• Non ci sono risultati.

Control of quantum stochastic differential equations

N/A
N/A
Protected

Academic year: 2021

Condividi "Control of quantum stochastic differential equations"

Copied!
21
0
0

Testo completo

(1)

Luigi Accardi

Centro Vito Volterra, Universit´a di Roma TorVergata Via di TorVergata, 00133 Roma, Italy

volterra@volterra.mat.uniroma2.it Andreas Boukas

American College of Greece Aghia Paraskevi 15342, Athens, Greece

andreasboukas@yahoo.com

(2)

Contents

1. Quantum Stochastic Calculus 3

2. Matrix Elements and Iteration Schemes 7

3. Error Analysis 13

4. Appplications to quantum stochastic control 17

(3)

Keywords: Quantum stochastic calculus, quantum stochastic dif-ferential equation, quantum flow, Fock space, quadratic cost control, algebraic Riccati equation

Class of Subject 81S25, 93E20

Abstract. We review the basic features of the quantum stochastic calculus. Iteration schemes for the computation of the matrix elements of solutions of unitary quantum stochastic evolutions and associated quantum flows are provided along with a basic error analysis of the convergence of the iteration schemes. The application of quantum sto-chastic calculus to the solution of the quantum version of the quadratic cost control problem is described.

1. Quantum Stochastic Calculus

Let Bt = {Bt(ω)/ ω ∈ Ω}, t ≥ 0, be one-dimensional Brownian

motion. Integration with respect to Bt was defined by Itˆo in [28]. A

basic result of the theory is that stochastic integral equations of the form Xt= X0+ Rt 0b(s, Xs) ds + Rt 0 σ(s, Xs) dBs (1.1)

can be interpreted as stochastic differential equations of the form dXt= b(t, Xt) dt + σ(t, Xt) dBt

(1.2)

where differentials are handled with the use of Itˆo’s formula (dBt)2 = dt, dBtdt = dt dBt = (dt)2 = 0

(1.3)

In [27], Hudson and Parthasarathy obtained a Fock space represen-tation of Brownian motion and Poisson process.

Definition 1. The Boson Fock space Γ = Γ(L2(R

+, C)) over L2(R+, C)

is the Hilbert space completion of the linear span of the exponential vectors ψ(f ) under the inner product

< ψ(f ), ψ(g) >= e<f,g> (1.4) where f, g ∈ L2(R +, C) and < f, g >= R+∞ 0 f (s) g(s) ds where, here¯

(4)

The annihilation, creation and conservation operators A(f ), A†(f ) and Λ(F ) respectively, are defined on the exponential vectors ψ(g) of Γ as follows. Definition 2. Atψ(g) = Rt 0 g(s) ds ψ(g) (1.5) A†tψ(g) = ∂∂|=0ψ(g + χ[0,t]) (1.6) Λtψ(g) = ∂∂|=0ψ(eχ[0,t])g) (1.7)

The basic quantum stochastic differentials dAt, dA † t, and dΛt are defined as follows. Definition 3. dAt= At+dt− At (1.8) dA†t = A†t+dt− A†t (1.9) dΛt = Λt+dt− Λt (1.10)

The fundamental result which connects classical with quantum stochas-tics is that the processes Bt and Pt defined by

Bt = At+ A † t (1.11) and Pt = Λt+ √ λ(At+ A † t) + λt (1.12)

are identified, through their statistical properties e.g their vacuum characteristic functionals < ψ(0), ei s Btψ(0) >= e−s22 t (1.13) and < ψ(0), ei s Ptψ(0) >= eλ(ei s−1)t (1.14)

with Brownian motion and Poisson process of intensity λ respec-tively.

Hudson and Parthasarathy defined stochastic integration with re-spect to the noise differentials of Definition 3 and obtained the Itˆo multiplication table

(5)

· dA†t dΛt dAt dt dA†t 0 0 0 0 dΛt dA † t dΛt 0 0 dAt dt dAt 0 0 dt 0 0 0 0

Within the framework of Hudson-Parthasarathy Quantum Stochas-tic Calculus, classical quantum mechanical evolution equations take the form dUt = −  iH + 1 2L ∗ L  dt + L∗W dAt− L dA † t + (1 − W ) dΛt  Ut (1.15) U0 = 1

where, for each t ≥ 0, Ut is a unitary operator defined on the tensor

product H ⊗ Γ(L2(R

+, C)) of a system Hilbert space H and the noise

(or reservoir) Fock space Γ. Here H, L, W are in B(H), the space of bounded linear operators on H, with W unitary and H self-adjoint. Notice that for L = W = −1 equation (1.15) reduces to a classical SDE of the form (1.2). Here and in what follows we identify time-independent, bounded, system space operators X with their ampliation X ⊗ 1 to H ⊗ Γ(L2(R+, C)).

The quantum stochastic differential equation satisfied by the quan-tum flow

jt(X) = Ut∗X Ut

(1.16)

where X is a bounded system space operator, is

djt(X) = jt  i [H, X] − 1 2(L ∗ LX + XL∗L − 2L∗XL)  dt (1.17) + jt([L∗, X] W ) dAt+ jt(W∗ [X, L]) dA†t + jt(W∗X W − X) dΛt j0(X) = X, t ∈ [0, T ]

The commutation relations associated with the operator processes At, A

tare the Canonical (or Heisenberg) Commutation Relations (CCR),

namely h At, A † t i = t I (1.18)

Classical and quantum stochastic calculi were unified by Accardi, Lu, and Volovich in [17] within the framework of the white noise theory of

(6)

T. Hida. Denoting the basic white noise functionals by at and a † t, they

showed that the stochastic differentials of the Hudson-Partasarathy processes of [27] can be written as

dAt= atdt (1.19) dA†t = a†tdt (1.20) dΛt= ata † tdt (1.21)

and Hudson-Partasarathy stochastic differential equations are re-duced to white noise equations. This unification started a whole new theory corresponding to quantum stochastic processes given by powers of the white noise functionals. The results for the first such nonlinear extension, the square of white noise, can be summarized as follows.

