• Non ci sono risultati.

Search for quark contact interactions and extra spatial dimensions using dijet angular distributions in proton-proton collisions at root s=8 TeV

N/A
N/A
Protected

Academic year: 2021

Condividi "Search for quark contact interactions and extra spatial dimensions using dijet angular distributions in proton-proton collisions at root s=8 TeV"

Copied!
21
0
0

Testo completo

(1)

Contents lists available atScienceDirect

Physics

Letters

B

www.elsevier.com/locate/physletb

Search

for

quark

contact

interactions

and

extra

spatial

dimensions

using

dijet

angular

distributions

in

proton–proton

collisions

at

s

=

8 TeV

.CMSCollaboration CERN,Switzerland a r t i c l e i n f o a b s t ra c t Articlehistory: Received10November2014 Receivedinrevisedform19April2015 Accepted21April2015

Availableonline24April2015 Editor:M.Doser Keywords: CMS Physics QCD Electroweakcorrections Contactinteractions Extradimensions

A search is presented for quark contact interactions and extra spatial dimensions in proton–proton collisionsat√s=8 TeV usingdijetangulardistributions.Thesearchisbasedonadatasetcorresponding to an integrated luminosity of 19.7 fb−1 collected by the CMS detector at the CERN LHC. Dijet

angulardistributionsarefoundtobeinagreementwiththeperturbativeQCDpredictionsthatinclude electroweak corrections. Limitson the contact interaction scale from avariety of models at next-to-leading orderinQCDcorrections are obtained.A benchmarkmodelinwhichonlyleft-handedquarks participateisexcluded uptoascale of9.0(11.7) TeVfordestructive(constructive)interferenceat95% confidence level.Lower limits between5.9and 8.4 TeVonthe scale ofvirtualgraviton exchangeare extractedfortheArkani-Hamed–Dimopoulos–Dvalimodelofextraspatialdimensions.

©2015CERNforthebenefitoftheCMSCollaboration.PublishedbyElsevierB.V.Thisisanopenaccess articleundertheCCBYlicense(http://creativecommons.org/licenses/by/4.0/).FundedbySCOAP3.

1. Introduction

Highmomentum-transferproton–protoncollisionsattheCERN LHCprobethedynamicsoftheunderlyinginteractionatdistances below10−19m.Oftenthesecollisions producea pairof jets (di-jets)approximately balanced in transverse momentum pT.These

dijeteventsprovidean idealtestinggroundto probethe validity ofperturbative quantum chromodynamics andto search fornew phenomenasuch asquark compositenessoradditional, compacti-fiedspatial dimensions.Aparticularlysuitable observable forthis purpose is the dijet angular distribution [1] expressed in terms of χdijet=exp(|y1−y2|), where y1 and y2 are therapidities of

thetwojetswiththehighesttransversemomenta.Rapidityis de-finedas y=ln [(E+pz) / (Epz)]/2 with E beingthejetenergy and pz the projection ofthejet momentum onto thebeamaxis. Forthescatteringofmassless partons, χdijet is relatedtothe

po-larscatteringangle θ∗ inthepartoniccenter-of-mass(c.m.)frame by χdijet= (1+ |cosθ|)/(1− |cosθ|).Thechoiceofthevariable

χdijet is motivated by the fact that for Rutherford scattering the

angulardistributionisapproximatelyindependentof χdijet.In

per-turbativeQCDthedijetangulardistributionatsmallc.m.scattering

 E-mailaddress:cms-publication-committee-chair@cern.ch.

angles is approximately independent of the underlying partonic level process andexhibits behavior similar to Rutherford scatter-ing, characteristic of spin-1 particle exchange. Signatures of new physics(NP),such asquark contactinteractions(CI)orvirtual ex-changeofKaluza–Klein[2]excitationsofthegraviton,thatexhibit angulardistributionsthat aremoreisotropicthanthosepredicted byQCD,couldappearasanexcessofeventsatlowvaluesof χdijet.

Models of quark compositeness [3–5] postulate interactions between quark constituents at a characteristic scale  that is much larger than the quark masses. At energies well below , theseinteractions canbeapproximatedby aCIcharacterizedbya four-fermioncoupling.The effectiveLagrangianforflavor-diagonal color-singletcouplingsbetweenquarkscanbewrittenas[4,5]:

Lqq= 2π 2  ηLL(qLγμqL)(qLγμqL) +ηR R(qRγμqR)(qRγμqR)+2ηR L(qRγμqR)(qLγμqL)  ,

where the subscripts L and R refer to the left and right chi-ral projections ofthe quark fieldsrespectively and ηLL, ηR R,and

ηR L are taken to be 0, +1, or −1. The various combinations of

(ηLL,ηR R,ηR L) correspond to different CI models. The following CI scenarios withcolor-singlet couplings between quarks are in-vestigated:

http://dx.doi.org/10.1016/j.physletb.2015.04.042

0370-2693/©2015CERNforthebenefitoftheCMSCollaboration.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense (http://creativecommons.org/licenses/by/4.0/).FundedbySCOAP3.

(2)

 (ηLL,ηR R,ηR L) ±LL (±1, 0, 0) ±R R ( 0,±1, 0) ±V V (±1,±1,±1) ±A A (±1,±1,∓1) ±(VA) ( 0, 0,±1)

Notethat themodels withpositive(negative) ηLL or ηR R leadto destructive (constructive) interferencewith theQCD terms anda lower(higher)crosssectioninthelimitofhighpartonicc.m. ener-gies.InallCImodelsdiscussedinthisLetter,next-to-leading-order (NLO) QCD corrections are employed to calculate the cross sec-tions.Inproton–protoncollisionsthe ±LL and±R R modelsresult inidenticaltree-levelcrosssectionsandNLOcorrections,and con-sequentlyleadtothesamesensitivity.For±V V and ±A A,aswell asfor ±(VA),theCIpredictionsareidenticalattree-level,but ex-hibitdifferentNLOcorrectionsandyielddifferentsensitivity.

Measurements of dijet angular distributions at the Fermilab TevatronhavebeenreportedbytheCDF[6]andD0[7,8] Collabora-tions,andattheLHCbytheCMS[9–11]andATLAS[12,13] Collab-orations.ThemoststringentlimitstodateonCImodelscalculated at tree-levelhave been obtained by the CMS Collaboration from theinclusivejet pT spectrum[14],whichexcludes+LL<9.9 TeV and LL<14.3 TeV. Constraints on CI models with NLO correc-tions have been previously obtained from a search in the dijet angulardistributions[9],excludinginparticular +LL<7.5 TeV and

LL<10.5 TeV.

