• Non ci sono risultati.

AN INVARIANT FOR SUBFACTORS IN THE VONNEUMANN ALGEBRA OF A FREE GROUP

N/A
N/A
Protected

Academic year: 2021

Condividi "AN INVARIANT FOR SUBFACTORS IN THE VONNEUMANN ALGEBRA OF A FREE GROUP"

Copied!
6
0
0

Testo completo

(1)

C. R. Acad. Sci. Paris,t. 316,Série I, p. 983-988, 1993 983 Théorie des groupes/Group Theory

An

invariant

for

subfactors in the

von

Neumann algebra

of

a free group

FlorinRÂDULESCU

Abstract Inthis Noteweareconsideringanewinvariant forsubfactors inthevonNeumann algebra

if

(Ft)ofafreegroup.Thisinvariantis obtainedby Computingthe Connes's%invariant

forthe envelopingvon Neumannalgebra in theitérationofthe Jone'sbasicconstruction for the

given inclusion.In thecaseofthe subfactors considered in[22], [24]thisinvariantiseasilycomputed

asarelativex invariant,in theform considered in[14].

One considerstheinclusion

if

(F„)£se=

if

(F„)xieZt2, where6 isaninjectivehomomorphism

from Zt intoOut(if(FJ) (i.e. a Z„-kernel) with minimalperiodk2 [in Aut(if(F„))].Then there

existsa canonicalcopy8 oflk in x(*&)which can be liftedto Aut(sE)[4].The décompositionof

thegeneratorofthedual action ofÈkon

si

x!jZfcas theproductofa centrally trivialautomorphism

and an almost inner automorphism,gives an action ofZt2©Zt2 on the algebra sexljZt. The

algebraicinvariants[9]forthis last actiongiveamoresubtleinvariant for9.

Asan applicationwe showthat, contrary to thecaseoffinitegroupactions(or moregênerai

G-kernels)on thehyperfineII,factor(settled in[2], [9], [18]),thereexistsnon outerconjugate, injective

homomorphisms(i.e. two Z2-kernëls)fromZ2 into Out(if(F,.)),with non-trivial obstruction to

liftingto an action on £?(Fk). Moreover the algebraic invariants[3] do not distinguish between thèse two Z2-kernels. Also,thereexists twonon-outerconjugate,outeractionsofZ2on S(Ft)®R

thatareneither almost inner orcentrally trivial.

Un

invariant pour

les sous-facteurs de

l'algèbre

devon

Neumann

associée

à

Un groupe

libre

Résumé Nous introduisonsun nouvelinvariantpourles sous-facteursdel'algèbrede vonNeumann

if

(Ft) d'un groupe libreFk, en calculant l'invariant% de Comtespourl'algèbre enveloppantede la

constructiondebasedeJonesassociéeàl'inclusiondonnée.Dansle casdessous-facteurs considérés .dans [21], [24] cet invariant peut être facilement calculéen utilisant une version relativepour%,

considéréedans[14].

Onconsidèreune inclusionde typei?(F„)£se=£?(F„)xl e^j.-2>où0estunhomomorphismeinjectif de ï.k dansOut(i?(F„)), depériode minimalek1 [dansAut(if(F,,))]. Alors il existe unsous-groupe canoniqueZtsAut(«e/)dansx(s/)[4].Ladécomposition du générateurde l'action duale deZt sur

s4xlZ,., comme le produit d'un automorphisme centralement trivial et d'un automorphisme dans

Int(.s?),donneuneaction deZ^SZ^surs4xlZt. Onobtient ainsiuninvariantplussubtilpour6,en

considérant les invariants algébrique[9]del'actiondeZt2©Zt2.

Comme application nous montrons que, contrairement au cas du facteur hyperfini de type

IIj (analysé dans [2], [3], [9], [18]), il existe deux homomorphismesinjectifs de Z2 dans

Out(if(Fl))=Aut(^7(Ft))/Int(ïf(Ft)),qui ontles mêmes invariants algébrique[3],mais quinesont

pasextérieurementconjuguées.

Versionfrançaise abrégéeLe but de cette Note est d'introduire un nouvel invariant

pour les sous-facteurs des facteurs de type

II

x associés à un groupe libre. L'invariant que

nous proposons est obtenu en calculant l'invariant x de Connes[4] pour l'algèbre de von Neumann enveloppante de la construction de base de Jones, pour l'inclusion donnée.

