• Non ci sono risultati.

Amenability and subexponential spectral growth rate of Dirichlet forms on von Neumann algebras

N/A
N/A
Protected

Academic year: 2021

Condividi "Amenability and subexponential spectral growth rate of Dirichlet forms on von Neumann algebras"

Copied!
33
0
0

Testo completo

(1)

Contents lists available atScienceDirect

Advances

in

Mathematics

www.elsevier.com/locate/aim

Amenability

and

subexponential

spectral

growth

rate

of

Dirichlet

forms

on

von

Neumann

algebras

✩ Fabio Cipriania,∗, Jean-Luc Sauvageotb

a DipartimentodiMatematica,PolitecnicodiMilano,piazzaLeonardodaVinci32,

20133Milano,Italy

b

InstitutdeMathématiques,CNRS-UniversitéDenisDiderot, F-75205 ParisCedex13,France

a r t i c l e i n f o a bs t r a c t

Article history:

Received9December2016 Accepted1October2017 CommunicatedbyDanVoiculescu MSC: 46L57 46L87 46L54 43A07 Keywords:

vonNeumannalgebra Amenability

HaagerupProperty(H) Dirichletformspectralgrowth Countablediscretegroup

In this work we apply Noncommutative Potential Theory to characterize (relative) amenability and the (relative) Haagerup Property (H) of von Neumann algebras interms ofthespectralgrowthofDirichletforms.Examplesdealwith (inclusionsof)countablediscretegroupsandfreeorthogonal compactquantumgroups.

©2017ElsevierInc.Allrightsreserved.

This work has been supported by LYSM Laboratorio Ypatia di Scienze Matematiche I.N.D.A.M.

Italy–C.N.R.S.-Univ. Aix-Marseille France, GREFI-GENCO Groupe de Recherche Franco Italienne en Géométrie NonCommutativeI.N.D.A.M.Italy–C.N.R.S.FranceandM.I.U.R.ItalyPRIN2012Project No.2012TC7588-003.

* Correspondingauthor.

E-mailaddresses:fabio.cipriani@polimi.it(F. Cipriani),jean-luc.sauvageot@imj-prg.fr

(J.-L. Sauvageot).

https://doi.org/10.1016/j.aim.2017.10.017

(2)

1. Introductionanddescriptionoftheresults

Classical resultsrelate the metricproperties of conditionallynegative definite func-tionsonacountablediscretegroupΓ toitsapproximationproperties.Forexample,there existsaproper,conditionallynegativedefinitefunction onΓ ifandonlyifthereexists a sequence ϕn ∈ c0(Γ) of normalized, positive definite functions, vanishing at infinity

andconvergingpointwisetotheconstantfunction1.

Inacelebratedwork[27],U.Haagerupprovedthatthelengthfunctionofafreegroup Fn withn∈ {2,· · · ,∞} generatorsisnegativedefinite,thusestablishingforfreegroups

the aboveapproximation property. Since then the property is referredto as Haagerup ApproximationProperty(H)orGromova-T-menability(see[6]).

Inaddition,ifforaconditionallynegative definitefunction onacountablediscrete group Γ, the series g∈Γe−t(g) converges for all t > 0, then there exists a sequence

ϕn∈ l2(Γ) ofnormalized,positivedefinitefunctions,convergingpointwisetotheconstant

function 1 ([25, Thm 5.3]). This latter property is just one of the several equivalent appearancesof amenability, aproperty introduced by J. von Neumann in1929 [40] in ordertoexplaintheBanach–TarskiparadoxinEuclideanspacesRnexactlywhenn≥ 3.

In this note we are going to discuss extensions of the above results concerning amenabilityforσ-finite vonNeumannalgebras N .

Thedirectionalongwhich weare goingto look forsubstitutes oftheabove summa-bilityconditionrelatedtoamenability,isthatofNoncommutativePotential Theory.

Thisis suggestedbyarecent resultbyCaspers–Skalski[5]asserting thatN hasthe (suitablyformulated)HaagerupApproximationProperty (H)ifandonlyifthere exists aDirichletform (E,F) onthestandardHilbertspaceL2(N ),havingdiscrete spectrum.

Thelinkbetweenthepropernessconditionforaconditionallynegativedefinite func-tion onacountablediscretegroupsΓ andthegeneralizedoneonvonNeumannalgebras, relies onthefactthat,when thevon NeumannalgebraN = L(Γ) istheonegenerated bythe left regularrepresentation of Γ,thequadratic form E[a] =g∈Γ(g)|a(g)|2 on

thestandardspace L2(L(Γ),τ ) l2(Γ) isaDirichlet form ifand onlyifthefunction 

isconditionally negativedefinite and itsspectrumis discreteif andonly if is proper. Moreover,onacountable,finitely generated,discretegroupΓ withpolynomialgrowth, there exist aconditionallynegativedefinite functions, having polynomialgrowth and growthdimensionsarbitrarilycloseto thehomogeneousdimensionofΓ (see [16]).

This point of view thus suggests that a condition providing amenability of a von Neumannalgebrawithfaithfulnormalstate(N,ω) couldbe thesubexponentialspectral growth ofaDirichletform(E,F) onthestandardspaceL2(N,ω),i.e.thediscretenessof

thespectrumof(E,F) andthesummabilityoftheseriesk≥0e−tλkforallt> 0,where

λ01,. . . aretheeigenvaluesof(E,F).

ThesecondfundamentalfactthatwillallowtouseDirichletformstoinvestigatethe amenability of a von Neumann algebra, is the possibility to express this property in terms of Connes’ correspondences: N is amenable if and only if the identity or

(3)

stan-dard N -N -correspondenceL2(N ) isweaklycontainedinthecoarseor Hilbert–Schmidt

N -N -correspondence L2(N )⊗ L2(N ) (see [31]).

In the second part of the work we provide a condition guaranteeing the relative amenability of aninclusionB⊆ N offinite vonNeumann algebrasintroducedbyPopa

[31,30], in terms of the existence of a Dirichlet form (E,F) on L2(N ) having relative

subexponentialspectral growth.Alsothisresultisbasedonthepossibilitytoexpress the relative amenabilityofavon NeumannalgebraN withrespect toasubalgebra B⊆ N

interms ofthe weakcontainmentof theidentity correspondence L2(N ) in therelative tensor productcorrespondenceL2(N )

BL2(N ) introducedbySauvageot[33], [30].

Using a suitable Dirichlet form constructed in [11], whose construction uses tools developedby M.Brannanin[3], weapply theaboveresultto proveamenabilityof the vonNeumannalgebraofthefreeorthogonalquantumgroupO2+andHaagerupProperty (H) of the free orthogonal quantum groups ON+ for N ≥ 3 (see also the recent [19]), resultsfirstlyobtainedbyM.Brannan[3].

AdetaileddiscussionoftherelativeHaagerupProperty(H)forinclusionsofcountable discrete groupsintermsofconditionallynegativedefinite functionsispresented.

The paper is organized as follows: in Section 2 we provide the necessary tools on noncommutativepotentialtheoryonvonNeumannalgebraasDirichletforms,Markovian semigroupsandresolvents.

In Section3 we first recall someequivalent constructions of the coarse or Hilbert– Schmidt correspondence of avon Neumann algebra N and someconnections between themodulartheoriesofN ,ofitsoppositeNo,andoftheirspatialtensorproductN⊗No.

Then we introduce the spectral growth rate of aDirichlet form and we provethe first main result of the work about the amenability of von Neumann algebra admitting a Dirichlet form with subexponential spectral growth rate.This partterminates with an application to the amenabilityof countable discrete groups and with apartially alter-nativeapproachtotheproofofaresultofM.Brannan[3]abouttheamenabilityofthe freeorthogonalquantum groupO+2.

Section4startsrecallingsomefundamentaltool ofthebasicconstructionN,B for

inclusions B ⊆ N of finite von Neumann algebras, needed to prove the second main resultoftheworkconcerningtheamenabilityofN with respecttoitssubalgebraB.To formulatethecriterion, weintroducethespectralgrowthrateofaB-invariantDirichlet form on the standard space L2(N ) relatively to the subalgebra B, using the compact

ideal spaceJ (N,B ) ofN,B (cf.[31,30]).Thesectionterminates discussingrelative amenability for two natural subalgebras Bmin ⊆ N and Bmax ⊆ N associated to any

Dirichletform.

InSection5weextendthespectralcharacterizationoftheHaagerupProperty(H)of von Neumann algebras with countabledecomposablecenterdue to M. Caspers andA. Skalski[5]totheRelativeHaageruupProperty(H)forinclusionsoffinitevonNeumann algebras B⊆ N formulated byS.Popa[31,30].