Let U (sl(2; R)) denote the universal enveloping algebra of sl(2; R) with generators B†, M , B− satisfying the commutation relations

B−, B = M , M, B = 2B, [M, B] = −2B

(1.22)

with involution

(B−)∗ = B† , M∗ = M (1.23)

After renormalization (cf. [17]), the square of white noise stochastic differentials dBt−= at2dt (1.24) dBt†= a†t2dt (1.25) dΛt= ata † tdt (1.26)

can be defined on a Fock space. It was proved by Accardi-Skeide in [20] that the Fock space suitable for representing the square of white noise processes is the Finite Difference Fock space developed by Boukas-Feinsilver in [22] based on the Finite Difference Lie algebra of Boukas-Feinsilver (cf. [26]).

The unitarity of solutions problem for “square of white noise” evo-lutions was open for several years. Preliminary work was done by Accardi, Hida, Boukas, and Kuo in [1], [4], [5],[13], [15]. In [8] Accardi and Boukas used the Boson Fock space representation of the square of white noise processes obtained by Accardi-Frantz-Skeide in [14], to show that square of white noise unitary evolutions satisfy quantum SDE of the type

(7)

dUt =  −1 2(D−|D−) + iH  dt + dAt(D−) + dA † t(−l(W )D−) + dLt(W − I)  Ut (1.27) U0 = 1

formulated on the module B(HS) ⊗ Γ(K), where HS is a system

Hilbert space, K = l2(N) and Γ(K) denotes the Fock space over K (see

[14] for notation and details).

Applications of quantum stochastic calculus to the control of quan-tum evolution and Langevin equations (quanquan-tum flows) can be found in [7], [9], [10], [21], [23], [24], [25].

2. Matrix Elements and Iteration Schemes

The fundamental theorems of the Hudson-Partasarathy quantum stochastic calculus give formulas for expressing the matrix elements of quantum stochastic integrals in terms of ordinary Riemann-Lebesgue integrals.

Theorem 1. Let

M (t) =R0t E(s) dΛ(s) + F (s) dA(s) + G(s) dA†(s) + H(s) ds (2.1)

where E, F , G, H are (in general) time dependent adapted processes. Let also u ⊗ ψ(f ) and v ⊗ ψ(g) be in the exponential domain of H ⊗ Γ. Then

< u ⊗ ψ(f ), M (t) v ⊗ ψ(g) >= (2.2)

Rt

0 < u ⊗ ψ(f ), ¯f (s) g(s) E(s) + g(s) F (s) + ¯f (s) G(s) + H(s) v ⊗ ψ(g) > ds

Proof. See theorem 4.1 of [27]

 Theorem 2. Let M (t) =Rt 0 E(s) dΛ(s) + F (s) dA(s) + G(s) dA †(s) + H(s) ds (2.3) and M0(t) =R0t E0(s) dΛ(s) + F0(s) dA(s) + G0(s) dA†(s) + H0(s) ds (2.4)

where E, F , G, H, E0, F0, G0, H0 are (in general) time dependent adapted processes. Let also u ⊗ ψ(f ) and v ⊗ ψ(g) be in the exponential domain of H ⊗ Γ. Then

(8)

< M (t) u ⊗ ψ(f ), M0(t) v ⊗ ψ(g) >= (2.5) Rt 0{< M (s) u ⊗ ψ(f ), ¯f (s) g(s)E 0(s) + g(s) F0(s) + ¯f (s) G0(s) + H0(s) v ⊗ ψ(g) > + < (¯g(s) f (s) E(s) + f (s) F (s) + ¯g(s) G(s) + H(s)) u ⊗ ψ(f ), M0(s) v ⊗ ψ(g) > + < (f (s)E(s) + G(s)) u ⊗ ψ(f ), (g(s)E0(s) + G0(s)) v ⊗ ψ(g) >} ds Proof. See theorem 4.3 of [27]

 We are interested in defining iteration schemes which can be used to compute the matrix elements

< u ⊗ ψ(f ), Utv ⊗ ψ(g) >, < u ⊗ ψ(f ), jt(X) v ⊗ ψ(g) >

(2.6)

and the corresponding probability amplitudes

| < u ⊗ ψ(f ), Utv ⊗ ψ(g) > |2, | < u ⊗ ψ(f ), jt(X) v ⊗ ψ(g) > |2

(2.7)

related to the quantum flow (1.16) and the Hudson-Parthasarathy stochastic differential equation

dUt =  K dt + B dAt+ C dA † t+ D dΛt  Ut (2.8)

with initial condition

U0 = I

(2.9)

where t ∈ [0, T ] for some T > 0, and K, B, C, D are bounded system space operators of the form appearing in (1.15), i.e

K = −  iH +1 2L ∗ L  (2.10) B = −L∗W (2.11) C = L (2.12) D = W − 1 (2.13)

Equations (2.8) and (2.9) have the integral form

Ut= I + Rt 0 K Usds + B UsdAs+ C UsdA † s+ D UsdΛs (2.14)