Dijet angular distributions are also sensitive to signatures from the Arkani-Hamed–Dimopoulos–Dvali (ADD) model [15,16] of compactified extra dimensions (EDs) that provides a possible solution to the hierarchy problem of the standard model (SM). In the ADD model, gravity is assumed to propagate in the en-tire higher-dimensional space, while SM particles are confined to a (3+1) dimensional subspace. As a result, the fundamen-tal Planck scale MD in the ADD model is much smaller than

the (3+1) dimensional Planck energy scale MPl, which may

leadtophenomenologicaleffects thatcanbe testedwithproton– proton collisions at the LHC. The coupling of the graviton in higher-dimensional space to the SM fields can be described by a(3+1)-dimensionaltower ofKaluza–Klein(KK) graviton excita-tions, each coupled to the energy–momentum tensor of the SM field with gravitationalstrength. The effects ofa virtual graviton exchangecan thereforebe approximatedatleading-order(LO) by an effective (3+1)-dimensional theory that sums over KK exci-tationsof avirtual graviton. Thissum isdivergent, andtherefore hastobe truncatedatacertain energyscaleoforder MD,where

the effective theory is expected to break down. Such a theory predicts a non-resonant enhancement ofdijet production,whose angulardistributiondiffers fromtheQCDprediction.Two param-eterizations for virtual graviton exchange in the ADD model are considered, namely the Giudice–Rattazzi–Wells (GRW) [17] and the Han–Lykken–Zhang (HLZ) [18] conventions. Thoughnot con-sidered in this paper, another convention by Hewett [19] exists. In the GRW convention the sum over the KK states is regulated by a single cutoff parameter T. The HLZ convention describes the effectivetheory in terms oftwo parameters, thecutoff scale MS andthenumberofextraspatialdimensionsnED.The

parame-ters MS andnED canbe directlyrelatedto T [20].Weconsider scenarios with2to 6EDs. The caseofnED=1 isnot considered

since it would requirean ED ofthe size of the order ofthe so-lar system; the gravitational potential at these distances would be noticeably modified and this case is therefore excluded. The caseofnED=2 isspecial inthe sense that therelation between

MS andT also depends onthe parton–parton c.m. energy √

ˆ s. Signatures from virtual graviton exchange have previously been soughtindilepton[21,22],diphoton[23,24],anddijet[7,25,26] fi-nalstates,wherethemoststringentlimitscomefromthedilepton searchesandrangefrom3.5to4.9 TeV.

InthisLetter,we extendprevious searchesforcontact interac-tions tohigherCIscales, forawiderangeofmodels thatinclude the exact NLO QCD corrections to dijet production. In addition, we explore variousmodels ofcompactifiedextradimensions. Us-ing a data sample corresponding to an integrated luminosity of 19.7 fb−1 at√s=8 TeV,themeasureddijetangulardistributions, unfolded fordetectoreffects,are comparedtoQCD predictionsat NLO,includingforthefirsttimeelectroweak(EW)corrections.

2. Eventselection

AdetaileddescriptionoftheCMSdetector,togetherwitha def-inition ofthecoordinatesystemsusedandtherelevantkinematic variables,canbefoundinRef.[27].ThecentralfeatureoftheCMS apparatusisasuperconductingsolenoidof6 m internaldiameter, providinganaxialfieldof3.8 T.Withinthesolenoidarethesilicon pixelandstrip trackers,whichcoverthe regionofpseudorapidity |η| <2.5,andthe lead tungstate crystalelectromagneticand the brass and scintillator hadronic calorimeters, which surround the tracking volume and cover |η| <3. Muons are measured in gas-ionizationdetectorsembeddedinthesteelflux-returnyokeofthe solenoidwithacoverageof|η| <2.4.

Eventsarereconstructedusingaparticle-flowtechnique[28,29] whichcombinesinformationfromallCMSsubdetectorstoidentify and reconstruct inan optimalway the individual particle candi-dates (charged hadrons, neutral hadrons, electrons, muons, and photons)ineachevent.Theseparticlecandidatesareclusteredinto jetsusingtheanti-kTalgorithm[30]asimplementedinthe FastJet

package [31] withasize parameter R=0.5.Jet energyscale cor-rections [32]derived fromdataandMonteCarlo(MC) simulation are appliedto accountforthe responsefunctionof the calorime-tersforhadronicshowers.

TheCMStriggersystemusesatwo-tieredsystemcomprisinga level-1trigger(L1)andahigh-leveltrigger(HLT)toselectphysics eventsofinterestforfurtheranalysis.Theselectioncriteriausedin thisanalysisaretheinclusivesingle-jettriggers,whichrequireone L1 jet andone HLT jet withvarious thresholds on the jet pT,as

well astriggerpathswiththresholdsonthedijetmassandscalar sumofthejet pT.The pT ofjetsiscorrected forthe responseof

thedetectoratbothL1andtheHLT.Theefficiencyofeach single-jettriggerismeasuredasafunctionofdijetmassMj jusingevents selectedbyalower-thresholdtrigger.

Eventswithatleasttworeconstructedjetsareselectedfroman inclusivejetsampleandthetwohighest-pT jetsareusedto

mea-surethedijetangulardistributions fordifferentrangesin Mj j.In unitsofTeVtheMj j rangesare(1.9,2.4),(2.4,3.0),(3.0,3.6),(3.6, 4.2),and >4.2.ThelowestMj j rangeischosensuchthatthe trig-ger efficiencyexceeds 99% in all bins of χdijet considered inthis

analysis.ThetwohighestMj j rangeswerechosentomaximizethe expectedsensitivitytothenewphysics signalsconsidered.Events with spurious jets from noise and noncollision backgrounds are rejected by applying loose quality criteria [33] to jet properties and requiring a reconstructed primary vertex within ±24 cm of the detector centeralong the beam lineand within 2 cm of the detectorcenterintheplanetransversetothebeam.Themain pri-mary vertexis defined as the one with the largest summed p2T of its associated tracks. The phase space for this analysis is de-finedbyselectingeventswith χdijet<16 and yboost<1.11,where

(3)

within |y| <2.5.The highest value of Mj j observed in thisdata sampleis5.2 TeV.