In Section 6 we discuss the relative Haagerup Property (H) for inclusions H < G

(4)

negativedefinite functiononG whichisproperonthehomogeneousspaceG/H andin termsofquasi-normalityofH inG.

The content of the present work has been the subject of talks given in Rome II (March2015), Paris (GREFI-GENCO April2015), Berkeley (UC Seminars September 2015),Krakov(September2015), Varese(May2016).

2. Dirichletformsonσ-finitevon Neumannalgebras

RecallthatavonNeumannalgebraN isσ-finite,orcountably decomposable,ifany collectionofmutuallyorthogonalprojectionsisatmostcountableandthatthisproperty isequivalenttotheexistenceofanormal,faithfulstate.Thisisthecase,forexample,if

N actsfaithfullyonaseparableHilbertspace.

Letus consider onaσ-finite von Neumannalgebra N afixed faithful,normal state

ω∈ N∗+.Letus denoteby(N,L2(N,ω),L2+(N,ω),Jω) thestandardform ofN andby

ξω∈ L2+(N,ω) thecyclic vectorrepresentingthestate(see[26]).

Forareal vectorξ = Jωξ ∈ L2(N,ω),letus denotebyξ∧ ξω theHilbertprojection

ofthevectorξ ontotheclosedandconvexset :={η ∈ L2(N,ω): η = Jωη, ξω− η ∈

L2

+(N,ω)}.

WerecallherethedefinitionofDirichletformandMarkoviansemigroup(see[8])ona genericstandardformofaσ-finitevonNeumannalgebra.Foradefinitionparticularized totheHaagerupstandardformsee[23].

Definition 2.1 (Dirichlet forms on σ-finite von Neumann algebras). A densely defined, nonnegative,lowersemicontinuousquadraticformE : L2(N,ω)→ [ 0,+∞] issaidtobe:

i)real if

E[Jω(ξ)] =E[ξ] ξ∈ L2(N, ω) ; (2.1)

ii)aDirichlet form ifitisreal andMarkovian inthesense that

E[ξ ∧ ξω]≤ E[ξ] ξ = Jωξ∈ L2(N, ω) ; (2.2)

iii) a completely Dirichlet form if all the canonical extensions En to L2(Mn(N ),

ω⊗ trn)

En[[ξi,j]ni,j=1] := n



i,j=1

E[ξi,j] [ξi,j]ni,j=1∈ L2(Mn(N ), ω⊗ trn) , (2.3)

areDirichletforms.

Bytheself-polarityofthestandardconeL2

+(N,ω),anyrealvectorξ = Jωξ∈ L2(N,ω)

decomposes uniquely as a difference ξ = ξ+ − ξ− of two positive, orthogonal vectors

(5)

positivecone).Themodulusofξ isthendefinedasthesumofthepositiveandnegative parts |ξ|:= ξ++ ξ−.

Notice that,ingeneral,thecontractionproperty

E[ |ξ| ] ≤ E[ξ] ξ = Jωξ∈ L2(A, ω)

isaconsequenceofMarkovianityandthatitisactuallyequivalenttoitwhenE[ξω]= 0.

The domain of the Dirichlet form is defined as the (dense) subspace of L2(N,ω)

where thequadraticformisfinite:F := {ξ ∈ L2(N,ω):E[ξ]< +∞}.Wewilldenote by

(L,D(L)) thedenselydefined,self-adjoint,nonnegativeoperatoronL2(A,τ ) associated

with theclosed quadraticform(E,F)

F = D(√L) and E[ξ] = √Lξ2 ξ∈ D(√L) =F .

Definition 2.2 (Markovian semigroups on standard forms of von Neumann algebras).

a) A boundedoperatorT onL2(N,ω) issaidto be

i)real if itcommuteswiththemodularconjugation:T Jω= JωT ,

ii) positive ifitleavesgloballyinvariantthepositivecone:T (L2

+(N,ω))⊆ L2+(N,ω),

iii) Markovian ifitisrealanditleavesglobally invarianttheclosed, convexset:

T (Cω)⊆ Cω,

iv) completelypositive, resp.completely Markovian,ifit is realand all ofits matrix amplificationsT(n) toL2(Mn(N ),ω⊗ trn) L2(N,τ )⊗ L2(Mn(C),trn) definedby

T(n)[[ξi,j]ni,j=1] := n



i,j=1

[T ξi,j]ni,j=1 [ξi,j]i,j=1n ∈ L2(Mn(N ), ω⊗ trn) ,

are positive,resp.Markovian;

b) A stronglycontinuous, uniformlybounded, self-adjoint semigroup{Tt: t> 0} on

L2(N,ω) is said to be real (resp.positive, Markovian, completely positive, completely

Markovian)ifthe operatorsTt arereal (resp.positive,Markovian,completely positive,

completely Markovian)forallt> 0.

In literature, property in item iii) above is sometime termed submarkovian, while

markovian is meant positivitypreserving and unital. Our choiceis only dictated by a willing ofsimplicity.

NoticethatT is(completely)Markovianiffitis(completely)positiveandT ξω≤ ξω.

Notice thatifN is abelian,then positive(resp.Markovian)operators are automati-cally completelypositive(resp.completelyMarkovian).

Dirichletformsareinone-to-onecorrespondencewithMarkoviansemigroups(see[8]) throughtherelations

(6)

Tt= e−tL t≥ 0

where(L,D(L)) istheself-adjoint operatorassociated tothequadraticform(E,F). Dirichlet forms and Markovian semigroups are also in correspondence with a class of semigroupson thevon Neumann algebra. To statethis fundamentalrelation, let us considerthesymmetricembedding iω determinedbythecyclicvectorξω

iω: N → L2(N, ω) iω(x) := Δ

1 4

ωxξω x∈ N .

Here,Δωisthemodularoperatorassociatedwiththefaithfulnormalstateω (see[38]).

Wewilldenote by{σω

t : t∈ R} themodularautomorphisms groupassociated to ω and

by Nσω ⊆ N the subalgebra of elements which are analytic with respect to it. Then

(see [8]) (completely) Dirichlet forms (E,F) and (completely) Markovian semigroups

{Tt: t> 0} onL2(N,ω) areinone-to-onecorrespondencewiththoseweakly-continuous,

(completely) positive and contractive semigroups {St : t > 0} on the von Neumann

algebraN whicharemodularω-symmetric inthesensethat

ω(St(x)σ−i/2ω (y)) = ω(σω−i/2(x)St(y)) x, y∈ Nσω, t > 0 , (2.4)

throughtherelation

iω(St(x)) = Tt(iω(x)) x∈ N , t > 0 .

Relation(2.4)iscalledmodular symmetry anditisequivalentto

(Jωyξω|St(x)ξω) = (JωSt(y)ξω|xξω) x, y∈ N , t > 0 . (2.5)

Remark2.3.Incaseω isatrace,thesymmetricembeddingreducestoiω(x)= xξωwhile

themodularsymmetrysimplifies toω(St(x)y)= ω(xSt(y)) forx,y∈ N and t> 0.

To shorten notations, in the forthcoming part of the paper “Dirichlet form” will always mean “completely Dirichlet form” and “Markovian semigroup” will always mean “completely Markovian semigroup”.

Whenever no confusion can arise, the modular conjugation will be sometime

de-noted J .

2.1. Examplesof Dirichletforms

Instancesof thenotions introduced abovemaybe found invarious frameworks. We just recall here some examples of different origins. One may consult the fundamental works[2],[22]forthecommutativecaseand[10],[9]forsurveysinthenoncommutative setting.

(7)

a) ThearchetypicalDirichletform ontheEuclidean spaceRn or,moregenerally,on any RiemannianmanifoldV ,endowedwithitsRiemannianmeasurem, istheDirichlet integral

E[a] =



V

|∇a|2dm a∈ L2(V, m) .