(9)

defined (cf. [27], Proposition 7.1) as the [0, T ]-uniform limit of the sequence Un = {Un,t/ t ≥ 0} defined recursively on the exponential

domain of H ⊗ Γ by U0,t = I (2.15) and, for n ≥ 1, (2.16) Un,t= I + Rt 0 K Un−1,sds + B Un−1,sdAs+ C Un−1,sdA † s+ D Un−1,sΛs

By Theorem 1, the matrix elements of (2.16) are given, for n ≥ 1, by the recursion scheme

< u ⊗ ψ(f ), U(2.17) n,tv ⊗ ψ(g) >=< u ⊗ ψ(f ), v ⊗ ψ(g) > +R0t{f (s)g(s) < u ⊗ ψ(f ), D Un−1,sv ⊗ ψ(g) > +g(s) < u ⊗ ψ(f ), B Un−1,sv ⊗ ψ(g) > +f (s) < u ⊗ ψ(f ), C Un−1,sv ⊗ ψ(g) > + < u ⊗ ψ(f ), K Un−1,sv ⊗ ψ(g) >} ds Letting uD∗ = D∗u (2.18) uB∗ = B∗u (2.19) uC∗ = C∗u (2.20) uK∗ = K∗u (2.21)

we can rewrite iteration scheme (2.17) as Iteration Scheme 1. (Unitary Evolutions)

< u ⊗ ψ(f ), U(2.22) n,tv ⊗ ψ(g) >=< u ⊗ ψ(f ), v ⊗ ψ(g) > +R0t{f (s)g(s) < uD∗⊗ ψ(f ), Un−1,sv ⊗ ψ(g) > +g(s) < uB∗⊗ ψ(f ), Un−1,sv ⊗ ψ(g) > +f (s) < uC∗⊗ ψ(f ), Un−1,sv ⊗ ψ(g) > + < uK∗ ⊗ ψ(f ), Un−1,sv ⊗ ψ(g) >} ds with < u ⊗ ψ(f ), U0,tv ⊗ ψ(g) >=< u ⊗ ψ(f ), v ⊗ ψ(g) > (2.23)

(10)

< u ⊗ ψ(f ), Utv ⊗ ψ(g) >=< u ⊗ ψ(f ), v ⊗ ψ(g) >

(2.24) +Rt

0 {f (s)g(s) < uD∗⊗ ψ(f ), Usv ⊗ ψ(g) > +g(s) < uB∗ ⊗ ψ(f ), Usv ⊗ ψ(g) >

+f (s) < uC∗⊗ ψ(f ), Usv ⊗ ψ(g) > + < uK∗⊗ ψ(f ), Usv ⊗ ψ(g) >} ds

which, by subtraction of the cases t = tn and t = tn−1 where tn−1 ≤

tn, implies < u ⊗ ψ(f ), U(2.25) tnv ⊗ ψ(g) > − < u ⊗ ψ(f ), Utn−1v ⊗ ψ(g) >= Rtn tn−1{f (s)g(s) < uD ∗ ⊗ ψ(f ), Usv ⊗ ψ(g) > +g(s) < uB∗⊗ ψ(f ), Usv ⊗ ψ(g) > +f (s) < uC∗⊗ ψ(f ), Usv ⊗ ψ(g) > + < uK∗⊗ ψ(f ), Usv ⊗ ψ(g) >} ds or

Iteration Scheme 2. (Time Iteration of Unitary Evolutions)

< u ⊗ ψ(f ), U(2.26) tnv ⊗ ψ(g) >=< u ⊗ ψ(f ), Utn−1v ⊗ ψ(g) > +

Rtn

tn−1{f (s)g(s) < uD

∗ ⊗ ψ(f ), Usv ⊗ ψ(g) > +g(s) < uB∗⊗ ψ(f ), Usv ⊗ ψ(g) >

+f (s) < uC∗⊗ ψ(f ), Usv ⊗ ψ(g) > + < uK∗⊗ ψ(f ), Usv ⊗ ψ(g) >} ds

The integral form of the quantum flow equation (1.17) is jt(X) = X + Rt 0 js( ˆK) ds + js( ˆB) dAs+ js( ˆC) dA † s+ js( ˆD) dΛs (2.27) where ˆ K = i[H, X] − 1 2(L ∗ LX + XL∗L − 2L∗XL) (2.28) ˆ B = [L∗, X] W (2.29) ˆ C = W∗[X, L] (2.30) ˆ D = W∗X W − X (2.31)

The corresponding iteration scheme is j0,t(X) = X (2.32) and for n ≥ 1 jn,t(X) = X + Rt 0 jn−1,s( ˆK) ds + jn−1,s( ˆB) dAs+ jn−1,s( ˆC) dA † s+ jn−1,s( ˆD) dΛs (2.33)

(11)

< u ⊗ ψ(f ), j(2.34)n,t(X) v ⊗ ψ(g) >=< u ⊗ ψ(f ), X v ⊗ ψ(g) > +

< u ⊗ ψ(f ),R0t jn−1,s( ˆK) ds + jn−1,s( ˆB) dAs+ jn−1,s( ˆC) dA†s+ jn−1,s( ˆD) dΛs



v ⊗ ψ(g) > which by Theorem 1 yields

Iteration Scheme 3. ( General Quantum Flows)

< u ⊗ ψ(f ), j(2.35) n,t(X) v ⊗ ψ(g) >=< u ⊗ ψ(f ), X v ⊗ ψ(g) >

+R0t{f (s)g(s) < u ⊗ ψ(f ), jn−1,s( ˆD) v ⊗ ψ(g) > +g(s) < u ⊗ ψ(f ), jn−1,s( ˆB) v ⊗ ψ(g) >