L'invariant% a étéintroduit par A. Connes([4], [5]) pour résoudre un problème très difficile

posé par Sakai[27] concernant l'existence d'un facteur de type II1 non anti-isomorphe à lui-même.

On rappelle que si M est un facteur de type II1, alors l'invariantx(M) est le groupe

(commutatif,voir [4]) %(M)

=

(Ct(M)

D

Int (M))/Int

(M)gOut(M)

Aut (M) estle groupe

d'automorphismes de M, Int(M) est le groupe des automorphismes intérieurs et Ct(M) est défini par

Ct(M)

=

{

ae

Aut (M), || <x(xn)xn\\2—>0, pour toute suite centralisantex„}.

Note présentée par Alain CONNES..

(2)

L'INVARIANT. Soit

AgB

une inclusion d'algèbres de von Neumann finies, soit

E\

:B—>A une espérance conditionnelle de B dansAparrapport à une trace fidèle, normalesur

B (invariante parE) et soit seoe l'algèbre enveloppantede l'inclusion Aç=B i.e. le terme à

l'infinidans l'itération de la constructionde base deJones[7]pour l'inclusiondonnée). Dans ces

conditions,

X00£0ut(j0,

est un invariant pour l'inclusion

A£B.

(Comme dans[4], la force de l'invariant vient du fait que l'on considère%(séoe),non seulement commeun groupe abstrait, mais comme un sous-groupe de

Out^^,)).

Dans les exemples de sous-facteurs des algèbres de von Neumann des groupes libres

considérés dans[24], on peut facilement montrer que cet invariant coïncideavec l'invariant relatif x[14], pour une inclusion des facteurs hyperfinis associés à l'inclusion donnée.

THÉORÈME. Soit N

g

M une inclusion d'algèbres finies, à prédual séparable et telle qu'il

existe une base orthonormale deM sur N, de type Pimsner et Popa[20], pour une espérance conditionnelle de M sur N. Soit SE(Fk) lefacteur de type

II

l associé à un groupe libre Fk,

k?±2.

Si sé

=

(SE(Ft)*NM est leproduit libre, amalgaméréduitdes algèbres de von Neumann introduit dans[22], alors

XM=X(N,M).

Ici

x(N,

M) est l'invariant relatif de Connes pour l'inclusionNi=M, considéré dans[14].

Comme applicationdes résultats précédents, nousallons construire deux homomorphismes injectifs de Z2 dans Out(SE(Fk)), non extérieurement conjugués, tels que tous les invariants algébriques (voir [9], [3], [18]) coïncident.

THÉORÈME. Pour tout

£eZ,

k^.2, il existe deux automorphismes<x(eAut(SE(Fk)), tels

que les images de at dans Out(SE(Fk)) sont non conjugués et d'ordre deux. De plus, tous

les invariants algébriques[3] pour les deux homomorphismes injectifs de Z2 dans Out(SE(Fk))

coïncident.

COROLLARY. 77 existe des sous-facteurs de SE(Fk), de profondeur finie ([7], [17]), non

conjugués et tels que tous les invariants des deux inclusions provenant des commutants relatifs

dans la construction de base ([7], [18], [21]) sont identiques.

THEINVARIANT. Given A<iBan inclusion

of

type II1factors,

of

finite index, we let

Boe be the enveloping algebra

for

the tower

of

algebras in the (iterated) Jones's basic construction

[l]for

AgB.

Then

X(BJSOut(BJ

isaconjugacyinvariant

for

A£B.

Hère,for atype

II

xfactorM, x (M) dénotesthe Connes'sinvariant forM[4].Thex (M)

invariantwasintroducedby Connes [4]in connectionto a breakthrough construction

that

showed the existence

of

atypeII-L factor

not

antiisomorphicto itself.

Recall

that

%(M)

=

(Ct(M)

D Int

(M))/Int(M). Hère

Ct(M)

is the set

of

ail

auto-morphisms

a

of

M

that

hâvethe property

that

[|a(x„)

—x„\\2->0,wheneverxn,

neZ

isa

centralséquence in M (z.e. a boundedséquence in M with ||[x„,y]\\2-> 0forany

veM).