Inthis casethetraceonL∞(V,m) is givenbytheintegralwithrespectto themeasure

m andtheformdomainistheSobolevspaceH1(V )⊂ L2(V,m).Theassociated

Marko-vian semigroupis thefamiliar heat semigroupof theRiemannianmanifold. Interesting variationsoftheaboveDirichletintegralaretheDirichletforms oftype

E[a] :=

Rn

|∇a|2 a∈ L2(Rn, μ) ,

thatforsuitablechoicesofpositiveRadonmeasuresμ,aregroundstaterepresentations of HamiltonianoperatorsinQuantumMechanics.

b)Dirichletformsareafundamentaltooltointroducedifferentialcalculusandstudy Markovianstochasticprocessesonfractalsets (see[29],[15],[12,13]).

c)OnacountablediscretegroupΓ,anyconditionallynegativedefinitefunction gives

risetoaDirichletform

E[ξ] :=



s∈Γ

|ξ(s)|2(s) ,

on the Hilbert space l2(Γ), considered as the standard Hilbert space of the left von

NeumannalgebraL(Γ) generatedbytheleftregularrepresentationofΓ (see [14],[10]). Theassociated Markoviansemigroupissimplygivenbythemultiplicationoperator

Tt(a)(s) = e−t(s)a(s) t > 0 , s∈ G , a ∈ l2(Γ) .

d)Onnoncommutativetori,θ∈ [0,1] (see[18]),whichareC-algebrasgenerated by

two unitariesu andv,satisfyingtherelation

vu = e2iπθuv ,

theheat semigroup{Tt: t≥ 0} definedby

Tt(unvm) = e−t(n

2+m2)

unvm (n, m)∈ Z2,

is a τ -symmetric Markoviansemigroup on thevon Neumannalgebra generated by

theG.N.S.representationofthefaithful,tracialstateτ : Aθ→ C characterized by

(8)

e) There exists ageneralinterplay betweenDirichlet formsand differential calculuson tracialC-algebras(A,τ ) (see[34,35],[14])andthisprovidesasourceofDirichletforms onvonNeumannalgebras(generatedbyA intheG.N.S.representationofthetrace).In fact,denotingbyN thevonNeumannalgebrageneratedbytheG.N.S.representationof thetrace,if (∂,D(∂)) isadensely definedclosablederivation from L2(N,τ ) toHilbert

A-bimoduleH,then theclosure ofthequadraticform

E[a] := ∂a2

H a∈ F := D(∂)

isaDirichletformonL2(N,τ ).Viceversa,anyDirichletformonL2(N,τ ) whosedomain

isdense inA arisesin thisway from an essentiallyunique derivation onA canonically

associated with it (see [14]). Examples of this differential calculus can be found in all the situations illustrated above as well as inthe geometric framework of Riemannian foliations (see [36]) and also in the framework of Voiculescu’s Free Probability theory (see[39]).There,theDirichletformassociatedtoVoiculescu’sderivationpresentsseveral aspectsconnectedtoNoncommutativeHilbertTransform,FreeFischerInformationand FreeEntropy.

3. Amenabilityofσ-finitevon Neumannalgebras

Inthis section we relateacertain characteristic ofthe spectrumof aDirichlet form totheamenabilityofthevon Neumannalgebra.Recall thatavonNeumannalgebraN

issaidtobe amenable if,foreverynormaldualBanachN -bimoduleX,thederivations

δ : N→ X areallinner,i.e.theyhavetheform

δ(x) = xξ− ξx x∈ N

formsomevectorξ∈ X.Itisaremarkablefact,andthebyproductofatourdeforce,that this property is equivalent to several others of apparently completely different nature, such as hyperfiniteness, injectivity, semi-discreteness, Schwartz property P, Tomiyama property E.Wereferto [18,Ch. V]forareviewonthese connections.Amongthemain examples of amenable von Neumann algebras, we recall: the von Neumann algebra of a locally compact amenable group, the crossed product of an abelian von Neumann algebraby an amenablelocally compact group,the commutant von Neumannalgebra ofanycontinuousunitaryrepresentationofaconnectedlocallycompactgroup,thevon Neumannalgebragenerated byanyrepresentationofanuclearC-algebra.

3.1. Standardform ofthespatialtensor productof vonNeumann algebras

Here we summarize somewell known propertiesof thestandard form of thespatial tensor product of two von Neumann algebras in terms of Hilbert–Schmidt operators (details may be found in[38]), mainlywith the intention to make precise, inthe next

(9)

section, somepropertiesofthesymmetricembeddingofaproductstate.Moreprecisely we shallusethefollowing facts:

3.1.Let N ⊆ B(H) beavonNeumannalgebra.Avectorξ∈ H iscyclicforthecommutant N ifandonly if itisseparatingforN ;

3.2. Let Nk⊆ B(Hk) k = 1,2 bevon Neumannalgebras.If thevectors ξk ∈ Hk,k = 1,2

arecyclicforNk,thenthevectorξ1⊗ξ2∈ H1⊗H2iscyclicforthespatialtensorproduct

N1⊗N2;

3.3. Let Nk k = 1,2 be von Neumann algebras and L2(Nk) their standard forms. If

the vectors ξk ∈ L2+(Nk) k = 1,2 are cyclic forNk (hence separating) then the vector

ξ1⊗ξ2∈ L2(N1)⊗L2(N2) iscyclicandseparatingforthespatialtensorproductN1⊗N2.

3.2. Symmetricembeddingof tensor productofvon Neumannalgebras

Here we recall the definition and aproperty of the symmetric embedding of a von NeumannalgebrainitsstandardHilbertspace.LetN beaσ-finitevonNeumannalgebra and ω∈ N∗,+ afaithful,normalstate.

Inthestandardform(N,L2(N,ω),L2

+(N,ω)),wedenotebyξω∈ L2+(N,ω) thecyclic

vectorrepresentingthestateω andbyandΔω itsmodularconjugationandmodular

operator,respectively.

Thesymmetricembeddingiω: N → L2(N,ω),definedbyiω(x):= Δ

1 4

ωxξωforx∈ N,

is acompletely positivecontractionwithdenserange,whichisalsocontinuousbetween the weak-topology of N and the weak topology of L2(N,ω). It is also an order iso-morphism of completely ordered sets between {x = x∗ ∈ N : 0 ≤ x ≤ 1N} and

{ξ = Jωξ ∈ L2(N,ω) : 0 ≤ ξ ≤ ξω)} (see [1], [17], [26] and [4]). We shall make use

of thefollowing properties:

3.4.LetNk k = 1,2 bevonNeumannalgebrasandL2(Nk) theirstandardforms.Consider

thecyclic (hence separating)vectors ξk ∈ L2(Nk) k = 1,2 andthecyclicand separating

vector ξ1⊗ ξ2∈ H1⊗ H2 forthespatialtensor productN1⊗N2.

Let Jk,Δk be the modular conjugation and the modular operator associated to ξk

Hk k = 1,2 and 1⊗ξ2,Δξ1⊗ξ2 be the modular conjugation and the modular operator associated toξ1⊗ ξ2.Thenthefollowingidentificationsholdtrue

• Jξ1⊗ξ2= Jξ1⊗ Jξ2;

• N1ξ1 N2ξ2⊆ H1⊗ H2 isacorefortheclosed operatorΔ

1 2 ξ1⊗ξ2; • Δ12 ξ1⊗ξ21⊗ η2)= Δ 1 2 ξ11)⊗ Δ 1 2 ξ22) forηk∈ Nkξk andk = 1,2.

We will denote by N◦ the opposite algebra of N : it coincides with N as a vector space but theproduct is taken inthe reverse order x◦y◦ := (yx)◦ for x◦,y◦ ∈ N◦. As

(10)

customary,weadopttheconventionthatelementsy∈ N,whenregardedas elementsof theoppositealgebraaredenotedbyy◦∈ N◦.

A linearfunctional ω onN , when consideredas alinearfunctional on theopposite algebraN◦ isdenotedbyω◦ andcalledtheopposite ofω.AsN andN◦share thesame positivecone,ifω ispositiveonN soisω◦onN◦andifω isnormalsodoesitsopposite. BythepropertiesofstandardformsofvonNeumannalgebras,itfollowsthatforthe standardform (N◦,L2(N,ω),L2

+(N◦,ω◦)) ofN◦ onehasthefollowingidentifications

L2(N◦, ω◦) = L2(N, ω) , L2+(N◦, ω◦) = L2+(N, ω) , Jω= Jω◦,

Δω◦= Δ−1ω , ξω◦ = ξω.

Using the isomorphism between N◦ and the commutant N, given by N◦  y◦ Jωy∗Jω ∈ N, we canregard L2(N,ω) notonly as a left N -module but also as aleft

N◦-module,henceas arightN -moduleandfinally asaN -N -bimodule

y◦ξ := Jωy∗Jωξ , ξy := Jωy∗Jωξ , xξy := xJωy∗Jωξ x, y∈ N , ξ ∈ L2(N, ω) .