+f (s) < u ⊗ ψ(f ), jn−1,s( ˆC) v ⊗ ψ(g) > + < u ⊗ ψ(f ), jn−1,s( ˆK) v ⊗ ψ(g) >} ds

Notice that for n = 1 (2.35) becomes

< u ⊗ ψ(f ), j1,t(X) v ⊗ ψ(g) > (2.36) =< u ⊗ ψ(f ), X v ⊗ ψ(g) > + < u ⊗ ψ(f ),  Rt 0 K ds + ˆˆ B dAs+ ˆC dA † s+ ˆD dΛs  v ⊗ ψ(g) > =< u ⊗ ψ(f ), X v ⊗ ψ(g) > +R0t{f (s)g(s) < u ⊗ ψ(f ), ˆD v ⊗ ψ(g) > +g(s) < u ⊗ ψ(f ), ˆB v ⊗ ψ(g) > +f (s) < u ⊗ ψ(f ), ˆC v ⊗ ψ(g) > + < u ⊗ ψ(f ), ˆK v ⊗ ψ(g) >} ds =< u ⊗ ψ(f ), X v ⊗ ψ(g) > +R0t{f (s)g(s) < uDˆ ⊗ ψ(f ), v ⊗ ψ(g) > +g(s) < uBˆ ⊗ ψ(f ), v ⊗ ψ(g) > +f (s) < uCˆ⊗ ψ(f ), v ⊗ ψ(g) > + < uKˆ ⊗ ψ(f ), v ⊗ ψ(g) >} ds

and so, letting uX∗ = X∗u, we have

< u ⊗ ψ(f ), j(2.37) 1,t(X) v ⊗ ψ(g) >=< uX∗⊗ ψ(f ), v ⊗ ψ(g) > + Rt 0 f (s)g(s) ds < uDˆ ⊗ ψ(f ), v ⊗ ψ(g) > + Rt 0 g(s) ds < uBˆ⊗ ψ(f ), v ⊗ ψ(g) > + Rt 0 f (s) ds < uCˆ⊗ ψ(f ), v ⊗ ψ(g) > + Rt 0 ds < uKˆ ⊗ ψ(f ), v ⊗ ψ(g) >

The general theory of quantum flows, in the context of Hudson-Partasarathy calculus, can be found in [29]. We now consider flows {jt(X) / t ≥ 0} of the standard quantum mechanical form

jt(X) = Ut∗X Ut

(2.38)

where Ut is , for each t ≥ 0, a unitary operator.

Proposition 1. Let X be a bounded system space operator, let Ut and

Un,tbe for each t ∈ [0, T ] and n ≥ 1 as in (2.14) and (2.16) respectively,

(12)

jt(X) = Ut∗X Ut (2.39) and jn,t(X) = Un,t∗ X Un,t (2.40) then lim(2.41)n→∞ < u ⊗ ψ(f ), jn,t(X) v ⊗ ψ(g) >=< u ⊗ ψ(f ), jt(X) v ⊗ ψ(g) >

for all u ⊗ ψ(f ) and v ⊗ ψ(g) in the exponential domain of H ⊗ Γ. Convergence is uniform on [0, T ]. Proof. | < u ⊗ ψ(f ), jt(X) v ⊗ ψ(g) > − < u ⊗ ψ(f ), jn,t(X) v ⊗ ψ(g) > | = | < u ⊗ ψ(f ), (jt(X) − jn,t(X)) v ⊗ ψ(g) > | = | < u ⊗ ψ(f ), Ut∗X Ut− Un,t∗ X Un,t v ⊗ ψ(g) > | = | < u ⊗ ψ(f ), (Ut∗− Un,t∗ ) X Ut+ Un,t∗ X (Ut− Un,t) v ⊗ ψ(g) > | ≤ | < u ⊗ ψ(f ), (Ut∗− Un,t∗ ) X Utv ⊗ ψ(g) > | + | < u ⊗ ψ(f ), Un,t∗ X (Ut− Un,t) v ⊗ ψ(g) > | = | < (Ut− Un,t) u ⊗ ψ(f ), X Utv ⊗ ψ(g) > | + | < Un,tu ⊗ ψ(f ), X (Ut− Un,t) v ⊗ ψ(g) > | ≤ k(Ut− Un,t) u ⊗ ψ(f )k kXk kUtk kv ⊗ ψ(g)k + kUn,tu ⊗ ψ(f )k kXk k(Ut− Un,t) v ⊗ ψ(g)k ≤ k(Ut− Un,t) u ⊗ ψ(f )k kXk kv ⊗ ψ(g)k + kUn,tu ⊗ ψ(f )k kXk k(Ut− Un,t) v ⊗ ψ(g)k

since kUtk = 1. Since Un,tconverges to Uton the exponential domain

of H ⊗ Γ uniformly with respect to t and kUn,tu ⊗ ψ(f )k is bounded,

it follows that

| < u ⊗ ψ(f ), jn,t(X) v ⊗ ψ(g) > − < u ⊗ ψ(f ), jt(X) v ⊗ ψ(g) > | → 0

as n → +∞.