Int

(M) is the closure

of Int

(M) in the pointwise convergence topology on M, while

(3)

Aninvariant for subfactors in the algebraofa free group 985

We willshow

that

for the subfactorsin free groupalgebras, considered in [24] (or for

those considered in [22]), this invariant may be computed and

it

coincides with the relativeform

of

the invariant x [14]for anassociâted

pair

of

hyperfinite factors.

Using the full strength

of

the invariant(which cornes as in [4] by consideringx(Boo)

as a subgroup inOut(Boe)

=

Aut(B00)/Int(Boe),

rather than

as an abstract abelian group

(see also [8], [12], [27])) we obtain as an application

that

the classification theory for

finite group actions (and for G-kernels)

on

type

II

x factors such as SE(Fk) (the vonNeumann algebra

of

afreegroupFk) isdifférentfrom the correspondingclassification

theory

on

the hyperfiniteIIX factor([2],[3], [9], [18]).

THEOREM. There exists two injectivehomomorphismsfrom Z2 zzzZoOut(SE(Fk)),

for

any

keZ,

k^.2,

non-Hftable to an action of~L2 on SE(Fk) [i.e. two Z2-kernelson SE(Fk) with non-trivial obstruction]that are not outer conjugate (in Out) and

for

which

ail

the

algebraic invariants([2], [9]) coïncide.

Explicitly this means

that

there exists two (non-inner) automorphismsa;,

z'=l,

2 on SE(Fk), having

non

conjugate images

(of

order two) in Out(SE(Fk)). Moreover; both automorphisms are

not

liftable to actions

of

Z2 on SE(Fk)(i.e

af

=

Adgi, &i(gi)=g;,v

gi=g?

~g/~, withg?- projections

of

trace 1/2in SE(Fk) (see[3], [9])).

By [19], the actions on SE(Foe), obtained by multiplying the generators by complex

numbers

of

modulus1 are distinguished (modulo outer conjugacy) by the topology

inducedonZfrom

Aut

SE

(FJ.

This is easily seen

not

to work in thecase

of

finitecyclic

groups.

For

example ail Z2 actions on SE(F2)

that

are obtained by multiplying the generators with

±1

or by switching the generators, are conjugate via éléments in

AutJ5f (F2), whichbelong to theimage

of

the

0(2)

action onSE(F2),consideredin [29].

COROLLARY. There exists twonon-conjugate,

finite

depth subfactors in SE(Fk) having

thesame higher relative commutant invariants([17],[7], [21]).

It

isplausible

that

an invariant

of

the type considered in this Note could beused to

settle Kadison's problem in [13] (see also Sakai's

book

[26], Problem

4.4.44)

on

the isomorphismclass

of

the algebrasassociâted

to

freegroups.

Weare indebted to D. Bisch,V. F.R. Jones,S. Popa and D.Voiculescuforusefulcommentson this Note.

For

the

proof of

the nextlemmaseethe

proof

of

lemma

4.3.3

in[26].

LEMMA 1. Let

NçM

fe

a pair

of

séparable,finite von Neumann algebras so that

there exists an orthonormalPimsner-Popa[20] basis

for

the inclusion

N£M,

with respect to somefaithful, normalconditional expectation

from

M ontoN. Assume that N, M hâve centerswithtrivial intersection.

Then the vonNeumann algebrareduced

free

product

=

(SE(Ffc)(x)N)*NM {which by

[22] is a type M^

factor)

has the property that ||Egf(y)

v||2^14

max\\[gi,y]\\2, with

;=i,2

respect to the inducednormal

faithful

conditional expectation E^ from

se

into N. Hère gh

i=l,

2 are two

of

the

k

generatorsin Fk, while

||x||

2

=

r(x*x),

xesé

andT is the trace

on

se.

In particular

ail

centralséquencesin

se

are asymptotically containedinN.

Thislemma together with lemma

1.4

in[22] andlemma 3in[11]gives:

THEOREM2. Let

NçM

be a

pair

of

séparable,

finite

vonNeumann algebras so that, with respect some

faithful

normalconditional expectationfrom M intoN, there exists ah orthonormal Pimsner Popa[20] basis

for

the given inclusion. Assume that N, M hâve

(4)

centerswith trivial intersection.LetsE

=

(SE

(Ft)®N)*NM.

