,Triple-helixstructureintelomeraseRNAcontributesto catalysis,Nat.Struct.MolBoil.15(2008)634–640.

[16]K.S.Kosik,MicroRNAstellanevo-devostory,Nat.Rev.Neurosci.10(2009) 754–759.

[17]R.C.Lee,R.L.Feinbaum,V.Ambros,C.The,elegansheterochronicgenelin-4 encodessmallRNAswithantisensecomplementaritytolin-14,Cell75 (1993)843–854.

[18]B.J.Reinhart,F.J.Slack,M.Basson,etal.,The21-nucleotidelet-7RNA regulatesdevelopmentaltiminginCaenorhabditiselegans,Nature403 (2000)901–906.

[19]J.Kurreck,RNAinterference:frombasicresearchtotherapeutic applications,Angew.Chem.Int.Ed.Engl.48(2009)1378–1398. [20]G.Shan,RNAinterferenceasageneknockdowntechnique,Int.J.Biochem.

CellBiol.42(2010)1243–1251.

[21]E.Birney,J.A.Stamatoyannopoulos,A.Dutta,etal.,Identificationand analysisoffunctionalelementsin1%ofthehumangenomebytheENCODE pilotproject,Nature447(2007)799–816.

[22]J.S.Mattick,I.V.Makunin,Non-codingRNA,Hum.MolGenet.15(2006) R17–R29.

[23]Y.Chen,L.L.Fu,X.Wen,etal.,Oncogenicandtumorsuppressiverolesof microRNAsinapoptosisandautophagy,Apoptosis19(2014)1177–1189. [24]J.J.Xi,MicroRNAsincancer,CancerTreat.Res.158(2013)119–137.

[25]J.Y.Kwan,P.Psarianos,J.P.Bruce,K.W.Yip,F.F.Liu,Thecomplexityof microRNAsinhumancancer,J.Radiat.Res.57(2016)i106–i111. [26]M.T.Melissari,P.Grote,Rolesforlongnon-codingRNAsinphysiologyand

disease,PflugersArch.468(2016)945–958.

[27]D.Zhang,M.Xiong,C.Xu,P.Xiang,X.Zhong,LongnoncodingRNAs:an overview,MethodsMol.Biol.1402(2016)287–295.

[28]G.Lavorgna,R.Vago,M.Sarmini,F.Montorsi,A.Salonia,etal.,non-coding RNAsasnoveltherapeutictargetsincancer,Pharmacol.Res.110(2016) 131–138.

[29]H.Tian,C.Zhou,J.Yang,J.Li,Z.Gong,LongandshortnoncodingRNAsin lungcancerprecisionmedicine:opportunitiesandchallenges,TumourBiol. 39(2017),http://dx.doi.org/10.1177/1010428317697578.

[30]P.Carninci,T.Kasukawa,S.Katayama,etal.,Thetranscriptionallandscapeof themammaliangenome,Science309(2005)1559–1563.

[31]S.Washietl,I.L.Hofacker,M.Lukasser,etal.,MappingofconservedRNA secondarystructurespredictsthousandsoffunctionalnoncodingRNAsin thehumangenome,Nat.Biotechnol.23(2005)1383–9031.

[32]P.Kapranov,J.Cheng,S.Dike,etal.,RNAmapsrevealnewRNAclassesanda possiblefunctionforpervasivetranscription,Science316(2007)1484–1488. [33]D.Moazed,SmallRNAsintranscriptionalgenesilencingandgenome

defence,Nature457(2009)413–420.

[34]S.M.Hammond,AnoverviewofmicroRNAs,Adv.DrugDeliv.Rev.87(2015) 3–14.

[35]G.A.Calin,C.M.Croce,MicroRNAsignaturesinhumancancers,Nat.Rev. Cancer6(2006)857–866.

[36]G.Meister,T.Tuschl,Mechanismsofgenesilencingbydouble-stranded RNA,Nature431(2004)343–349.

[37]S.Lin,R.I.Gregory,MicroRNAbiogenesispathwaysincancer,Nat.Rev. Cancer15(2015)321–333.

[38]Y.Zeng,B.R.Cullen,Structuralrequirementsforpre-microRNAbindingand nuclearexportbyExportin5,NucleicAcidsRes.32(2004)4776–4785. [39]K.Forstemann,M.D.Horwich,L.Wee,Y.Tomari,P.D.Zamore,Drosophila

microRNAsaresortedintofunctionallydistinctargonautecomplexesafter productionbydicer-1,Cell130(2007)287–297.

[40]G.Meister,Argonauteproteins:functionalinsightsandemergingroles,Nat. Rev.Genet.14(2013)447–459.

[41]I.Heo,M.Ha,J.Lim,etal.,Mono-uridylationofpre-microRNAasakeystep inthebiogenesisofgroupIIlet-7microRNAs,Cell151(2012)521–532. [42]H.Siomi,M.C.Siomi,OntheroadtoreadingtheRNA-interferencecode,

Nature457(2009)396–404.