 The iteration scheme for the matrix element associated with (2.40) is obtained, with the use of Theorems 1 and 2 as follows:

< u ⊗ ψ(f ), U(2.42) n,t∗ X Uk,tv ⊗ ψ(g) >=< Un,tu ⊗ ψ(f ), X Uk,tv ⊗ ψ(g) > =<  I +R0t K Un−1,sds + B Un−1,sdAs+ C Un−1,sdA†s+ D Un−1,sdΛs  u ⊗ ψ(f ), X I +R0t K Uk−1,sds + B Uk−1,sdAs+ C Uk−1,sdA†s+ D Uk−1,sdΛs  v ⊗ ψ(g) >

(13)

=< u ⊗ ψ(f ), (X v) ⊗ ψ(g) > + + < u ⊗ ψ(f ),Rt 0 X K Uk−1,sds + X B Uk−1,sdAs+ X C Uk−1,sdA † s+ X D Uk−1,sdΛs  v ⊗ ψ(g) > + <Rt 0 K Un−1,sds + B Un−1,sdAs+ C Un−1,sdA † s+ D Un−1,sdΛs  u ⊗ ψ(f ), (X v) ⊗ ψ(g) > + <Rt 0 K Un−1,sds + B Un−1,sdAs+ C Un−1,sdA † s+ D Un−1,sdΛs  u ⊗ ψ(f ),  Rt 0 X K Uk−1,sds + X B Uk−1,sdAs+ X C Uk−1,sdA † s+ X D Uk−1,sdΛs  v ⊗ ψ(g) > =< u ⊗ ψ(f ), (X v) ⊗ ψ(g) > +Rt 0 < u ⊗ ψ(f ), ¯f (s) g(s) X D + g(s) X B + ¯f (s) X C + X K Uk−1,sv ⊗ ψ(g) > ds +Rt 0 < (¯g(s) f (s) X ∗D + f (s) XB + ¯g(s) XC + XK) U k−1,su ⊗ ψ(f ), v ⊗ ψ(g) > ds +Rt 0 {< (Un,s− 1) u ⊗ ψ(f ), ¯f (s) g(s) X D + g(s) X B + ¯f (s) X C + X K Uk−1,sv ⊗ ψ(g) > + < (¯g(s) f (s) D + f (s) B + ¯g(s) C + K) Un−1,su ⊗ ψ(f ), X (Uk,s− 1) v ⊗ ψ(g) > + < (f (s) D + C) Un−1,su ⊗ ψ(f ), (g(s) X D + X C) Uk−1,sv ⊗ ψ(g) >} ds

and using (2.16) we obtain

Iteration Scheme 4. (Quantum Mechanical Flows) For n, k ≥ 1

< u ⊗ ψ(f ), Un,t∗ X U(2.43)k,tv ⊗ ψ(g) >=< u ⊗ ψ(f ), (X v) ⊗ ψ(g) > +R0t{ ¯f (s) g(s) < u ⊗ ψ(f ), Un,s∗ X D Uk−1,sv ⊗ ψ(g) > +g(s) < u ⊗ ψ(f ), Un,s∗ X B Uk−1,sv ⊗ ψ(g) > + ¯f (s) < u ⊗ ψ(f ), Un,s∗ X C Uk−1,sv ⊗ ψ(g) > + < u ⊗ ψ(f ), Un,s∗ X K Uk−1,sv ⊗ ψ(g) > ¯ f (s) g(s) < u ⊗ ψ(f ), Un−1,s∗ D∗X Uk,sv ⊗ ψ(g) > + ¯f (s) < u ⊗ ψ(f ), Un−1,s∗ B ∗X U k,sv ⊗ ψ(g) > +g(s) < u ⊗ ψ(f ), Un−1,s∗ C∗X Uk,sv ⊗ ψ(g) > + < u ⊗ ψ(f ), Un−1,s∗ K ∗X U k,sv ⊗ ψ(g) > + ¯f (s) g(s) < u ⊗ ψ(f ), Un−1,s∗ D∗X D Uk−1,sv ⊗ ψ(g) > + ¯f (s) < u ⊗ ψ(f ), Un−1,s∗ D∗X C Uk−1,sv ⊗ ψ(g) > +g(s) < u ⊗ ψ(f ), Un−1,s∗ C∗X D Uk−1,sv ⊗ ψ(g) > + < u ⊗ ψ(f ), Un−1,s∗ C ∗X C U k−1,sv ⊗ ψ(g) >} ds

Letting n = k in (2.43) we obtain the value of the matrix element < u ⊗ ψ(f ), jn,t(X) v ⊗ ψ(g) >

Notice that for n = 0 or k = 0 (2.43) reduces to (2.22). 3. Error Analysis

Proposition 2. Let  > 0, and let Ut and Un,t, where 0 ≤ t ≤ T <

(14)

and v ⊗ψ(g) in the exponential domain of H ⊗Γ, with g locally bounded and u, v 6= 0

| < u ⊗ ψ(f ), Utv ⊗ ψ(g) > − < u ⊗ ψ(f ), Un,tv ⊗ ψ(g) > | < 

(3.1)

for all t ∈ [0, T ] provided that

q λn+1Tn+1 (n+1)! <  kuk kvk ekf k22 e kgk2 2 (3.2)

where  > 0 is the required degree of accuracy and

kf k2 = Z +∞ 0 |f (s)|2ds (3.3) kgk2 = Z +∞ 0 |g(s)|2ds (3.4) λ = 6 α(T )2eT M (3.5) M = max (kKk, kBk, kCk, kDk) (3.6) α(T ) = sup0≤s≤T max |g(s)|2, |g(s)|, 1 (3.7) Proof. | < u ⊗ ψ(f ), Utv ⊗ ψ(g) > − < u ⊗ ψ(f ), Un,tv ⊗ ψ(g) > |2 = | < u ⊗ ψ(f ), (Ut− Un,t) v ⊗ ψ(g) > |2 ≤ ku ⊗ ψ(f )k2k(Ut− Un,t) v ⊗ ψ(g)k2 = ku ⊗ ψ(f )k2k{Rt 0 K (Us1 − Un−1,s1) ds1+ B (Us1 − Un−1,s1) dAs1 + C (Us1 − Un−1,s1) dA † s1 +D (Us1 − Un−1,s1) dΛs1} v ⊗ ψ(g)k 2