Then

X((^(F/£)®N)*NM)^x(N,M).

Moreover in this identification, correspondingéléments in %(sé) and

x(N,

M) hâve tlie

same obstructionsto liftingfrom thequotient.

Hère%(N, M) is therelative x invariant[14] for theinclusion

NçM,

where N, M

of

-séparable finitevon Neumannalgebras:

X(N, M)

=

(Ct (N, M)

H Int(N,

M))/Int(N, M),

where Ct(N, M) is the set

of

ail automorphisms

of

M, leaving

N

invariant and acting

asymptotically trivial on centralséquencesforM

that

are containedin

N

and

Int

(N, M)

is the setofail inner automorphisms

of

M

that

are implemented byunitariesin N. ; \;

COROLLARY3. Let

^

=

(A^B^C; A^C^D)

be a commuting square [21]

of

finite

dimensional algebras, which is irreducible (i. e. the centers

of

A, B and respectivelyC, D

hâve trivial intersection)andX-Markov ([7], [6])i.e. there existsa X^Markovtrace, in the sensé

of

Jones [7]

for

C^A,

which restrictsto aX-Markov trace

for

D£B).

By[24]

(y(Fl)®B)*BA2(^,(Ft))®D)*DC

isafiniteindexinclusionoftype

ll1factors

[that are isomorphic SE(FN)

for

some

N>1].

Let seoe be the envoloping von Neumann algebra

for

the tower

of

algebras in the iterated Jones's basic construction

of

the given inclusion.Notethat

se

x is isomorphic to (SE(Ft)®Boe)*B Aoe. HèreBM,Aoe areobtained

byiterating thebasic construction

for

the inclusionsDi=B andrespectively

CgA.

Then

LEMMA 4 ([17], [14], [15], [1], [23]).

-

Let 6 be a Z4 action on

a

copy R_x

of

the

hyperfiniteJl1

factor

so that 9 induces a Z2-kernelon R_x with obstruction —1 [3]. Let R0

= R_1XeZ4.

Then

%(R_UR0)^Z2®Z2.

Moreover,

for

exactly one

of

the two copies

of

Z2 in %(R_1, R0), there exists no obstructionto liftingfrom the quotient.

Wemayassume(see [10])

that

The fc-thstep inthe iteratedbasicconstruction forthisconstructionis:

where (Uk)keZ is a family

of

unitaries with four

point

spectrumso

that

each spectral projection for Uk has trace 1/4 and

g=g+—

g-'is

a selfadjoint unitary whose spectral

projections hâve trace 1/2. We hâve the following relations

Tj£=l,

keZ,

U,£gU*=

-g~ifk=0,

1, UkgUj?

=

g,

if/ceZ/{0,

1} and

UtUt+1Ujf

=

y=ÏUt+1

(the

trace onthis constructionis specifiedbyrequiring

that

eachnon-trivial monomialin the U;t's and

g

hâve zéro trace). With this notations, a commuting square for the inclusion

R

_ !

£

R0 isgivenby

Since

U0eB

nomializesA and AdUo|c

=

-A-dg|c,while

geD,

we get:

LEMMA 5. With A, B, C, D as before, (SE(Ffc)®B)*BAis isomorphic to the cross

product

of

(SE(Fk)®D)*DCby the Z4 action on (SE(Fk)®T>)*DC induced by AdU0. [Note that this action is in

fact

an injective Z2-kernelon (SE (F/c)(x)D):ilcDCwith obstruction-l

(5)

Aninvariant for subfactorsin the algebraof afree group 987

Moreover, by Corollary3, the enveloping algebra

for

the inclusion before is

=

(SE(Ft)®R_1)*R_1R0 andhence,by theprecedinglemma, %(sé)^,Z2®Z2isgênera- '

tedby

AdU?^

\^

andby

AdU0U_1

\^.Thereexistsno obstructiontolifting to

Aut

(sf)

for

the

first

copy

of

Z2, while

for

thesecondcopy

of

Z2, theobstructionis 1.

LEMMA 6. With the notations before, let ÉS

=

MZ2, where the Z2 action on

se

is induced by:

Ad\3\i\sieri(sé)

(this action is an invariant

for

se). Let s be the dual action on the cross product. Then SE isomorphic to

(^?(Ft)®Q_1)*Ql

Q0, where

Q_

= {R_ls

UI-L}", Q0

=

{R0, \)2-1}". Moreover we hâve thefollowing décomposition

for

s:

where

.5'1=.?AdU0U_1eInt(J'),

52=AdUgU*

1eCt(SS). In addition sf

= Adh,

with h

=

X5\gesé andsi(li)=—h.