Thesymmetricembeddingsassociated toω andω◦ arerelatedby

iω◦(y◦) = Δ 1 4 ω◦(ξωy) = Δ 1 4 ω◦Jωy∗Jωξω= Δ 1 4 ω Δ 1 2 ωyξω= Δ 1 4 ωyξω= iω(y) , Jω(iω(y∗)) = JωΔ 1 4 ω(y∗ξω) = JωΔ 1 4 ωJωΔ 1 2 ω(yξω) = Δ 1 4 ω(yξω) = iω(y) = iω◦(y◦) . 3.3. Coarsecorrespondence

Recall that a Hilbert–Schmidt operator T is abounded operator on L2(N,ω) such

thatTraceL2(N,ω)(T∗T )< +∞.It maybe representedas

T ξ :=



k=0

μk(ηk|ξ)ξk ξ∈ L2(N, ω)

in terms of suitable orthonormal systems {ηk : k ∈ N}, {ξk : k ∈ N} ⊂ L2(N,ω)

and a sequence {μk : k ∈ N} ⊂ C such that ∞k=0|μk|2 < +∞. The set of

Hilbert–Schmidt operators HS(L2(N,ω)) is a Hilbert space under the scalar product (T1|T2):= TraceL2(N,ω)(T1∗T2).

Lemma3.5. The binormalrepresentationsπ1

coco23co of N⊗maxN◦,characterized by

π1co: N⊗maxN◦→ B(HS (L2(N, τ )))

πco1(x⊗ yo)(T ) := xT y x, y∈ N , T ∈ HS (L2(N, τ )) ,

πco2 : N⊗maxN◦→ B(L2(N, τ )⊗ L2(N, τ ))

(11)

π3co: N⊗maxN◦→ B(L2(N, τ )⊗ L2(N, τ ))

π3co(x⊗ yo)(ξ⊗ η) := xξ ⊗ ηy x, y∈ N , ξ, η ∈ L2(N, τ ) ,

are unitarely equivalent by

U : L2(N, τ )⊗ L2(N, τ )→ L2(N, τ )⊗ L2(N, τ ) U (ξ⊗ η) := ξ ⊗ J ωη

V : L2(N, τ )⊗ L2(N, τ )→ HS(L2(N, τ )) V (ξ⊗ η)(ζ) := (η|ζ)ξ .

Theygive riseby weakclosure

co3(N⊗maxN◦))= N⊗N◦

of thespatialtensor productof N byitsoppositeN◦.

Lemma 3.6. The normal extension of the coarse representation πco of the C∗-algebra

N maxN◦ to thevon Neumann tensor product N⊗N◦ isthe standard representation

of N⊗N◦ (and itwillstilldenoted by thesamesymbol).

The standardpositiveconein thevariousequivalent representationsisdeterminedas

• HS(L2(N,ω))

+,theset ofallnonnegative Hilbert–Schmidtoperatorson L2(N,ω);

• (L2(N,τ )⊗ L2(N, ω))

+,generated by thevectors ξ⊗ ξ with ξ∈ L2(N,ω);

• (L2(N,τ )⊗ L2(N,ω))

+,generated by thevectors ξ⊗ Jωξ with ξ∈ L2(N,ω).

The standardHilbert spaceandthepositivecone ofN⊗N◦ will bedenoted also by L2(N⊗N◦, ω⊗ ω◦) , L2+(N⊗N◦, ω⊗ ω◦) .

Lemma 3.7. Let T : L2(N,ω) → L2(N,ω) be a bounded operator and consider on the

involutive algebra N N◦,thelinearfunctional determinedby

ΘT : N  N◦→ C ΘT(x⊗ y◦) := (iω(y∗)|T iω(x)) x⊗ y◦∈ N  N◦.

ThenΘT isapositivelinearfunctionalonN N◦ ifandonlyifT iscompletelypositive

(cf. Definition 2.2iv)).

Proof. i) The positive cone of N  N◦ is generated by elements of type ν∗ν =

n

j,k=1x∗jxk ⊗ (yky∗j) where ν =

n

k=1xk ⊗ y◦k ∈ N  N◦. The result then follows

bytheidentity ΘT(ν∗ν) = n  j,k=1 ΘT(x∗jxk⊗ (ykyj∗)) = n  j,k=1 (iω(yjy∗k)|T iω(x∗jxk)) ,

the completelypositivityofthesymmetric embeddingiω: N → L2(N,τ ) and the

(12)

Lemma3.8.LetT : L2(N,ω)→ L2(N,ω) beacompletelypositiveoperatorandconsider thepositivelinearfunctional ΘT on N N◦.Then, amongtheproperties

a)ΘT is astateonN N◦

b)T isa contraction c)T ξω= ξω

wehave thatthefollowingrelations i)a)andb) implyc)andT = 1

ii)c) impliesa)and b).

Proof. i) By a) and b) we have 1 = ΘT(1N ⊗ 1N◦) = (ξω|T ξω) ≤ ξω· T ξω

ξω2· T  = 1 that implies T  = T ξω = 1 and (ξω|T ξω) = ξω· T ξω which

provideT ξω= ξω. ii)Theproof thatc) impliesa) isimmediate whiletheproofthatc)

impliesb)canbe foundin[8]. 2

3.4. Spectral growthrate

Inthefollowingdefinition,thenotionofgrowthrateofafinitelygenerated,countable discretegroupisextendedtoσ-finitevonNeumannalgebrashavingtheHaagerup Prop-erty(H), i.e.von Neumann algebras admittingDirichlet forms withdiscrete spectrum. Theideaforthisgeneralizationresultsfrom[16](seediscussioninExample 3.11below). Definition 3.9 (Spectral growth rate of Dirichlet forms). Let (N,ω) be a σ-finite, von Neumannalgebrawithafixedfaithful,normalstateonit.Toavoidtrivialitiesweassume

N tobeinfinite dimensional.

Let(E,F) beaDirichletform onL2(N,ω) andlet(L,D(L)) be theassociated

non-negative, self-adjoint operator. Assumethat its spectrumσ(L) ={λk ≥ 0 : k ∈ N} is

discrete, i.e. its points are isolated eigenvalues of finite multiplicity (repeated in non-decreasing orderaccordingto theirmultiplicities).

Thenletusset

Λn:={k ∈ N : λk ∈ [0, n]} , βn:= (Λn) , n∈ N

anddefinethespectral growthrate of(E,F) as Ω(E, F) := lim sup

n∈N

n



βn.

TheDirichletform(E,F) issaidtohave

• exponential growth if(E,F) hasdiscretespectrumandΩ(E,F)> 1

• subexponentialgrowth if(E,F) hasdiscretespectrumandΩ(E,F)= 1

• polynomial growth if(E,F) hasdiscretespectrumand,forsomec,d> 0, βn≤ c· nd

foralln∈ N

(13)

Lemma 3.10.Setting γ0= β0 and γn:= βn− βn−1= {k ∈ N : λk ∈ (n − 1, n]} , n∈ N∗, and Ω(E, F) := lim sup n∈N∗ n γ n we have Ω(E, F) = Ω(E, F) ≥ 1 .

Proof. On one hand, by definition, we have Ω(E,F) ≥ Ω(E,F). On the other hand, since,byassumption,N isinfinitedimensionalandσ(L) isdiscrete,wehaveΩ(E,F)≥ Ω(E,F) ≥ 1. Consider now the following identity involving analytic functions in a neighborhood of0∈ C  n=0 βnzn= (1− z)−1  n=0 γnzn

and notice that the radius of convergence of the series on the left-hand side is R =

1/Ω(E,F), while theradius ofconvergence ofthe series ontheright-hand sideis R = 1/Ω(E,F) sothatR≤ R ≤ 1.Since(1− z)−1isanalyticintheopenunitdiskcentered inz = 0,theaboveidentityimpliesthatR≥ R sothatΩ(E,F)≤ Ω(E,F). 2 Example 3.11 (Spectral growth rate on countable discrete groups). i) On a countable discretegroupΓ,ifthere existsaproper,c.n.d.function,thentheassociated Dirichlet form (E,F) hasdiscretespectrumσ(L)={(g)∈ [0,+∞): g ∈ Γ}.

ii)Onafinitelygenerated,countablediscretegroupΓ,ifthelengthS corresponding

to afinitesystemofgeneratorsS⊆ Γ isnegativedefinite,thenthespectralgrowth rate Ω(ES,FS) ofthecorrespondingDirichletformcoincideswithgrowthrateof(Γ,S) (see [20, Ch. VI]).

iii) Moreover, if(Γ,S) has polynomialgrowth, it hasbeen shownin[16] thatthere exists onΓ aproper,c.n.d.function  withpolynomialgrowth.Theassociated Dirichlet form (E,F) willhavepolynomialspectralgrowth rate.

Remark3.12.Byawellknownbound(see[32,Theorem 3.37]) 1≤ lim inf n βn+1 βn ≤ lim supn∈N n  βn,

ifthespectralgrowth rateissubexponential,thenlim infn ββn+1n = 1 sothatthereexists

a subsequence of {βn+1

(14)

subspaces{En}n∈Ncorrespondingto theinterval[0,n]⊂ [0,+∞) admitsasubsequence suchthat lim k dim Enk+1 dim Enk = 1 .