3. Crosssectionunfoldinganduncertainties

Themeasured χdijet distributions, definedas (1dijet)(dσdijet/

dχdijet),arecorrectedformigrationeffectsduetothefinitejet

en-ergy andposition resolutions ofthe detector. Fluctuationsin the jet response cause event migrations in χdijet as well as in dijet

mass.Therefore,atwo-dimensionalunfoldinginthesevariablesis performed using the D’Agostini method [34] as implemented in the RooUnfold package[35].Theunfoldingcorrectionsare deter-minedfroma response matrixthat mapsthetrue Mj j and χdijet

distributions onto the measured ones. This matrixis derived us-ingparticle-leveljetsfrom herwig++ version2.5.0[36,37]withthe tuneofversion2.4.ThejetsaresmearedinpTwithadouble-sided

Crystal-Ballparameterization[38]oftheresponse,whichtakesinto accountthe fulljet energyresponseincludingnon-Gaussian tails. Theunfolding correction factors asa function of χdijet vary from

lessthan3%inthelowestMj j rangetolessthan20%inthe high-estMj j range.

Themain experimental systematic uncertainties inthis analy-sis are caused by the jet energy scale, thejet energyresolution, andthe unfolding modeling anddetector simulation. The overall jetenergyscale uncertaintyvariesbetween1%and2% andhasa dependenceon pseudorapidityoflessthan1%per unitof η [32]. The jet energy scale uncertainty is divided into 21 uncorrelated sources [39].The effect ofeach source ispropagated to thedijet angulardistributionsandthensummedinquadraturetotakeinto accountuncorrelatedpT- and η-dependentsourcesthatcould

can-celifvariedsimultaneously.Theresultinguncertaintyinthe χdijet

distributionsduetothe jetenergyscale uncertaintiesis foundto belessthan2.0%(2.6%)atlow(high) Mj j overall χdijet bins,and

themaximumuncertaintyinagivenMj j binistypicallyfoundto beinthelowest χdijetbin.

Thejet energyresolution isknown to within 10%of its value inthephasespaceconsideredinthisanalysis[32].Thesystematic uncertaintyinthe χdijetdistributionsduetothiseffectwas

evalu-atedby varyingthewidthoftheGaussiancoreoftheCrystal-Ball parameterizationoftheresponseby ±10% andcomparingthe re-sultant unfoldingcorrections beforeandafter thesechanges. The resultinguncertaintyinthe χdijetdistributionsis0.5%(1.5%)inthe

lowest (highest) Mj j range. In addition, a systematicuncertainty inthetailsofthejetresponse functionisevaluatedby determin-ingacorrectionfactorusingaGaussianansatz[32]ratherthanthe double-sidedCrystal-Ball(Gaussianwithtails)functionto parame-terizetheresponse.SincetheGaussianassumptioncorrespondsto theextremecaseofthecompleteabsenceofatail,theassociated uncertaintyhas been takento be 50% ofthe difference between thiscorrection andthe nominal correction basedon the Crystal-Ballfunction. Thiscoverstheuncertaintyinthe understandingof thetailsfromjetresolutiontailmeasurements.Thesizeofthis un-certaintyvariesfromlessthan1% inthelowestMj j rangetoless than13%inthehighestMj j range.

Asystematicuncertaintyin theunfolding dueto theuseof a parameterizedmodelofthejet pT andpositionresolutionsto

de-terminetheunfoldingcorrectionfactorsisestimatedbycomparing thesmeared χdijet distributionstotheonesfroma detailed

simu-lationoftheCMSdetectorusing Geant4[40].Thisuncertaintyis foundtobelessthan0.4%(5%)inthelowest(highest) Mj j range. Afurthersystematicuncertaintyintheunfoldingforthemodeling ofthedijetspectrawith herwig++ [0.1%(1.2%)inthelowest (high-est) Mj j range],is estimatedfromacomparisonofthe unfolding correctionsfrom herwig++ withthoseobtainedfrom pythia 8 ver-sion 8.165[41]withtune4C[42].

Theuncertaintyfromadditionalinteractionsinthesameproton bunch crossingasthe interactionofinterest, calledpileup,is de-terminedinsimulationbyvaryingtheminimumbiascrosssection within its measured uncertainty of 6% [43]. No significant effect isobserved.Thoughinthe statisticalanalysisofthe datathe un-certaintiesaretreatedseparately,fordisplayintablesandfigures, the total experimental systematicuncertainty in the χdijet

distri-butionsiscalculatedasthequadraticsumofthecontributionsdue totheuncertaintiesinthejetenergycalibration,jet pT resolution,

andunfoldingcorrection.Thetotaluncertaintyincludingstatistical uncertainties isless than2.5% (49%)for thelowest (highest) Mj j range.Experimentaluncertainties are evaluatedforboth theQCD background andsignal predictions, however,the resulting uncer-taintiesdonotdiffersignificantly.

4. Theoreticalpredictions

Thenormalizeddijetangulardistributionsarecomparedtothe predictions ofperturbative QCD. The NLO calculation isprovided by NLOJet++ version 4.1.3 [44,45] within the fastNLO framework version 2[46,47].Thefactorization(μF)andrenormalization(μR) scales are defined to be the average pT of the two jets, pT1,2.

Electroweak corrections for dijet production have been derived in Ref. [48], the authors of which provided us with the corre-spondingcorrectionsforthe χdijet distributions.Thesecorrections

change the predictions of the normalized χdijet distributions by

up to 4% (14%) at low (high) Mj j. Since fast re-evaluation tech-niquesfordifferentchoicesofPDFsorscalesarenotyetavailable fortheelectroweakcorrectionpartofthetheory,thefactorshave beenappliedherewithoutadditionaluncertainties.Afigure show-ing thesecorrectionscanbe found inAppendix A. Theimpact of non-perturbative effects such ashadronization andmultiple par-toninteractions isestimatedusing pythia 8and herwig++.These effectsarefoundtobenegligible.

ThedominantuncertaintyintheQCD predictionsisassociated withthechoiceofthe μR and μF scales andisevaluated follow-ingtheproposalinRef.[49]byvaryingthedefaultchoiceofscales in the following six combinations: (μF/pT1,2, μR/pT1,2)=

(1/2, 1/2), (1/2, 1), (1, 1/2), (2, 2), (2, 1), and(1, 2). These scale variations change the QCD predictions of the normalized

χdijetdistributionsbylessthan9%(18%)atlow(high)Mj j.The un-certainty duetothechoice ofpartondistributionfunctions(PDF) is determined fromthe 22uncertainty eigenvectorsof CT10[50] usingtheproceduredescribedinRef.[50],andisfoundtobeless than 0.6%(1.0%)atlow (high) Mj j.A summaryof thesystematic uncertainties inthetheoretical predictionsisgiveninTable 1 to-gether withtheexperimental ones. Inthehighest Mj j range,the dominant experimental contribution is the statistical uncertainty whilethe dominanttheoreticalcontributionis theQCD scale un-certainty.