The décompositionabove prevents SE from being isomorphic

to

Jones's example ([8],

inanalogy with the construction in[4]). We recall

that

in Jones'sexample one considers

N=(i?

(FN)®R0)x|TZ2 for

a

suitable actiony. Then

x(N) =

Z2©Z2,where, forexactly one

of

the two copies

of

Z2 inx (N)<iOut(N), there exists no obstruction for lifting to

an action on N. By[4] (seealso[8]) this copy (denotedbyy) corresponds to the dual Z2 action for

N=(if

(FN)®R0)X!YZ2.ByTakesaki dualitywe get:

PROPOSITION7. With the notations before, the dual action y on the cross

pro-duct

NxjçZ2,

has décomposition

of

the

form:

y

= txt2AdW,

where

z1eCt(N

XIçZ2),

Z2eInt(Nx]çZ2). Moreover there exists selfadjoint unitarieseI==e'+—e'_, with

e\

projec-tions

of

trace 1/2, so that tf

=

Ade1,

tt(el)=

-^el, tt(e,-)

=

ep ii=j.

COROLLARY8.

-

With thenotationsabove,

Nsrf

=

(5'(Fl.)®R_1)*E_,Ro-Proof.

-

Assume the contrary. ThenSE

=

Y-Z2, N=(JSf(FN)(x)R0) !*YZ2 would be

isomorphic(sinceineach

of

thetwocasestheZ2 actionis canonical). Moreover

it

would

follow

that

the corresponding dualactions hâve thesanie image in Out, and thus by[3],

wemay assume

that

they areequal.

Since in N=(„S?(FN)®R0)KrZ2, the décomposition

of

an automorphism as the

pro-duct

of

a centrally trivial automorphism and an almost inner automorphism,is unique

(moduloinner automorphism), itwould follow

that

the décompositions

= sïs2

(regarded

asah action

of

Z4©Z4)isouter conjugateto thesimilaractiondescribed by

tu

t2 in the

preceding lemma. Butthisisimpossible becausethetwoactionshâve différent

characteris-tic invariants (see [9]). [Since t1(e2)

=

e2, •(t^y2

=

Adel, while, with the notations in

Proposition5,

st(h)=

—h, sf

=

Aàh.]

PROPOSITION9. Let

N

be the

factor

constructedin [8]. Thenthere exists subalgebras

A<=B z'zz

N

so that Ais isomorphic to (SE(Fk), B is the crossproduct AX)^Z4, whereQ is

a Z2-kernelon A with non-trivial obstruction (to lifting). Moreover

N

is the enveloping

algebra

for

the inclusionA<iB and Ais isomorphic to SE(Fk).

Noteremisele 10février1993,acceptéele 12mars1993.

REFERENCES

[1] M.CHODAand H.KOSADI,Stronglyouteractionsfor aninclusionoffactors, Preprint,1992.

[2] A.CONNES,Periodic automorphismsofthehyperfiniteUj factor, ActaSci.Math.,39, 1977,pp.39-66.

[3] A. CONNES,Outer conjugacyclassesofautomorphismsoffactors,Ann. Sci.École Norm. Sup.,8, fasc.

(6)

[4] A. CONNES,Surla classification des facteurs de type II, CR.Acad. Sci., Paris, 281, SériesA, 1975, pp.13-15.

[5] A.CONNES,A factornotanti-isomorphictoitself, Ann.ofMath.,104, 1976,pp.536-554.

[6] F. GOODMAN,P. DE LA HARPEandV. F. R. JONES,Coxeter graphs andtowersofalgebras, Coxeter

graphs andtowersofalgebras,MSRI Publications14,SpringerVerlag, Berlin, Heidelberg, NewYork, 1989.

[7] V. F. R. JONES,Index'for subfactors,Invent.Math.,72,1983,pp. 1-25.

[8] V. F. R.JONES,AIIJfactor anti-isomorphictoitself but without involutory antiautomorphisms, Math.

Scand., 46,1980,pp.103-117.