(15)

≤ 6 α(T )2ku ⊗ ψ(f )k2 Z T 0 et−s1{kK (U s1 − Un−1,s1) v ⊗ ψ(g)k 2 + kB (Us1 − Un−1,s1) v ⊗ ψ(g)k 2+ kC (U s1 − Un−1,s1) v ⊗ ψ(g)k 2 + kD (Us1 − Un−1,s1) v ⊗ ψ(g)k 2} ds 1 ≤ 6 α(T )2(max {kKk, kBk, kCk, kDk})2ku ⊗ ψ(f )k2 Z T 0 et−s1k(U s1 − Un−1,s1) v ⊗ ψ(g)k 2ds 1 = λku ⊗ ψ(f )k2 Z T 0 k(Us1 − Un−1,s1) v ⊗ ψ(g)k 2ds 1 ≤ λ2ku ⊗ ψ(f )k2 Z T 0 Z s1 0 k(Us2 − Un−2,s2) v ⊗ ψ(g)k 2ds 2ds1 ≤ λ3ku ⊗ ψ(f )k2 Z T 0 Z s1 0 Z s2 0 k(Us3 − Un−3,s3) v ⊗ ψ(g)k 2 ds3ds2ds1 .. . ≤ λnku ⊗ ψ(f )k2 Z T 0 Z s1 0 Z s2 0 ... Z sn−1 0 k(Usn− U0,sn) v ⊗ ψ(g)k 2ds n... ds3ds2ds1 which using Usn = 1 + Z sn 0 K Usn+1dsn+1+ B Usn+1dAsn+1+ C Usn+1dA † sn+1+ D Usn+1dΛsn+1 U0,sn = 1

and the unitarity of Usn+1, becomes

≤ λn+1ku ⊗ ψ(f )k2 Z T 0 Z s1 0 Z s2 0 ... Z sn−1 0 Z sn 0 kUsn+1v ⊗ ψ(g)k 2ds n+1dsn... ds3ds2ds1 = λn+1ku ⊗ ψ(f )k2 Z T 0 Z s1 0 Z s2 0 ... Z sn−1 0 Z sn 0 kv ⊗ ψ(g)k2ds n+1dsn... ds3ds2ds1 = ku ⊗ ψ(f )k2kv ⊗ ψ(g)k2λn+1 Z T 0 Z s1 0 Z s2 0 ... Z sn−1 0 Z sn 0 dsn+1dsn... ds3ds2ds1 = ku ⊗ ψ(f )k2kv ⊗ ψ(g)k2λn+1 Tn+1 (n + 1)! = kuk2kvk2ekf k2 ekgk2λn+1 T n+1 (n + 1)!

which is less than 2 provided that (3.2) is satisfied.

(16)

Corollary 1. In the notation of Proposition 2

| | < u ⊗ ψ(f ), U(3.8) tv ⊗ ψ(g) > | − | < u ⊗ ψ(f ), Un,tv ⊗ ψ(g) > | | < 

for all t ∈ [0, T ] and u, v, f, g with u, v 6= 0, provided that q λn+1Tn+1 (n+1)! <  kuk kvk ekf k22 e kgk2 2 (3.9)

Proof. The proof follows by applying the triangle inequality to (3.1).  Proposition 3. In the notation of Proposition 1

| < u ⊗ ψ(f ), j(3.10) n,t(X) v ⊗ ψ(g) > − < u ⊗ ψ(f ), jt(X) v ⊗ ψ(g) > | < 

for all t ∈ [0, T ] and u, v, f, g with u, v 6= 0, provided that q λn+1Tn+1 (n+1)! + 1 < 1/2 kuk1/2kvk1/2ekf k24 ekgk24 kXk1/2 (3.11) Proof. | < u ⊗ ψ(f ), jn,t(X) v ⊗ ψ(g) > − < u ⊗ ψ(f ), jt(X) v ⊗ ψ(g) > | ≤ k(Ut− Un,t) u ⊗ ψ(f )k kXk kv ⊗ ψ(g)k + (k(Ut− Un,t) u ⊗ ψ(f )k + ku ⊗ ψ(f )k) kXk k(Ut− Un,t) v ⊗ ψ(g)k

and using, as in the proof of Proposition 2,

k(Ut− Un,t) a ⊗ ψ(b)k2 ≤ ka ⊗ ψ(b)k2 λ n+1Tn+1 (n+1)! we obtain | < u ⊗ ψ(f ), jn,t(X) v ⊗ ψ(g) > − < u ⊗ ψ(f ), jt(X) v ⊗ ψ(g) > | ≤ ku ⊗ ψ(f )k kv ⊗ ψ(g)k kXk 2 s λn+1Tn+1 (n + 1)! + λn+1Tn+1 (n + 1)! ! ≤ s λn+1Tn+1 (n + 1)! + 1 !2 kuk kvk ekf k22 e kgk2 2 kXk < 

(17)

Corollary 2. In the notation of Proposition 3

| | < u ⊗ ψ(f ), j(3.12) n,t(X) v ⊗ ψ(g) > | − | < u ⊗ ψ(f ), jt(X) v ⊗ ψ(g) > | | < 

for all t ∈ [0, T ] and u, v, f, g with u, v 6= 0, provided that q λn+1Tn+1 (n+1)! + 1 < 1/2 kuk1/2kvk1/2ekf k24 e kgk2 4 kXk1/2 (3.13)

Proof. The proof follows by applying the triangle inequality to (3.10).  4. Appplications to quantum stochastic control

The quadratic cost control problem of classical stochastic control the-ory was extended to the quantum stochastic framework by L. Accardi and A. Boukas in [7], [9], [10], [21], [23], [24], [25].