ForcalculatingtheCItermsaswellastheinterferencebetween theCItermsandQCDtermsatLOandNLOinQCDthe cijet pro-gramversion1.0[51]hasbeenemployed.TheCImodelsatLOare cross-checkedwiththeimplementationin pythia 8 andfound to beconsistent.TheADDpredictionsarecalculatedwith pythia 8.

5. Results

InFig. 1themeasured χdijetdistributions,correctedfor

instru-mental effects and normalized by their respective event counts, for all Mj j ranges, are compared to theoretical predictions. The data are well described by NLO calculationsthat incorporateEW corrections. No significant deviation from the SM predictions is observed. The distributions are also compared to predictions for

(4)

Table 1

Summaryoftheexperimentalandtheoreticaluncertaintiesinthenormalizedχdijet

distributions.Forthelowest,secondhighestandhighest Mj j ranges,therelative shift(in%)ofthelowestχdijetbinfromitsnominalvalueisquoted.Whileinthe

statisticalanalysiseachsystematicuncertaintyisrepresentedbyachangeofthe

χdijetdistributioncorrelatedamongallχdijetbins,thistablesummarizeseach

un-certaintybyarepresentativenumbertodemonstratetherelativecontributions. Uncertainty 1.9<Mj j<2.4 TeV(%) 3.6<Mj j<4.2 TeV(%) Mj j>4.2 TeV(%) Statistical 1.0 2.3 47 Jetenergyscale 2.0 2.1 2.5 Jetenergyresolution

(tails)

1.0 2.0 13

Jetenergyresolution (core) 0.5 0.6 1.5 Unfolding,modeling 0.1 1.2 1.2 Unfolding,detector simulation 0.4 1.0 5.0 Pileup <0.1 <0.1 <1.0 Totalexperimental 2.5 4.1 49 QCDNLOscale (6 variationsofμRand μF) +9.0 −3.4 + 11 −4.0 + 18 −6.3 PDF(CT10eigenvectors) 0.6 0.7 1.0 Non-perturbativeeffects <1.0 <1.0 <0.2 Totaltheoretical 9 11 18

Fig. 1. Normalized χdijet distributions for 19.7 fb−1 ofintegrated luminosity at

s=8 TeV.ThecorrecteddatadistributionsarecomparedtoNLOpredictionswith EWcorrections(blackdottedline).Forclaritytheindividualdistributionsareshifted verticallybyoffsetsindicatedinparentheses.Theoreticaluncertaintiesareindicated asagrayband. Theerrorbarsrepresentstatisticaland experimentalsystematic uncertaintiescombinedinquadrature.Theticksontheerrorbarsrepresent exper-imentalsystematicuncertaintiesonly.Thehorizontalbarsindicatethebinwidths. TheNLOQCDpredictionwithoutEWcorrectionsisalsoshown(purpledashed dot-ted).ThepredictionforSM+CIwith LL+ (NLO) =10 TeV isshown(redsolidline), andsoisthepredictionforSM+ADDwith T(GRW) =7 TeV (bluedashedline). (Forinterpretationofthereferencestocolorinthisfigurelegend,thereaderis re-ferredtothewebversionofthisarticle.)

SM+CIwith +LL (NLO) =10 TeV andpredictionsforSM+ADD with T (GRW) =7 TeV.

Themeasured χdijet distributionsareusedto determine

exclu-sionlimitsonCImodelsthat includefullNLOQCD correctionsto dijet production induced by contact interactions calculated with cijet.LimitsarealsoextractedforCImodelscalculatedatLOwith cijetandADDmodels implementedin pythia 8.To takeinto ac-count theNLO QCD andEW correctionsintheseLO models,the

Fig. 2. NormalizedχdijetdistributionsinthetwohighestMj jranges.Thecorrected data distributions arecomparedto NLOpredictionswith EW corrections(black dottedline).Theoreticaluncertaintiesareindicatedasgraybands.Theerrorbars representstatisticalandexperimentalsystematicuncertaintiescombinedin quadra-ture. Theticksontheerrorbarsrepresentexperimentalsystematicuncertainties only.Thehorizontalbarsindicatethebinwidths.ThepredictionsforthevariousCI andADDmodelsareoverlaid.

crosssection difference σNLOQCD+EW corrσLOQCD isevaluatedforeach Mj j and χdijet bin and added to the pythia 8+ADD and LO

QCD+CIpredictions.Withthisprocedure,anSM+CI(SM+ADD) predictionisobtainedwheretheQCDtermsarecorrectedtoNLO with EW corrections while the CI (ADD) terms are calculated at LO. Thevariationsduetotheoreticaluncertainties associatedwith scales and PDFs are applied only to the QCD terms of the pre-diction, thereby treating the effectivenewphysics termsasfixed benchmarkterms.

InFig. 2,the χdijetdistributionsforthetwohighestMj j ranges arecomparedtovariousCIandADDmodels.Onlythetwohighest Mj j rangesareusedtodeterminelimitsofCIandADDmodel pa-rameterssincetheaddedsensitivityfromthelower Mj j rangesis negligible.

We quantify the significance of an NP signal with respect to the SM-only hypothesis by means of the likelihood for the SM-only,LSM,andthelikelihoodfortheSMwithnewphysics,LSM+NP.

(5)

Table 2

Observedandexpectedexclusionlimitsat95%CLforvariousCImodels.The uncer-taintiesintheexpectedlimitsconsideringstatisticalandsystematiceffectsforthe SM-onlyhypothesisarealsogiven.

Model Observed (TeV) Expected (TeV) +LL/R R(LO) 10.3 9.8±1.0 LL/R R(LO) 12.9 12.4±2.2 +LL/R R(NLO) 9.0 8.7±0.8 LL/R R(NLO) 11.7 11.4±1.8 +V V(NLO) 11.3 10.8±1.1 V V(NLO) 15.2 14.6±2.6 +A A(NLO) 11.4 10.9±1.1 A A(NLO) 15.1 14.5±2.6 +(VA)(NLO) 8.8 8.5±1.1 (VA)(NLO) 8.9 8.6±1.2 Table 3

Observedandexpectedexclusionlimitsat95%CLforvariousADDmodelsinLO. Theuncertaintiesintheexpectedlimitsconsideringstatisticalandsystematic ef-fectsfortheSM-onlyhypothesisarealsogiven.