Subexponential growth can be equivalently stated in terms of the nuclearity of the completelyMarkoviansemigroup{e−tL: t> 0} on L2(N,ω):

Lemma3.13.TheDirichletform(E,F) hasdiscretespectrumandsubexponentialspectral growthifandonlyiftheMarkoviansemigroup{e−tL: t> 0} onL2(N,ω) is nuclear,or trace-class,in thesense that:

Trace (e−tL) = k∈N e−tλk < + t > 0 . Proof. Since γ0+  n∈N∗ γne−tn  k∈N e−tλk ≤ γ 0+ et  n∈N∗ γne−tn t > 0 ,

theseriesk∈Ne−tλk and 

n∈N∗γne−tn convergeor divergesimultaneously.They

ob-viouslyconvergeforallt> 0 ifand onlyifΩ(E,F)≤ 1. 2

Example3.14. Ifon acountablediscrete groupΓ,there exists ac.n.d.function, such thatg∈Γe−t(g)< +∞ forall t> 0,then  isproper,the spectrumoftheassociated Dirichlet form (E,F) coincides with {(g) ∈ [0,+∞) : g ∈ Γ} andit is thus discrete

withsubexponentialgrowth.

Thefollowingisthemainresultofthissection.

Theorem 3.15. Let (N,ω) be a σ-finite von Neumann algebra endowed with a normal, faithful stateon it. If there existsa Dirichlet form (E,F) on L2(N,ω) having

subexpo-nentialspectral growth,then N isamenable.

Proof. Recall that N is amenable if and only if the identity or standard bimodule

NL2(N )NisweaklycontainedinthecoarseorHilbert–SchmidtbimoduleHco (see[31]).

Considerthe completely positivesemigroup {Tt:= e−tL : t> 0} and assume,for

sim-plicity,thatthecyclicvectorisinvariant:Ttξω= ξωforallt> 0.Recall(cf.Lemma 3.7)

thatthecompletepositivityofTtprovidesabinormalstateonN⊗maxN◦characterized

by

(15)

Tocomputethisstate,weconsiderthespectralrepresentationTt=k≥0e−tλkPk

(con-vergingstrongly)intermsoftherank-oneprojectionsPkonL2(N,ω) associatedtoeach

eigenvalue λk (repeated according to their multiplicity). Notice thatby Markovianity,

the semigroupcommuteswith themodular conjugation so thateacheigenvector ξk

maybeassumed tobereal: ξk = Jωξk.Wethenhave

Φt(x⊗ y◦) = (iω(y∗)|Ttiω(x)) =  k=0 e−tλk(i ω(y∗)|Pk(iω(x))) =  k=0 e−tλk(i ω(y∗)|(ξk|iω(x))ξk) =  k=0 e−tλk k|iω(x))(iω(y∗)|ξk) .

AstheseriesZt:=∞k=0e−tλkξk⊗ξkisnormconvergentforallt> 0 bythenuclearityof

thesemigroup,sinceisanantiunitaryoperatoronL2(N ),usingpropertiesinitem 3.4

abovewehave Φt(x⊗ y◦) =  k=0 e−tλk k|iω(x))(Jωξk|Jωiω(y∗)) =  k=0 e−tλk k|iω(x))(ξk|iω◦(y◦)) =  k=0 e−tλk k⊗ ξk|iω(x)⊗ iω◦(y◦))L2(N,ω)⊗L2(N,ω) =  k=0 e−tλkξ k⊗ ξkiω(x)⊗ iω◦(y◦)  L2(N,ω)⊗L2(N,ω) =  Ztiω⊗ω◦(x⊗ y◦)  L2(N⊗N◦,ω⊗ω◦).

SincethesymmetricembeddingsofvonNeumannalgebrasarecontinuouswhenN⊗N◦

is endowedwiththe weak-topologyandL2(N⊗N,ω⊗ ω) isendowedwith theweak

topology,bycontinuitywehave Φt(z) =  Ztiω⊗ω◦(z)  L2(N⊗N◦,ω⊗ω◦) z∈ N⊗N .

In other words, the linearfunctional Φtextends as a σ-weaklycontinuous linear

func-tionalonthespatialtensorproductN⊗N◦tbeingpositivebyLemma 3.7,thereexist

(16)

Φt(z) = (iω(y∗)|Ttiω(x)) =  Ωt|πco(z)Ωt  L2(N⊗N⊗ω) z∈ N⊗N

and the GNS representation of N max N◦ associated to Φt coincides with a

sub-representation of πco. Inother words, the N− N-correspondence Ht associated to the

completely positive map Tt is contained in the coarse N − N-correspondence Hco for

all t > 0. Since thesemigroup {Tt : t > 0} is strongly continuous on L2(N,ω), for all

x⊗ y◦∈ N ⊗maxN◦ wehave lim t↓0  Ωt|πco(x⊗ y◦t  L2(N,ω)⊗L2(N,ω)= (iω(y )|i ω(x))L2(N,ω) = (Δ14 ωy∗ξω|Δ 1 4 ωxξω) = (Δ 1 2 ωy∗ξω|xξω) = (Jωyξω|xξω) = (JωyJωξω|xξω) = (ξω|Jωy∗Jωxξω) = (ξω|xJωy∗Jωξω) = (ξω|xξωy) = (ξω|πid(x⊗ y◦)ξω) andbycontinuity lim t↓0  Ωt|πco(z)Ωt  L2(N,ω)⊗L2(N,ω)= (ξω|πid(z)ξω) z∈ N ⊗maxN .

ThisprovesthattheidentitycorrespondenceHidisweaklycontainedinthecoarse

corre-spondenceHco andthusN isamenableatleastifthesemigroupleavesthecyclicvector

invariant.Todealwiththegeneralcase,remarkfirstthat,bystrongcontinuity,wehave thatlimt↓0(ξω|Ttξω)=ξω2= 1 and there existt0> 0 such that(ξω|Ttξω)> 0 for all

0< t< t0.Applyingtheargumentabovetothebinormalstates

Φt(x⊗ y◦) :=

1 (ξω|Ttξω)

(iω(y∗)|Ttiω(x)) x⊗ y◦∈ N ⊗maxN◦, 0 < t < t0

wegettheamenabilityof N eveninthegeneralsituation. 2

Remark 3.16. i) The above result implies that if the von Neumann algebra N is not amenable, then any Dirichlet form (E,F) with respect to any normal, faithfulstate ω

hasexponential growth rateΩ(E,F)> 1, i.e.its sequence of eigenvalueshas exponen-tially growing distribution. ii) Conversely, it is an open question whether there exist amenablevonNeumannalgebrasonwhicheveryDirichletformhasexponentialgrowth. Theanalogywithdiscretegroupssuggeststhatthe answerislikelypositive.

(17)

Thefollowing oneisageneralizationofaresultofGuentner–Kaminker[25].

Corollary 3.17. LetΓ be acountable discretegroup, λ: Γ→ B(l2(Γ)) beits left regular representation, L(Γ) its associated von Neumann algebra and τ its trace state. If there existsaDirichletform(E,F) onL2(L(Γ),τ ) havingsubexponentialspectralgrowth, then

thegroup Γ isamenable.

Proof. Undertheassumptions,thegroupvonNeumannalgebraL(Γ) isamenablebythe abovetheorem.HencebyawellknownresultofA.Connes,thegroupΓ isamenable. 2 Example 3.18. (Free orthogonal quantum groups) On the von Neumann algebra

L∞(O+2,τ ) of the free orthogonal quantum group O+2 with respect to its Haar state

τ , ithasbeen constructedin[11] aDirichletform with anexplicitlycomputeddiscrete spectrum of polynomial growth (and spectral dimension d:= lim supnln βn

ln n = 3).

Ap-plying thetheoremaboveoneobtainsaproofoftheamenabilityofL∞(O+2,τ ),aresult whichhasbeen provedbyM.Brannan[3].

4. Relativeamenability ofinclusionsoffinitevonNeumannalgebras

Inthis sectionweextendthepreviousresulttotherelative amenability ofinclusions of finite von Neumann algebras B ⊆ N, as defined by S.Popa [31,30]. This extension is based on the properties of the relative tensor product of Hilbert bimodules and on thepropertiesofthebasicconstruction,whichwewillpresentlyrecall(see[7],[24],[28],

[37]).