[43]A.Sarkar,J.N.Volff,C.Vaury,piRNAsandtheirdiverseroles:atransposable element-driventacticforgeneregulation,FASEBJ.31(2017)436–446. [44]S.Hirakata,M.C.Siomi,piRNAbiogenesisinthegermline:from

transcriptionofpiRNAgenomicsourcestopiRNAmaturation,Biochim. Biophys.Acta1859(2016)82–92.

[45]R.S.Lim,T.Kai,Apieceofthepi(e):thediverserolesofanimalpiRNAsand theirPIWIpartners,Semin.CellDev.Biol.47–48(2015)17–31.

[46]E.M.Weick,E.A.Miska,piRNAs:frombiogenesistofunction,Development 141(2014)3458–3471.

[47]M.Moyano,G.Stefani,piRNAinvolvementingenomestabilityandhuman cancer,J.Hematol.Oncol.8(2015)38.

[48]P.J.Batista,H.Y.Chang,LongnoncodingRNAs:cellularaddresscodesin developmentanddisease,Cell152(2013)1298–1307.

[49]D.P.Caley,R.C.Pink,D.Trujillano,D.R.Carter,LongnoncodingRNAs, chromatin,anddevelopment,Sci.WorldJ.10(2010)90–102. [50]K.Yan,Y.Arfat,D.Li,etal.,Structureprediction:newinsightsinto

decryptinglongnoncodingRNAs,Int.J.Mol.Sci.17(2016)E132. [51]O.Rackham,A.M.Shearwood,T.R.Mercer,etal.,LongnoncodingRNAsare

generatedfromthemitochondrialgenomeandregulatedby nuclear-encodedproteins,RNA17(2011)2085–2093.

[52]D.Zhang,M.Xiong,C.Xu,P.Xiang,X.Zhong,LongnoncodingRNAs:an overview,MethodsMol.Biol.1402(2016)287–295.

[53]S.Fritah,S.P.Niclou,F.Azuaje,DatabasesforlncRNAs:acomparative evaluationofemergingtools,RNA20(2014)1655–1665.

[54]O.Khorkova,A.J.Myers,J.Hsiao,C.Wahlestedt,Naturalantisense transcripts,Hum.Mol.Genet.23(2014)R54–63.

[55]M.Magistri,M.A.Faghihi,G.StLaurent,C.Wahlestedt,Regulationof chromatinstructurebylongnoncodingRNAs:focusonnaturalantisense transcripts,TrendsGenet.28(2012)389–396.

[56]R.Louro,T.El-Jundi,H.I.Nakaya,etal.,Conservedtissueexpression signaturesofintronicnoncodingRNAstranscribedfromhumanandmouse loci,Genomics92(2008)18–25.

[57]M.P.Hunter,N.Ismail,X.Zhang,etal.,DetectionofmicroRNAexpressionin humanperipheralbloodmicrovesicles,PLoSOne3(2008)e3694. [58]H.Kalra,G.P.Drummen,S.Mathivanan,Focusonextracellularvesicles:

introducingthenextsmallbigthing,Int.J.Mol.Sci.17(2016)170. [59]F.Tabet,K.C.Vickers,L.F.CuestaTorres,etal.,HDL-transferred

microRNA-223regulatesICAM-1expressioninendothelialcells,Nat. Commun.5(2014)3292.

[60]K.C.Vickers,B.T.Palmisano,B.M.Shoucri,R.D.Shamburek,A.T.Remaley, MicroRNAsaretransportedinplasmaanddeliveredtorecipientcellsby high-densitylipoproteins,Nat.CellBiol.13(2011)423–433.

[61]J.D.Arroyo,J.R.Chevillet,E.M.Kroh,etal.,Argonaute2complexescarrya populationofcirculatingmicroRNAsindependentofvesiclesinhuman plasma,Proc.Natl.Acad.Sci.U.S.A.108(2011)5003–5008.

Riferimenti

Documenti correlati

University of Catania; Skin Cancer Unit Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori, i Meldola; Dermatology Clinic, j Maggiore Hospital, University of

di concordanza tra i due gruppi a conferma dell’esistenza di tenden- ze dinamiche omogenee all’interno di ciascuno dei sistemi bancari considerati. Anche per questa via si

Negli anni Settanta Bobbio tiene presso l’Università di Torino un corso dedicato alla teoria delle forme di governo nella storia del pensiero politico che comprendeva

Il volume descrive le fasi e i metodi del processo di design, dal- l’identificazione delle opportunità alla prototipazione, passando per una serie di fasi intermedie in cui si

We previously investigated the association between intestinal permeability and the severity of liver disease in patients with NAFLD; 7 we observed that higher zonulin levels

A disciplina da atividade comercial, compreendida num âmbito significativo de atividade econômica originada nas necessidades dos mercados em geral, que compreende tanto o comercio

Questo spiegherebbe anche il leggero sfasamento che, ad un’attenta lettura, vi è tra la prima recensione di Colla alla mostra di Origine, dell’estate del 1951,