Model Observed (TeV) Expected (TeV) ADDT(GRW) 7.1 6.8±0.5 ADD MS(HLZ) nED=2 6.9 6.6±0.4 ADD MS(HLZ) nED=3 8.4 8.0±0.6 ADD MS(HLZ) nED=4 7.1 6.8±0.5 ADD MS(HLZ) nED=5 6.4 6.1±0.5 ADD MS(HLZ) nED=6 5.9 5.7±0.4

The LSM and LSM+NP are defined as products of Poisson

likeli-hood functionsfor each binin χdijet for the two highest ranges

ofMj j.Thepredictions foreach Mj j rangeare normalizedtothe number of observed events in that range. The p-values for the twohypotheses, pSM+NP(qqobs)andpSM(qqobs),arebasedon

thelog-likelihoodratioq= −2ln(LSM+NP/LSM).Theyareevaluated

fromensembles of pseudo-experiments, inwhich systematic un-certaintiesare takenintoaccount via nuisanceparameters which affectthe χdijet distribution, varied within their Gaussian

uncer-taintieswhengeneratingthedistributionsofq [52].

Wenote thatthereisan observeddifference betweentheNLO QCDcalculationswithEWcorrectionsandtheNLOQCD-only hy-pothesisintheabove definedlikelihoodratio,which corresponds toasignificanceof1.1standarddeviation.

TheagreementofthedatawiththeSM-only hypothesisis es-timatedby calculating pSM(qqobs)for each Mj j binseparately. Thelargestdifferenceisfound intheMj j range3.0–3.6 TeV with a probability of 17% to obtain a deviationfrom the SM-only hy-pothesislargerthantheobserved,corresponding toasignificance of1.4standard deviations.Includingthe two highest Mj j binsin thelikelihoodreducesthissignificanceto0.9standarddeviations, correspondingtoaprobabilityof39%.

Amodified-frequentistapproach[53,54,52]isusedtoset exclu-sionlimitsonthescale .LimitsontheSM+NPmodelsareset basedonthequantityCLs=pSM+NP(qqobs)/(1−pSM(qqobs)),

whichis required to be 0.05 for a 95% confidence level (CL) ex-clusion.TheobservedandexpectedexclusionlimitsondifferentCI andADD modelsobtainedinthisanalysisat95% CLare listedin Tables 2 and 3respectively.Note thattheCIpredictions with ex-actNLOQCDcorrectionsshowasmallerenhancementatlow χdijet

relativetoQCDthandothecorrespondingLOCIpredictions,as de-scribedindetailinRef.[55],andthereforeresultinlessstringent limits.

Fig. 3. Observed(solidlines)andexpected(dashedlines)95%CLlowerlimitsfor theCIscales fordifferentcompositenessmodels(NLO),fortheADDmodelscale withGRWparameterization TandfortheADDmodelscalewithHLZ parameteri-zationMS.Thegraybandsindicatethecorrespondinguncertaintiesintheexpected exclusionlimits.

These results are also summarized in Fig. 3. The limits on MS for the differentnED (nED≥2) directly followfrom thelimit

forT.Asacrosscheck,thelimitsfortheCIscale +LL/R Rarealso determined for the casein which the data are not corrected for detectoreffectsandinsteadthesimulation predictionsare convo-lutedwiththedetectorresolutions.Theextractedlimitsarefound to agree with the quoted ones within 1%. We also quantify the effect of the inclusion of EW corrections in the QCD prediction onthe +LL/R R (LO)observedlimit,whichwouldbereducedfrom 10.3 TeVto9.8 TeVifEWcorrectionswereneglected.

6. Summary

Normalized dijet angular distributions have been measured withtheCMSdetectoroverawiderangeofdijetinvariantmasses. Nosignificantdeviationfromthestandardmodelpredictionsis ob-served.Lowerlimitsare setonthecontactinteractionscale fora varietyofquark compositenessmodelsthatincludeNLOQCD cor-rections and on the cutoff scale for the ADD models withextra dimensions. The95% confidencelevellower limitson thecontact interaction scale  are inthe range 8.8–15.2 TeV. The improved description of the data resulting from the inclusion of the elec-troweak corrections yields approximately 5% higher limits. The lower limits on the cutoff scales in the ADD models, T (GRW) andMS (HLZ),areintherange5.9–8.4 TeV.Theseresultsrepresent themoststringentsetoflimitsoncontactinteractionscale, mod-elledatNLO,andthebestlimitsonthebenchmarkADDmodelto date.

Acknowledgements

WewouldliketothankS. DittmaierandA. Hussforproviding us with the electroweak correction factors. We congratulate our colleagues in the CERNaccelerator departments forthe excellent performance ofthe LHC andthankthe technicaland administra-tive staffsatCERN andatotherCMSinstitutesfortheir contribu-tions to the successof the CMSeffort. In addition, we gratefully acknowledgethe computingcenters andpersonnelofthe World-wideLHCComputingGridfordeliveringsoeffectivelythe

(6)

comput-Fig. A.4. ElectroweakcorrectionfactorsversusχdijetforeachMj jrange,derivedby theauthorsofRef.[48]at8 TeVc.m.energywithpT1,2aschoicefortheμRand

μFscalesandtheCT10-NLOPDFset.

ing infrastructure essential to our analyses. Finally, we acknowl-edge theenduring support forthe construction and operation of theLHCandtheCMSdetectorprovidedby thefollowingfunding agencies: BMWFWandFWF (Austria);FNRSandFWO (Belgium); CNPq,CAPES,FAPERJ,andFAPESP (Brazil); MES(Bulgaria); CERN; CAS,MoST,andNSFC(China);COLCIENCIAS(Colombia);MSESand CSF (Croatia); RPF (Cyprus); MoER, ERC IUT andERDF (Estonia); AcademyofFinland,MEC,andHIP(Finland);CEAandCNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA andNIH(Hungary);DAEandDST(India);IPM(Iran);SFI(Ireland); INFN (Italy); MSIP and NRF (Republic of Korea);LAS (Lithuania); MOE and UM(Malaysia); CINVESTAV,CONACYT, SEP, and UASLP-FAI (Mexico); MBIE (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland);FCT (Portugal); JINR (Dubna); MON, RosAtom, RAS andRFBR(Russia);MESTD(Serbia);SEIDIandCPAN(Spain);Swiss Funding Agencies (Switzerland); MST (Taipei); ThEPCenter, IPST, STAR and NSTDA (Thailand); TUBITAK and TAEK (Turkey); NASU andSFFR(Ukraine);STFC(UnitedKingdom);DOEandNSF(USA).

Appendix A. EWcorrectionstodijetangulardistributions

Fig. A.4showstheEWcorrectionstothedijetangular distribu-tions.Thecorrectionsarebasedonthesamecalculationsandtools usedtoderivetheEWcorrectionstoinclusivejetanddijet produc-tioncrosssectionspublishedinRef.[48].TheauthorsofRef.[48] haveprovidedtheexactnumberstobeappliedtothedijetangular distributionaspresentedinthispaper.TheEWcorrectionschange thepredictions ofthenormalized χdijet distributionsby up to4%

(14%)atlow(high) Mj j.