4.1. Basicconstruction offinite inclusions

Let N be a von Neumann algebra admitting a normal faithful trace state τ and

1N ∈ B ⊆ N avonNeumannsubalgebrawiththesameidentity (see[7],[28],[31],[37]).

Recall that the relative tensor product L2(N,τ )

B L2(N,τ ) over B of the

N -B-bimodule NL2(N,τ )B by the B-N -bimodule BL2(N,τ )N, constructed in [33], is

isomorphic, as anN − N-bimodule, to theN -N -correspondence HB associated to the

conditionalexpectationEB: N → N fromN ontoB.Thelatterbeinggeneratedbythe

GNS constructionappliedto thebinormalstate

ΦB : N⊗maxN◦→ C ΦB(x⊗ y◦) := τ (EB(x)y) .

According to S. Popa (see [31,30]), the inclusion B ⊆ N is said to be relatively amenable ifthestandardbimoduleNL2(N,τ )N isweaklyincludedintherelativecoarse

bimodule NL2(N,τ )⊗BL2(N ;τ )N.

LeteB be theorthogonal projectioninB(L2(N,τ )) fromL2(N,τ ) ontoL2(B,τ ) and

(18)

gen-eratedbyN andtheprojectioneB.Forexample,ifB =C1N thenN,B =B(L2(N,τ ))

andwhenB = N thenN,B = N .

Denotingbyξτ ∈ L2(N,τ ) thecyclicvectorrepresentingτ onehas

eB(xξτ) = EB(x)ξτ, eBxeB= EB(x)eB x∈ N .

Itcanbeshownthatanelement x∈ N commuteswith theprojectioneB ifandonlyif

x∈ B.Moreover, span(N eBN ) is weakly-dense inN,B andeBN,B eB = BeB.It

canbe shownthat

N, B = (JBJ)⊆ B(L2(N, τ ))

sothatN,B issemifinitesinceB isfinite.Inparticular,there existsauniquenormal, semifinitefaithfultraceTr characterizedby

Tr(xeBy) = τ (xy) x, y∈ N .

andthereexistsalsoauniqueN− N-bimodulemapΦ fromspan(N eBN ) intoN

satis-fying

Φ(xeBy) = xy x, y∈ N , Tr = τ◦ Φ .

The map Φ extends to a contraction between the N -N -bimodules L1(N,B ,Tr) and

L1(N,τ ) andsatisfies

eBX = eBΦ(eBX) X∈ N, B .

Moreover, Φ(eBX)∈ L2(N,B ,Tr) forall X ∈ N,B .These propertiesenableus to

provethattheidentity correspondenceL2(N,B ,Tr) ofthe algebraN,B reducesto

therelativecorrespondenceHB whenrestrictedtothesubalgebraN ⊆ N,B .

Thefollowingpropositioniswellknown,wegivetheproofforsakeofcompleteness. Proposition 4.1. The N -N -correspondences HB and L2(N,B ,Tr) are isomorphic. In

particular,thebinormalstateisgivenby

ΦB(x⊗ y◦) = (eB|xeBy)L2(N,B ,Tr) x, y∈ N sothat thecyclicvector representingthestateΦB is eB∈ L2(N,B ,Tr).

Proof. Letusconsider themapΨ definedonthedomain

D(Ψ) := span{[x ⊗ y◦]HB: x, y∈ N}

(19)

Ψ : D(Ψ)→ L2(N, B , Tr) Ψ([x⊗ y◦]HB) := xeBy x, y∈ N .

Here [x⊗ y◦]HB denotes the element of HB image of the elementary tensor product

x⊗ y◦, in the GNS construction of the state ΦB. The map is well defined because

eB2= Tr(eB)= τ (Φ(eB))= τ (1N)= 1 and xeBy2≤ x· y· eB2=x· y.

By thedefinitionof theHilbertspace HB,the map Ψ isdensely defined.For x,y ∈ N

we have

Ψ([x ⊗ y◦] HB)

2

2=xeBy22

= Tr((xeBy)∗(xeBy))

= Tr(y∗eBx∗xeBy)

= Tr(y∗eBeBx∗xeBeBy)

= Tr((eBx∗xeB)(eByy∗eB))

= Tr(EB(x∗x)eBEB(yy∗)eB)

= Tr(EB(x∗x)eBEB(yy∗))

= τ (EB(x∗x)EB(yy∗)) = τ (EB(EB(x∗x)yy∗)) = τ (EB(x∗x)yy∗) = ΦB(x∗x⊗ (yy∗)) = ΦB(x∗x⊗ (y∗)◦y◦) = ΦB((x∗⊗ (y∗)◦)(x⊗ y◦)) = ΦB((x⊗ y◦)∗(x⊗ y◦)) =[x ⊗ y◦]HB 2 HB.

Bypolarization,forall{xj}nj=1⊂ N wehavealso

(Ψ([xj⊗ y◦j]HB|Ψ([xk⊗ y◦k]HB)2= ([xj⊗ yj◦]HB|[xk⊗ y◦k]HB)HB j, k = 1 ,· · · , n .

Considernowν =nk=1[xk⊗ y◦k]HB ∈ D(Ψ) sothatν∗ν =

n j,k=1[x∗jxk⊗ (yky∗j)]HB∈ D(Ψ) and then Ψ(ν)2 2= n  j,k=1 ([xj⊗ yj◦]HB|[xk⊗ y k]HB)HB = (ν|ν)HB=ν 2 HB.

Hencethe mapΨ extendsto anisometry fromHB intoL2(N,B ,Tr) whichisclearly

(20)

alsodenseinL2(N,B ,Tr).Bytheisometric propertywehavethatIm(Ψ) isclosedso thatΨ isasurjectiveisometry.Finally,forx,y∈ N wecompute

(eB|xeBy)L2(Tr)= Tr(eBxeBy)

= Tr(EB(x)eBy)

= τ (Φ(EB(x)eBy))

= τ (EB(x)y)

= ΦB(x⊗ y◦) . 2

Definition4.2(B-invariantDirichletforms).LetN beavonNeumannalgebraadmitting anormalfaithfultracialstateτ and 1N ∈ B ⊆ N avonNeumannsubalgebra.

ADirichletform(E,F) onL2(N,τ ) is saidto beaB-invariant if bF ⊆ F , E(bξ|ξ) = E(ξ|b∗ξ) b∈ B, ξ ∈ F

and

Fb ⊆ F , E(ξb|ξ) = E(ξb∗|ξ) b∈ B, ξ ∈ F .

Since, by definition, a Dirichlet form is J -real, the above two properties are in fact equivalent.

Intermsof theassociated nonnegative,self-adjointoperator(L,D(L)),B-invariance

meansthattheresolventfamily{(λ+ L)−1: λ> 0} isB-bimodularforsomeandhence allλ> 0

(λ + L)−1(bξ) = b((λ + L)−1ξ)

(λ + L)−1(ξb) = ((λ + L)−1ξ)b ξ∈ L2(N, τ ) , b∈ B ,

or that, alternatively, the semigroup {e−tL : t > 0} is for someand henceall t > 0 a B-bimodularmap

e−tL(bξ) = b(e−tLξ)

e−tL(ξb) = (e−tLξ)b ξ∈ L2(N, τ ) , b∈ B .

SincetheMarkovianityoftheDirichletformimpliesthatthesemigroupandtheresolvent commutewiththemodularconjugationJ ,wehavethattheB-invarianceoftheDirichlet formprovidesthatthesemigroupandtheresolventbelongtotherelativecommutantof

B inthebasicconstructionN,B :

(21)

Definition4.3(Relativediscretespectrum).Wesaythat(E,F) or(L,D(L)) havediscrete spectrum relative to the inclusion B ⊆ N if theMarkovian semigroup, or equivalently theresolvent,belongstothecompactidealspaceJ (N,B ) ([28],[30],[37])ofthebasic construction, generatedbyprojectionsinN,B havingfinitetrace:

e−tL∈ J (N, B ) for some and hence all t > 0 , (λ + L)−1∈ J (N, B ) for some and hence all λ > 0 .

Anotherwaytostateitisthatthespectrumof(L,D(L)) isadiscretesubsetofR+and

thateacheigenprojectionhasfiniteTr trace.

Definition4.4(RelativespectralgrowthrateofDirichletforms).LetN beavonNeumann algebra admitting a normal faithfultracial state τ and 1N ∈ B ⊆ N a von Neumann

subalgebra. ADirichletform(E,F) onL2(N,τ ) whichisB-invariant issaidtobe have • exponential spectralgrowthrelative toB⊆ N ifTr(e−tL)= +∞ forsomet> 0;

• subexponentialspectralgrowth relativetoB ⊆ N ifTr(e−tL)< +∞ forallt> 0.