In the case of first order white noise it was shown that if U = {Ut/ t ≥ 0} is a stochastic process satisfying on a finite interval [0, T ]

the quantum stochastic differential equation dUt= (F Ut+ ut) dt + Ψ UtdAt+ Φ UtdA

t+ Z UtdΛt, U0 = 1

(4.1)

then the performance functional

Qξ,T(u) = Z T 0 [< Utξ, X2Utξ > + < utξ, utξ >] dt− < uTξ, UT ξ > (4.2) satisfies min Qξ,T(u) =< ξ, Πξ > (4.3)

where the minimum is taken over all processes of the form ut =

−Π Ut, ξ is an arbitrary vector in the exponential domain of the tensor

product of the system Hilbert space and the BosonFock space over L2([0, +∞), C), and Π is the solution of the Algebraic Riccati Equation

Π F + F∗Π + Φ∗ΠΦ − Π2+ X2 = 0 (4.4)

with the additional conditions

Π Ψ + Φ∗Π + Φ∗Π Z = 0 (4.5)

Π Z + Z∗Π + Z∗Π Z = 0 (4.6)

(18)

Using this we have proved ( ref. [9], [10]) that if X is a bounded self-adjoint system operator such that the pair (i H, X) is stabilizable, then the quadratic performance functional

Jξ,T(L, W ) = Z T 0 [ kjt(X) ξk2+ 1 4kjt(L ∗ L) ξk2] dt +1 2kjT(L) ξk 2 (4.7)

associated with the quantum stochastic flow {jt(X) = Ut∗X Ut/ t ≥

0} satisfying djt(X) = jt(i[H, X] − 12(L∗LX + XL∗L − 2L∗XL)) dt (4.8) +jt([L∗, X] W ) dAt+ jt(W∗[X, L]) dA † t+ +jt(W∗X W − X) dΛt, j0(X) = X

where U = {Ut/ t ≥ 0} is the solution of

dUt= −((iH + 1 2L ∗ L) dt + L∗W dAt− L dA † t + (1 − W ) dΛt) Ut, , U0 = 1, (4.9) is minimized by choosing L = √2 Π1/2W1 (4.10) W = W2 (4.11)

where Π is the solution of the Algebraic Riccati Equation i [H, Π] + Π2+ X2 = 0

(4.12)

and W1, W2 are bounded unitary system operators commuting with

Π. Moreover

min

L,W Jξ,T(L, W ) =< ξ, Π ξ >

(4.13)

In the case of quantum stochastic differential equations driven by the square of white noise processes, we have shown (re. [10]) that if X is a bounded self-adjoint system operator such that the pair (i H, X) is stabilizable then the performance functional

Jξ,T(D−, W ) = Z T 0 [ kjt(X) ξk2+ 1 4kjt((D ∗ −|D ∗ −)) ξk2] dt + 1 2 < ξ, jT((D ∗ −|D ∗ −)) ξ > (4.14)

associated with the quantum flow {jt(X) = Ut∗X Ut/ t ≥ 0}, where

U = {Ut/ t ≥ 0} is the solution of the quantum stochastic differential

(19)

dUt = ((− 1 2(D ∗ −|D ∗ −) + iH) dt + dAt(D−) + dA † t(−r(W )D ∗ −) + dLt(W − I)) (4.15) U0 = 1 is minimized by choosing D−= X n D−,n⊗ en (4.16) and W = X α,β,γ Wα,β,γ ⊗ ρ+(B+αMβB−γ) (4.17) so that 1 2(D ∗ −|D ∗ −) = ( 1 2 X n D−,nD∗−,n) ⊗ 1 = Π (4.18) and [D−,n, D−,m] = [D−,n, D−,m∗ ] = [D−,n, Wα,β,γ] = [D−,n, Wα,β,γ∗ ] = 0 (4.19)

for all n, m, α, β, γ, where Π is the positive self-adjoint solution of the Algebraic Riccati equation

i [H, Π] + Π2+ X2 = 0 (4.20) Moreover min D−,W Jξ,T(D−, W ) =< ξ, Π ξ > (4.21) References

[1] L. Accardi, A. Boukas, Unitarity conditions for stochastic differential equa-tions driven by nonlinear quantum noise, Random Operators and Stochastic Equations, 10 (1) (2002) 1–12.

[2] L. Accardi, A. Boukas, Stochastic evolutions driven by non-linear quantum noise, Probability and Mathematical Statistics, 22 (1) (2002) 141–154. [3] L. Accardi, A. Boukas, Stochastic evolutions driven by non-linear quantum

noise II, Russian Journal of Mathematical Physics, 8 (4) (2001) 401 – 413. [4] L. Accardi, A. Boukas, Square of white noise unitary evolutions on Boson Fock

space, International conference on stochastic analysis in honor of Paul Kree, Hammamet, Tunisie, October 22–27, 2001.

(20)

[5] L. Accardi, A. Boukas, Unitarity conditions for the renormalized square of white noise, Trends in Contemporary Infinite Dimensional Analysis and Quan-tum Probability, Natural and Mathematical Sciences Series 3, 7–36, Italian School of East Asian Studies, Kyoto, Japan (2000).