References

[1] G.Arnison,et al.,UA1Collaboration,Angulardistributionsfor high-massjet pairs and a limit on the energy scale of compositeness for quarksfrom theCERNpp collider,¯ Phys.Lett.B177(1986)244,http://dx.doi.org/10.1016/ 0370-2693(86)91065-8.

[2] O.Klein,Quantumtheoryandfive-dimensionaltheoryofrelativity,Z.Phys.37 (1926)895,http://dx.doi.org/10.1007/BF01397481.

[3] H.Terazawa,Subquarkmodelofleptonsandquarks,Phys.Rev.D22(1980) 184,http://dx.doi.org/10.1103/PhysRevD.22.184.

[4] E.Eichten,K.D.Lane,M.E.Peskin,Newtestsforquarkandleptonsubstructure, Phys.Rev.Lett.50(1983)811,http://dx.doi.org/10.1103/PhysRevLett.50.811. [5] E.Eichten,I.Hinchliffe,K.D.Lane,C.Quigg,Supercolliderphysics,Rev.Mod.

Phys.56(1984)579,http://dx.doi.org/10.1103/RevModPhys.56.579.

[6] F. Abe, et al., CDF Collaboration, Measurement of dijet angular distribu-tionsbytheCollider DetectoratFermilab, Phys.Rev.Lett.77(1996) 5336,

http://dx.doi.org/10.1103/PhysRevLett.77.5336,arXiv:hep-ex/9609011; F. Abe, et al., CDF Collaboration, Phys. Rev. Lett. 78 (1997) 4307, http:// dx.doi.org/10.1103/PhysRevLett.78.4307,Erratum.

[7] V.M.Abazov,etal.,D0Collaboration,Measurementofdijetangular distribu-tionsat√s=1.96 TeV andsearchesforquarkcompositenessandextra spa-tialdimensions,Phys.Rev.Lett.103(2009)191803,http://dx.doi.org/10.1103/ PhysRevLett.103.191803,arXiv:0906.4819.

[8] B. Abbott, et al., D0 Collaboration, High-pT jets in p p collisions¯ at √s=

630 GeV and1800 GeV, Phys. Rev.D 64 (2001) 032003, http://dx.doi.org/ 10.1103/PhysRevD.64.032003,arXiv:hep-ex/0012046.

[9] CMSCollaboration,Searchforquarkcompositenessindijetangular distribu-tionsfrompp collisionsat √s=7 TeV,J.HighEnergyPhys.05(2012)055,

http://dx.doi.org/10.1007/JHEP05(2012)055.

[10] CMSCollaboration,Measurementofdijetangulardistributionsandsearchfor quarkcompositenessinppcollisionsat√s=7 TeV,Phys.Rev.Lett.106(2011) 201804,http://dx.doi.org/10.1103/PhysRevLett.106.201804.

[11] CMS Collaboration, Search for quark compositeness with the dijet central-ityratioinppcollisionsat √s=7 TeV,Phys.Rev.Lett.105(2010)262001,

http://dx.doi.org/10.1103/PhysRevLett.105.262001.

[12] ATLASCollaboration,ATLASsearchfornewphenomenaindijetmassand an-gulardistributionsusingpp collisionsat√s=7 TeV,J.HighEnergyPhys.01 (2013)029,http://dx.doi.org/10.1007/JHEP01(2013)029,arXiv:1210.1718. [13] ATLASCollaboration,Searchfornewphysicsindijetmassandangular

distri-butionsinpp collisionsat√s=7 TeV measuredwiththeATLASdetector,New J.Phys. 13 (2011)053044, http://dx.doi.org/10.1088/1367-2630/13/5/053044, arXiv:1103.3864.

[14] CMSCollaboration,Searchforcontactinteractionsusingtheinclusivejet pT

spectrumin pp collisionsat √s=7 TeV, Phys. Rev. D 87(2013) 052017,

http://dx.doi.org/10.1103/PhysRevD.87.052017.

[15] N. Arkani-Hamed, S. Dimopoulos, G. Dvali, Phenomenology, astrophysics and cosmology of theories with submillimeter dimensions and TeV scale quantumgravity, Phys. Rev.D59 (1999) 086004, http://dx.doi.org/10.1103/ PhysRevD.59.086004,arXiv:hep-ph/9807344.

[16] N.Arkani-Hamed,S. Dimopoulos,G. Dvali,The hierarchyproblem andnew dimensionsat amillimeter, Phys. Lett.B429(1998) 263,http://dx.doi.org/ 10.1016/S0370-2693(98)00466-3,arXiv:hep-ph/9803315.

[17] G.F.Giudice,R.Rattazzi,J.D.Wells,Quantumgravityandextradimensionsat high-energycolliders,Nucl.Phys. B544(1999) 3,http://dx.doi.org/10.1016/ S0550-3213(99)00044-9.

[18] T.Han,J.D.Lykken,R.Zhang,Kaluza–Kleinstatesfromlargeextradimensions, Phys.Rev.D59(1999)105006,http://dx.doi.org/10.1103/PhysRevD.59.105006. [19] J.Hewett, Indirect collidersignals for extra dimensions,Phys. Rev.Lett.82

(1999)4765,http://dx.doi.org/10.1103/PhysRevLett.82.4765.

[20] K.Cheung,G.Landsberg,Drell-Yananddiphotonproductionathadroncolliders andlowscalegravitymodel,Phys.Rev.D62(2000)076003,http://dx.doi.org/ 10.1103/PhysRevD.62.076003,arXiv:hep-ph/9909218.

[21] CMS Collaboration,Searchfor physicsbeyond the standardmodelin dilep-ton mass spectra in proton–proton collisions at √s=8 TeV, J. High En-ergyPhys.04(2015)025,http://dx.doi.org/10.1007/10.1007/JHEP04(2015)025, arXiv:1412.6302.

[22] ATLASCollaboration,Searchforcontactinteractionsandlargeextradimensions inthe dileptonchannelusingproton–protoncollisions at √s=8 TeV with theATLAS detector,Eur.Phys. J.C74(2014)314,http://dx.doi.org/10.1140/ epjc/s10052-014-3134-6,arXiv:1407.2410.

[23] CMSCollaboration,Searchforsignaturesofextradimensionsinthediphoton massspectrumattheLargeHadronCollider,Phys.Rev.Lett.108(2011)111801,

http://dx.doi.org/10.1103/PhysRevLett.108.111801.