Noticethat,ifTr(e−tL)< +∞ forsomet> 0, thene−tL∈ J (N,B ) sothat(L,D(L))

has discrete spectrum relative to the inclusion B ⊆ N. This applies, inparticular, to

B-invariant Dirichletforms(E,F) withsubexponentialspectral growthrelativetoB N whichthushavenecessarilydiscretespectrumrelative totheinclusionB ⊆ N.

Remark4.5. Let EL be the spectral measure of the self-adjoint operatorL,D(L) . If

the Dirichlet form is B-invariant then EL takes its values in the class of projections of the von Neumann algebra N,B and we can consider the positive measure νBL := Tr◦ EL on [0,+∞), supported by the spectrum σ(L). In the framework of quantum

statistical mechanics, wherethe operatorL may representthetotal energyobservable, the measure νL

B acquires the meaning of “density of states” in the sense that νLB(Ω)

measures thenumber(relativelyto B)ofallowed energylevelslocated inameasurable subset Ω ⊂ σ(L). In this case the subspace L2(B,τ ) ⊂ L2(N,τ ) may represent the manifold ofgroundstatescorresponding totheminimalallowableenergylevel(seealso

Example 4.7below).ThemeasureμL

B(dλ):= λνB(dλ) hasthenthemeaningof“spectral

energydensity”inthesensethatμL

B(Ω) measurestheenergyofthesysteminasituation

where alltheallowedenergylevelsinΩ⊂ σ(L) areoccupied.

Thesubexponentialspectralgrowthcondition(relativelytoB⊆ N)canberephrased interms ofthe LaplaceTransform νˆBL sayingthatits abscissaof convergencevanishes. In this situationνˆL

B(β)= Tr (e−βL) is called thepartition function ofthe system, itis

defined for allβ > 0 andthe variable β isinterpreted as the inverse temperature. The subexponentialspectralgrowthconditionalsoallowstoconsiderthesocalledGibbs

nor-mal states,defined by Φβ(A):= Tr(Ae

−βL)

Tr(e−βL) , on the von Neumann (observable) algebra

(22)

prop-ertiesbywhichtheycanberegardedasequilibriaofthesystematthefixedvalueofthe inversetemperature. Finally, notice thatthesubexponential spectral growth condition isequivalenttotherequirementthatthemeanenergyΦβ(L):= Tr(Le

−βL)

Tr(e−βL) ofthesystem

isfiniteforany β > 0 (see[4]).

Thefollowingisthemainresultofthissection.

Theorem4.6.LetN beavonNeumannalgebraadmitting anormal faithfultracialstate τ and 1N ∈ B ⊆ N avonNeumann subalgebra.

Ifthere existsaB-invariant Dirichletform(E,F) onL2(N,τ ) having subexponential

spectralgrowth relativelytoB ⊆ N,thentheinclusionB ⊆ N isamenable.

Proof. Letuscheck firstthefollowingidentity

(T∗|xeBy)L2(Tr)= (iτ(y∗)|T (iτ(x))L2(τ )) T ∈ N, B ∩ L2(N, B , Tr) , x, y ∈ N .

Asspan(N eBN ) is weakly denseinN,B ,it isenough toprovethe identity forT

N eBN .IfT = ueBv forsomeu,v∈ N wehave

eByT xeB= eByueBvxeB = (eByueB)(eBvxeB) = EB(yu)eBEB(vx)eB

andthen

(T∗|xeBy)L2(Tr)= Tr(T xeBy)

= Tr(eByT xeB)

= τ (Φ(eByT xeB))

= τ (Φ(EB(yu)eBEB(vx)eB))

= τ (EB(yu)Φ(eBEB(vx)eB)) = τ (EB(yu)Φ(EB(vx)eB)) = τ (EB(yu)EB(vx)) = τ (EB(yuEB(vx))) = τ (yuEB(vx)) = (u∗y∗ξτ|EB(vx)ξτ)L2(τ ) = (iτ(y∗)|uEB(vx)ξτ)L2(τ ) = (iτ(y∗)|ueB(v(xξτ)))L2(τ ) = (iτ(y∗)|ueBv(iτ(x))L2(τ ) = (iτ(y∗)|T (iτ(x))L2(τ )

(23)

sothattheidentityholdstrue.Underthehypothesisofsubexponentialspectralgrowth, we have that Tt := e−tL ∈ L2(N,b ,Tr)∩ L1(N,b ,Tr) for all t > 0. Applying the

aboveidentity,wehavethatthebinormal states Φt: N maxN◦→ C Φt(x⊗ y◦) :=

1 (ξτ|Ttξτ)L2(N,τ )

(iτ(y∗)|Tt(iτ(x))L2(N,τ ),

well defined, bystrongcontinuityof thesemigroup,for t sufficientlycloseto zero,may be representedfort> 0 asΦt(x⊗ y◦)=τ|Ttξτ1)

L2 (N,τ )(Tt|xeBy)L

2(N,b ,Tr).

By the identity above, Φt extends as a normal state on the von Neumann

al-gebra generated by the left and right representations of N in L2(N,B ,Tr). The

N -N -correspondence Ht generated by Φt is thus a sub-correspondence of a multiple

of the N -N -correspondence L2(N,B ,Tr). Since the semigroup {T

t : t > 0} strongly

convergestotheidentityoperatoronL2(N,τ ),weobtainthatthetrivialcorrespondence

from N toN isweaklycontainedintherelativecorrespondenceHB. 2

Example 4.7 (Minimal and maximal inclusions of a Dirichlet form). Let N be a von Neumann algebra and τ a normal, faithful,tracial state and let (E,F) be aDirichlet form onL2(N,τ ) withassociated self-adjointoperator(L,D(L)).

Assume that inf σ(L) = 0 and that this is an eigenvalue (not necessarily of finite multiplicity). ThespectralprojectionP0ontotheeigenspacecorrespondingtotheBorel

subset{0}⊂ [0,+∞) canberepresentedasthestronglimitP0= limt→+∞e−tL.Hence

P0isacompletelyMarkovianprojection,sothatthereexistsavonNeumannsubalgebra

Bmin ⊆ N such that P0 = eBmin. Obviously the associated Markovian semigroup is Bmin-bimodularandtheDirichletformisBmin-invariant.

Alternatively, one can consider the inclusion Bmax ⊂ N where Bmax := {Tt : t >

0}∩ N istherelativecommutantoftheMarkoviansemigroupinN .Noticethatbythe Spectral TheoremBmax={Tt}∩ N forallt > 0.Obviouslytheassociated Markovian

semigroupisBmax-bimodularandtheDirichletformisBmax-invariant.

Proposition 4.8. Let(N,τ ) be afinitevon Neumannalgebra withfaithful,normal trace. Let (E,F ) a Dirichlet form on L2(N,τ ) with generator (L,D(L)) having pure point spectrum made by distinct, isolated eigenvalues σ(L) := 0 < λ1 < λ2 < · · · } and

assume λ0:= inf σ(L)= 0.

Then (E,F ) has discretespectrum relative to Bmin (resp. Bmax) if and only if each

eigenspace ⊂ L2(N,τ ), λ∈ σ(L), has finite coupling constant dimBmin(Eλ)< +∞ (resp. dimBmax(Eλ)< +∞) relativetoBmin (resp.Bmax).

Remarkthatthefinite couplingconstantdimBmin(Eλ)< +∞ (resp.dimBmax(Eλ)<

+∞)relative to Bmin (resp. Bmax) is well definedforany eigenvalueλ∈ σ(L) because

anyeigenspaceisobviouslyaleft(andalsoright)Bmin-module(resp.Bmax-module).

Wereferto[24,Section 3.2]forthedefinitionandpropertiesoftheMurray–vonNeumann coupling constant.

(24)

Example4.9. Let K < Γ beaninclusion ofcountable, discrete groupsandlet L(K)⊂ L(Γ) be the inclusion of the finite von Neumann algebras generated by K and Γ, re-spectively. Their standard spaces coincide with l2(K) and l2(Γ) respectively and the

projectioneL(K) coincideswiththeprojectionfrom l2(Γ) ontoitssubspacel2(K).