[6] L. Accardi, A. Boukas, The semi-martingale property of the square of white noise integrators, Stochastic Partial Differential Equations and Applications, pp. 1–19, eds g. Da Prato and L. Tubaro, Marcel Dekker, Inc. (2002).

[7] L. Accardi, A. Boukas, Control of elementary quantum flows, Proceedings of the 5th IFAC symposium on nonlinear control systems, July 4-6, 2001, St. Petersburg, Russia”.

[8] L. Accardi, A. Boukas, The unitarity conditions for the square of white noise, Dimensional Anal. Quantum Probab. Related Topics, 6 (2) (2003) 1–26. [9] L. Accardi, A. Boukas, Quadratic control of quantum processes, Russian

Jour-nal of Mathematical Physics (2002).

[10] L. Accardi, A. Boukas, Control of quantum Langevin equations, Open Systems and Information Dynamics, 9 (2002) 1–15.

[11] L. Accardi, A. Boukas, Quantum stochastic Weyl operators, to appear in the IEEE Proceedings of the International Conference ”Physics and Control” (PhysCon 2003), August 20-22, 2003, St. Petersburg, Russia.

[12] L. Accardi, A. Boukas, Higher powers of quantum white noise, to appear (2003).

[13] L. Accardi, A. Boukas, H.H. Kuo, On the unitarity of stochastic evolutions driven by the square of white noise, Infinite Dimensional Analysis, Quantum Probability, and Related Topics, 4 (4) (2001) 1–10.

[14] L. Accardi, U. Franz, M. Skeide, Renormalized squares of white noise and non-gaussian noises as Levy processes on real Lie algebras, Comm. Math. Phys. 228 (1) (2002) 123–150.

[15] L. Accardi, T. Hida, H.H Kuo, The Itˆo table of the square of white noise, Infinite Dimensional Analysis, Quantum Probability, and Related Topics, 4 (2001) 267–275.

[16] L. Accardi, Y.G Lu, I.V Volovich, Quantum theory and its stochastic limit , Springer 2002.

[17] L. Accardi, Y.G Lu, I.V Volovich, White noise approach to classical and quan-tum stochastic calculi, Lecture Notes of the Volterra International School of the same title, Trento, Italy, 1999, Volterra Center preprint 375.

[18] L. Accardi, Y.G Lu, I.V Volovich, Non-linear extensions of classical and quan-tum stochastic calculus and essentially infinite dimensional analysis, Volterra Center preprint no.268, 1996.

[19] L. Accardi, N. Obata, Towards a non-linear extension of stochastic calculus, Publications of the Research Institute for Mathematical Sciences, Kyoto, RIMS Kokyuroku 957 (1996) 1–15 Obata N. (ed).

[20] L. Accardi, M. Skeide, On the relation of the square of white noise and the finite difference algebra, Infinite Dimensional Analysis, Quantum Probability, and Related Topics, 3 (2000) 185–189.

[21] Boukas A.,Linear Quantum Stochastic Control, Quantum Probability and re-lated topics, 105-111, QP -PQ IX, World Scientific Publishing, River Edge NJ,1994.

(21)

[22] Boukas A., Quantum stochastic analysis: a non Brownian case, Ph.D Thesis, Southern Illinois University, 1998.

[23] Boukas A., Application of Operator Stochastic Calculus to an Optimal Control problem, Mat. Zametki 53 (5) (1993) 48–56 Russian. Translation in Math. Notes 53 (5–6) (1993) 489–494, MR 96a 81070.

[24] Boukas A., Operator valued stochastic control in Fock space with applications to noise filtering and orbit tracking, Journal of Probability and Mathematical Statistics, 16 (1) (1994).

[25] Boukas A., Stochastic Control of operator-valued processes in Boson Fock space, Russian Journal of Mathematical Physics 4 (2) (1996) 139–150. MR 97j 81178 [26] P. J. Feinsilver, Discrete analogues of the Heisenberg-Weyl algebra, Monatsh.

Math., 104 (1987) 89–108.

[27] R. L. Hudson, K. R. Parthasarathy, Quantum Ito’s formula and stochastic evolutions, Commun. Math. Phys. 93 (1984) 301–323 .

[28] Ito K., On stochastic differential equations, Memoirs Amer. Math. Soc. 4 (1951).

[29] K. R. Parthasarathy, An introduction to quantum stochastic calculus, Birkhauser Boston Inc., 1992.

[30] S. Wolfram: The Mathematica Book, 4th ed., Wolfram Media/Cambridge Uni-versity Press (1999)

Riferimenti

Documenti correlati

L’ultima parte del volume, focalizzata sulla costruzione del repertori bibliografici, spiega dettagliatamente i criteri di selezione delle fonti informative, le fasi della ricerca

antigen, (ii) PD-1 expression in T cells, (iii) the integrity of effector T-cell functions, (iv) the absence of immuno- suppressive events and cells (such as the presence of Treg

The assumption that decay time of the compound nucleus depends on its excita- tion energy makes experiments in crystals compatible with all the acceleration data and explains

[r]

The scalar potential is chosen so that the vacuum manifold G/H has nontrivial first fundamental group, which is necessary to stabilize vortex configurations, and the surviving

cinnabarica abbiamo trattamenti che presentano poca variabilità statistica: nel trattamento con Cycocel fogliare abbiamo un’altezza superiore al testimone di 3 cm, nei

Our ranking approach was then used for a very exploratory study on a small cohort of mildly negative and borderline patients, where the uptake quantification (and hence the