[24] ATLAS Collaboration, Search for extra dimensions in diphoton events us-ing proton–proton collisions recorded at √s=7 TeV with the ATLAS de-tectorattheLHC,NewJ.Phys. 15(2013)043007,http://dx.doi.org/10.1088/ 1367-2630/15/4/043007,arXiv:1210.8389.

[25] ATLASCollaboration,Searchforquarkcontactinteractionsindijetangular dis-tributionsinpp collisionsat√s=7 TeV measuredwiththeATLASdetector, Phys.Lett.B694(2011)327,http://dx.doi.org/10.1016/j.physletb.2010.10.021, arXiv:1009.5069.

[26] R.Franceschini,P.P.Giardino,G.F.Giudice,P.Lodone,A.Strumia,LHCbounds on large extra dimensions, J. High Energy Phys. 05 (2011) 092, http:// dx.doi.org/10.1007/JHEP05(2011)092,arXiv:1101.4919.

[27] CMSCollaboration,TheCMSexperimentattheCERNLHC,J.Instrum.3(2008) S08004,http://dx.doi.org/10.1088/1748-0221/3/08/S08004.

[28] CMSCollaboration,Particle–floweventreconstructioninCMSandperformance forjets,taus,and Emiss

T ,CMSPhysicsAnalysisSummaryCMS-PAS-PFT-09-001 http://cdsweb.cern.ch/record/1194487,2009.

[29] CMS Collaboration,Commissioning oftheparticle-flowevent reconstruction with the first LHC collisions recorded in the CMS detector, CMS Physics AnalysisSummaryCMS-PAS-PFT-10-001http://cdsweb.cern.ch/record/1247373, 2010.

(7)

[30] M.Cacciari,G.P.Salam,G.Soyez,Theanti-ktjetclusteringalgorithm,J.High EnergyPhys.04(2008)063,http://dx.doi.org/10.1088/1126-6708/2008/04/063, arXiv:0802.1189.

[31] M.Cacciari,G.P.Salam,G.Soyez,FastJetusermanual,Eur.Phys.J.C72(2012) 1896,http://dx.doi.org/10.1140/epjc/s10052-012-1896-2,arXiv:1111.6097. [32] CMSCollaboration,Determinationofjetenergycalibrationandtransverse

mo-mentum resolutionin CMS, J. Instrum. 6(2011) P11002, http://dx.doi.org/ 10.1088/1748-0221/6/11/P11002.

[33] CMSCollaboration,Jetsin0.9and2.36TeVppcollisions,CMSPhysicsAnalysis SummaryCMS-PAS-JME-10-001http://cdsweb.cern.ch/record/1248210,2010. [34] G. d’Agostini, A multidimensional unfolding method based on Bayes’

the-orem, Nucl. Instrum. Methods A 362 (1995) 487,http://dx.doi.org/10.1016/ 0168-9002(95)00274-X.

[35]T.Adye,UnfoldingalgorithmsandtestsusingRooUnfold,in:Proceedingsofthe PHYSTAT2011WorkshoponStatisticalIssuesRelatedtoDiscoveryClaimsin SearchExperimentsandUnfolding,CERN,Geneva,Switzerland,January17–20, 2011,p. 313,arXiv:1105.1160.

[36]S.Gieseke,M.A.Gigg,D.Grellscheid,K.Hamilton,O.Latunde-Dada,S.Plätzer, P.Richardson,M.H.Seymour,A.Sherstnev,B.R.Webber,Herwig++2.5release note,arXiv:1102.1672,2011.

[37] M.Bähr,S.Gieseke,M.A.Gigg,D.Grellscheid,K.Hamilton,O.Latunde-Dada, S.Plätzer,P.Richardson,M.H.Seymour,A.Sherstnev,B.R.Webber,Herwig++ physicsandmanual,Eur.Phys.J.C58(2008)639,http://dx.doi.org/10.1140/ epjc/s10052-008-0798-9,arXiv:0803.0883.

[38] M.J.Oreglia,Astudyofthereactions ψ →γ γψ,Ph.D.thesis,Stanford Univer-sity,1980,http://www.slac.stanford.edu/pubs/slacreports/slac-r-236.html,SLAC ReportSLAC-R-236,seeAppendixD.

[39] CMSCollaboration,8TeVjetenergycorrectionsand uncertaintiesbasedon 19.8 fb−1ofdatainCMS,CMSDetectorPerformanceSummaryDP-2013-033 http://cds.cern.ch/record/1627305,2013.

[40] S. Agostinelli, et al., GEANT4 Collaboration, GEANT4—a simulation toolkit, Nucl. Instrum. Methods A 506 (2003) 250, http://dx.doi.org/10.1016/ S0168-9002(03)01368-8.

[41] T.Sjöstrand,S.Mrenna,P.Z.Skands,AbriefintroductiontoPYTHIA8.1,Comput. Phys. Commun. 178 (2008) 852, http://dx.doi.org/10.1016/j.cpc.2008.01.036, arXiv:0710.3820.

[42] R. Corke, T. Sjöstrand, Interleaved parton showers and tuning prospects, J. HighEnergyPhys.03(2011)032,http://dx.doi.org/10.1007/JHEP03(2011)032, arXiv:1011.1759.

[43] CMS Collaboration, Measurement ofthe inelasticproton–proton cross sec-tion at √s=7 TeV, Phys. Lett. B 722 (2013) 5, http://dx.doi.org/10.1016/ j.physletb.2013.03.024.

[44] Z. Nagy, Three jet cross-sections in hadron–hadron collisions at next-to-leading order, Phys. Rev.Lett. 88 (2002) 122003, http://dx.doi.org/10.1103/ PhysRevLett.88.122003,arXiv:hep-ph/0110315.

[45] Z.Nagy,Next-to-leadingordercalculationofthreejetobservablesinhadron– hadron collision, Phys. Rev. D 68 (2003) 094002, http://dx.doi.org/10.1103/ PhysRevD.68.094002,arXiv:hep-ph/0307268.

[46]T. Kluge,K. Rabbertz,M.Wobisch, fastNLO:fastpQCDcalculations for PDF fits,in:14thInternationalWorkshoponDeep-InelasticScattering(DIS2006), Tsukuba,Japan,Apr20–24,2006,p. 483,arXiv:hep-ph/0609285.

[47]D.Britzger,K.Rabbertz,F.Stober,M.Wobisch,Newfeaturesinversion2ofthe fastNLOproject,in:20thInternationalWorkshoponDeep-InelasticScattering andRelatedSubjects(DIS2012),Bonn,Germany,March26–30,2012,p. 217, arXiv:1208.3641.