Let  : Γ → [0,+∞) be a c.n.d. function. The Dirichlet form (E,F) associated

to  (introduced in Section 3.3) is L(K)-invariant if and only if  vanishes on K or,

equivalently,if isarightK-invariantfunction.Inthis situationwehave:

Proposition 4.10.LetΓ be a countable, discretegroup andlet L(Γ) beits left von Neu-mann algebras. Let  : Γ → [0,+∞) be a c.n.d. function and (E,F) the associated

Dirichlet form. Denote by H :={s∈ Γ: (s) = 0} the subgroup where  vanishes. We thenhave

i)Bmin= Bmax= L(H);

ii)If K isasubgroupof G, then(E,F) isL(K)-invariantifandonly ifK < H.In

this case:

ii.a) isL(K)-biinvariant

ii.b)(E,F) hasdiscretespectrumrelativetoL(K)⊂ L(Γ) ifandonlyifthefunction

G/K: G/K→ [0, +∞) G/K( s) := (s)

definedfor s = sK ∈ G/K,isproper.

ii.c)If,forany t> 0,  s∈G/Ke−tG/K( s)< +∞,then theinclusionL(K)⊂ L(G) is

amenable.

Proof. i)Letx=t∈Γx(t)λ(t)∈ Bmax={Tt: t> 0}∩ L(Γ).Wethen have

xδe= x(I + L)−1δe= (I + L)−1xδe , which implies 0 = L(xδe) = L(  t∈Γx(t)λ(t)δe) = L(  t∈Γx(t)δt) =  t∈Γx(t)(t)δt.

Sothatx(t)(t)= 0 forall t∈ Γ whichinturn implies x∈ L(H) = Bmin.The reverse

inclusionisobvious.

ii) follows from the arguments of the example above. For ii) b) just notice that λ(s)eL(K)λ(s)−1 is the orthogonal projection PsK onto the subspace l2(sH).

Hence the eigenspace corresponding to the eigenvalue λ ∈ σ(L) is given by

s∈G/K , (s)=λl2(sK).Hence,L willhavediscrete spectrumrelativeto K ifand only

if each of these sums is finite (i.e. for all λ) and the set of values of  is discrete, i.e.

−1({λ})/K isfiniteinG/K,i.e.G/K : G/K→ [0,+∞) isproper.

For ii.c), note that in the basic construction for B = L(K) ⊂ N = L(G), PsK =

λ(s)eBλ(s) belongsto N,B andhastrace1.HenceT r(e−tL)= s∈G/Ket(s)for all

t> 0. 2

Remark 4.11. i) If the Dirichlet form (E,F) has discrete spectrum relative to L(K)

(25)

a) thefunction G/H : G/H→ [0,+∞) is proper and(E,F) hasdiscrete spectrum

relative toL(H) ;

b) G/K being left K-invariant, hence constant on left K-cosets, and proper, left

K-cosets inG/K must befinitesets. Inotherwords,K isquasi-normalinG.

ii) On the other hand, if (E,F) has discrete spectrum relative to L(H) then the

functionG/K: G/K→ [0,+∞) willbe constantontotheright H-cosetinG/K.Thus

(E,F) hasdiscretespectrumrelativetoL(K) ifandonlyifeachrightH-cosetinG/K

is afinite unionofK-cosets, which happensifand onlyifK hasfinite index inH,i.e. when thehomogeneousspaceH/K is finite.

5. Aspectralapproachtotherelative Haagerupproperty

As alreadymentioned in the Introduction, ina recentwork [5], M. Caspers and A. Skalski characterized von Neumannalgebras having Property(H) intermsof the exis-tenceofaDirichletformwithdiscretespectrum.Inthespiritoftheprevioussection,we extendtheirresulttorelative property (H),asdefinedbyS.Popa[31,30],forinclusions of von Neumann algebras,using a completely different approach. We will make use of thefollowing wellknownproperties:

5.1. Let(N,τ ) beavonNeumann algebra endowedwith anormal,faithful trace andlet ϕ: N → N beacompletelypositive, normalcontraction suchthat τ◦ ϕ≤ τ.Then

i) thereexistsacontraction Tϕ∈ B(L2(N,τ )) characterizedby

Tϕ(xξτ) = ϕ(x)ξτ x∈ N ;

ii) there existsacompletelypositive,normal contractionϕ∗: N → N such that Tϕ∗= (Tϕ)

or,more explicitly,

(ϕ∗(y)ξτ|xξτ) = (yξτ|ϕ(x)ξτ) x, y∈ N .

Definition 5.2. ([31,30]) Let N be a finite von Neumann algebra and B ⊆ N a von Neumannsubalgebra.ThenN is saidto haveProperty(H) relativetoB ifthere exista normal,faithfultracialstateτ onN andanet{ϕi: i∈ I} ofnormalcompletelypositive,

B-bimodular mapsonN satisfyingtheconditions i) τ◦ ϕi≤ τ

ii) Tϕi ∈ J (N,B )

(26)

Inthis definitionJ (N,B ) is thecompact idealspace, i.e. thenorm closed ideal gen-eratedbyprojectionswithfinitetraceinN,B andTϕi istheoperatordefinedinitem

5.1above.

Byaremark ofS.Popa[30],themapsϕiinthedefinitionabovecanbe chosentobe

contractions. In the following we shall always assume this property for approximating netsoftheidentitymapofavonNeumannalgebra.

Theorem5.3.LetN beafinitevonNeumannalgebrawithcountablydecomposablecenter andfaithfultracialstateτ .LetB ⊆ N beasub-vonNeumannalgebrasuchthatL2(N,τ ),

asB-module,admits acountablebase. Thenthefollowingpropertiesareequivalent

i) N hasProperty (H)relative toB

ii) thereexistsaB-invariant Dirichlet form(E,F) onL2(N,τ ) with discretespectrum

relative toB.

Proof. Assumethatthereexists aDirichletform(E,F) onL2(N,τ ) withdiscrete

spec-trumrelative to B. Hence, the associated generator(L,D(L)) has its resolvent in the compact idealspace: (λ+ L)−1 ∈ J (N,B ).Then for all λ> 0,Sλ := λ(λ+ L)−1

J (N,B ).Moreover, any is MarkovianonL2(N,τ ) which impliesthatthereexists

acompletely positive contraction ϕλ : N → N determined by Sλ(xξτ) = ϕλ(x)ξτ for

x∈ N.Since the areself-adjoint onL2(N,τ ),theϕλ aresymmetric withrespectto

thetrace:τ (ϕλ(x)y)= τ (xϕλ(y)) for allx,y∈ N.Thisimpliesthat

τ (ϕλ(x)) = τ (ϕλ(1N)x)≤ τ(x) x∈ N+.

Lastconditioniii)inDefinition 5.2abovecomesfromthestrongcontinuityofthe resol-vent:

lim

λ→+∞ξ − Sλξ2= 0 ξ∈ L

2(N, τ ) .

Thetheorem isprovedinthe“if”direction.Inthereversedirection,letussuppose that

B ⊆ N is an inclusion with relative property (H) and that L2(N,τ ) is separable as

B-module.Let{ϕn: n∈ N} beasequenceofnormal,completelypositive,B-bimodular

contractions of N , satisfying the conditions of the definition above. By [30, Proposi-tion 2.2] such a sequence always exists. Each ϕn extends by Tn(xξτ) := ϕn(x)ξτ to

a B-bimodular contraction Tn of L2(N,τ ), which belongs to the compact ideal space

J (N,B ). It is also completely positive with respect to the standard positive cone

L2

+(N,τ ) and itsmatrixamplifications.It iseasytocheck thatthemapsϕ∗n appearing

in item 5.1 above, have the same properties as the ϕn’s in definition above.

Replac-ing each ϕn by (ϕn+ ϕ∗n)/2, we can suppose, without loss of generality, that the ϕn

are symmetricwith respect to τ so thatthe corresponding Tn are completely positive,

Riferimenti

Documenti correlati

a) A state transition occurs once per major computa- tion and can have useful mathematical properties. State transitions are not involved in the tiniest details of a

(2001) rilevano che il 5% del campione non presentava una struttura di controllo formalmente definita già prima della quotazione, mentre l’8% delle aziende

Le pareti opache esterne sono realizzate con blocchi di laterizio alleggerito con ottime caratteristiche di resistenza termica (tipo Porotherm Bio-Plan) per uno spessore di 30 cm ed

Theorem 1.11 gives the formulation of hypothesis of the Zariski lemma for a finite number of elements and a finite number of differentiations.... The following theorem completes

Capacità : in continua evoluzione (Gbyte) floppy disk (dischetti). Supporto magnetico di tipo rimovibile Capacità :

CD-ROM Compact Disk Read Only Memory Supporto a tecnologia ottica. Capacità :

Proteoglycan syndecan-mediated signalling events 0.006 Alpha9 beta1 integrin signalling events 0.020 GMCSF-mediated signalling events 0.025 Beta1 integrin cell surface

Così l’Alberti nella Chiesa di Sant’Andrea e nel San Sebastiano; così anche Giulio Romano, che avrebbe voluto la pietra per le costruzioni «perché il luogo non ha pietre