[9]V.F.R.JONES,Actionsoffinite groups,inSpringerLect.NotesinMath.,725,pp.237-253.

[10]V.F.R.JONES, Baxterization,Intnl.J.ModemPhys. A,6,No. 12, 1991,pp.2035-2043.

[11] V.F. R.JONES,NotesonConnes invariantx(M),unpublished.

[12] V.F. R.JONESandC. E.SUTHERLAND,unpublishedmanuscript.

[13] R. V.KADISON,Listofopen problemsatthe Bâton Rougeconférence, 1967.

[14] Y. KAWAHIGASHI, Centrally trivial automorphismsandan analogueofConnes'sx(M) for subfactors,

Preprint,Berkeley,1992.

[15] Ph. H.LOI,On the derived towersofcertain inclusionsoftypeIII=X,factorsofindex4, Preprint.

[16] D. MCDUFF, Central séquences and the hyperfinite factor, Proc. London Math. Soc, 21, 1976,

pp.443-461.

[17] A. OCNEANU, in Operator Algebras and Appl, 2, London Math. Soc. Lect. Notes, 136, 1988, pp.202-236.

[18]A. OCNEANU,Actionsofdiscrète amenable groups on vonNeumann algebras, Springer Lect. Notesin Math.,1138, 1985.

[19]J.PHILLIPS,AutomorphismsoffullIIj factors, DukeJ.Math.,43,1976,pp.375-385.

[20]M. PIMSNERand S. POPA, Entropy and index for subfactors,Ann. Sci. Ec. Norm. Sup., 19, 1986, pp.57-106.

[21] S. POPA,Classificationofsubfactors: thefinitedepthcase, Invent.Math.,101, 1990,pp.19-43. [22] S. POPA,Markov traces onuniversalJonesalgebrasand subfactorsoffinite index, Invent.Math.

[23] S.POPA,Classificationofamenable subfactorsoftypeII, IHES Preprint, No,43,June1992.

[24] F. RÂDULESCU,Random matrices, amalgametedfreeproducts andsubfactorsofthevonNeumann algebra ofafreegroupofnon-integer index,Preprint IHES,1991.

[25]E.STORMER,ConjugacyofInvolutiveAntiautomorphismsofvon Neumannalgebras,J.Funct. Analysis,

66, 1986,pp.54-66.

[26] D.VoiCULESCU,Circular and semicircularSystemsandfreeproduct factors,inOperatorAlg., Unitary Repr., EnvelopingAlgebrasandInv. Theory,ProgressinMathematics,92,Birkhâuser,Boston, 1990.

[27] D.VoiCULESCU,in OperatorAlgebrasandconnectionswith Ergodic Theory, SpringerLecture Notes in Math., 1138, 1989.

[28]C. E. SUTHERLAND, Cohomology and extensions ofvon Neumannalgebras, Publ. RIMS, 16, 1980, pp.105-133.

[29] M.TAKESAKI,Duality andvonNeumann Algebras, SpringerLecture Notes, No.247.

DepartmentofMathematics, UniversityofCaliforniaatBerkeley, Berkeley, Ca 94720,USA and InstituteofMathematicsofthe Romanian Academy.

Riferimenti

Documenti correlati

Un quadro migliore è o erto dai principali quotidiani nazionali: dalla consultazione degli archivi del “Corriere della Sera”, “La Repubblica” e “La Stampa” risulta un

Here we summa- rize and discuss the first results of palynological studies, carried out by an international team of palynologists, from the upper part of the DEEP site

Nella successione di Kårehamn, la Zona a Pygodus serra si estende dalla base della Formazione di Folkeslunda fino alla parte alta della sovrastante Formazione di

L’archivio è soltanto uno degli strumenti utilizzati (molto spesso si parte da una ricerca completamente da “zero”) per proporre ai clienti i mood per la collezione, al

achieve the required level of specificity are extremely diffi- cult to describe quantitatively [17,18]. Recent investiga- tions using osmotic pressure [19] has led to

Proportions of ticks that were PCR-positive for B. phagocytophilum were calculated for each stage. Mean numbers of host- seeking nymphs and adults per transect were com- bined with

Abstract—In this paper, we show that BTI aging of MOS transistors, together with its detrimental effect for circuit per- formance and lifetime, presents considerable benefits for