[48] S.Dittmaier, A.Huss,C. Speckner,Weak radiative correctionsto dijet pro-duction at hadron colliders, J. High Energy Phys. 11 (2012) 095, http:// dx.doi.org/10.1007/JHEP11(2012)095,arXiv:1210.0438.

[49] A. Banfi, G.P. Salam, G. Zanderighi, Phenomenology of event shapes at hadroncolliders,J.HighEnergyPhys.06(2010)038,http://dx.doi.org/10.1007/ JHEP06(2010)038.

[50] H.-L. Lai,M. Guzzi, J. Huston, Z. Li, P.M.Nadolsky, J. Pumplin, C.-P.Yuan, Newpartondistributionsforcolliderphysics,Phys.Rev.D82(2010)074024,

http://dx.doi.org/10.1103/PhysRevD.82.074024,arXiv:1007.2241.

[51] J.Gao,C.S.Li,J.Wang,H.X.Zhu,C.P.Yuan,Next-to-leadingQCDeffecttothe quark compositenesssearchat theLHC,Phys.Rev.Lett.106(2011)142001,

http://dx.doi.org/10.1103/PhysRevLett.106.142001,arXiv:1101.4611.

[52] R.D. Cousins, V.L. Highland, Incorporating systematic uncertainties into an upper limit, Nucl. Instrum. Methods A 320 (1992) 331, http://dx.doi.org/ 10.1016/0168-9002(92)90794-5.

[53] T. Junk, Confidence level computation for combining searches with small statistics,Nucl.Instrum.MethodsA434(1999)435,http://dx.doi.org/10.1016/ s0168-9002(99)00498-2,arXiv:hep-ph/9811356.

[54] A.L.Read,Presentationofsearchresults:theC Lstechnique,J.Phys.G28(2002) 2693,http://dx.doi.org/10.1088/0954-3899/28/10/313.

[55] J.Gao,C.S.Li,C.P.Yuan,NLOQCDcorrectionstodijetproductionviaquark con-tactinteractions,J.HighEnergyPhys.07(2012)037,http://dx.doi.org/10.1007/ JHEP07(2012)037,arXiv:1204.4773.

CMSCollaboration

V. Khachatryan,A.M. Sirunyan, A. Tumasyan

YerevanPhysicsInstitute,Yerevan,Armenia

W. Adam, T. Bergauer, M. Dragicevic,J. Erö,M. Friedl, R. Frühwirth1,V.M. Ghete, C. Hartl, N. Hörmann,

J. Hrubec, M. Jeitler1,W. Kiesenhofer, V. Knünz,M. Krammer1, I. Krätschmer,D. Liko, I. Mikulec,

D. Rabady2,B. Rahbaran, H. Rohringer, R. Schöfbeck, J. Strauss, W. Treberer-Treberspurg,

W. Waltenberger, C.-E. Wulz1

InstitutfürHochenergiephysikderOeAW,Wien,Austria

V. Mossolov,N. Shumeiko,J. Suarez Gonzalez

NationalCentreforParticleandHighEnergyPhysics,Minsk,Belarus

S. Alderweireldt, M. Bansal, S. Bansal,T. Cornelis, E.A. De Wolf,X. Janssen,A. Knutsson, J. Lauwers,

S. Luyckx,S. Ochesanu, R. Rougny, M. Van De Klundert,H. Van Haevermaet, P. Van Mechelen,

N. Van Remortel,A. Van Spilbeeck

UniversiteitAntwerpen,Antwerpen,Belgium

F. Blekman,S. Blyweert, J. D’Hondt,N. Daci, N. Heracleous, J. Keaveney,S. Lowette, M. Maes,A. Olbrechts,

Q. Python, D. Strom, S. Tavernier,W. Van Doninck, P. Van Mulders, G.P. Van Onsem,I. Villella

(8)

C. Caillol, B. Clerbaux, G. De Lentdecker, D. Dobur, L. Favart, A.P.R. Gay, A. Grebenyuk,A. Léonard,

A. Mohammadi, L. Perniè2, T. Reis,T. Seva, L. Thomas, C. Vander Velde, P. Vanlaer, J. Wang, F. Zenoni

UniversitéLibredeBruxelles,Bruxelles,Belgium

V. Adler,K. Beernaert, L. Benucci, A. Cimmino,S. Costantini, S. Crucy, S. Dildick,A. Fagot, G. Garcia,

J. Mccartin, A.A. Ocampo Rios,D. Ryckbosch, S. Salva Diblen, M. Sigamani,N. Strobbe, F. Thyssen,

M. Tytgat, E. Yazgan, N. Zaganidis

GhentUniversity,Ghent,Belgium

S. Basegmez, C. Beluffi3,G. Bruno,R. Castello, A. Caudron, L. Ceard, G.G. Da Silveira, C. Delaere,

T. du Pree,D. Favart, L. Forthomme,A. Giammanco4,J. Hollar, A. Jafari, P. Jez,M. Komm, V. Lemaitre,

C. Nuttens, D. Pagano,L. Perrini, A. Pin, K. Piotrzkowski, A. Popov5, L. Quertenmont,M. Selvaggi,

M. Vidal Marono, J.M. Vizan Garcia

UniversitéCatholiquedeLouvain,Louvain-la-Neuve,Belgium

N. Beliy, T. Caebergs,E. Daubie, G.H. Hammad

UniversitédeMons,Mons,Belgium

W.L. Aldá Júnior, G.A. Alves,L. Brito, M. Correa Martins Junior,T. Dos Reis Martins, C. Mora Herrera,

M.E. Pol

CentroBrasileirodePesquisasFisicas,RiodeJaneiro,Brazil

W. Carvalho,J. Chinellato6,A. Custódio, E.M. Da Costa, D. De Jesus Damiao, C. De Oliveira Martins,

S. Fonseca De Souza, H. Malbouisson, D. Matos Figueiredo,L. Mundim, H. Nogima,W.L. Prado Da Silva,

J. Santaolalla, A. Santoro,A. Sznajder, E.J. Tonelli Manganote6,A. Vilela Pereira

UniversidadedoEstadodoRiodeJaneiro,RiodeJaneiro,Brazil

C.A. Bernardesb, S. Dograa,T.R. Fernandez Perez Tomeia,E.M. Gregoresb, P.G. Mercadanteb,

S.F. Novaesa, Sandra S. Padulaa

aUniversidadeEstadualPaulista,SãoPaulo,Brazil bUniversidadeFederaldoABC,SãoPaulo,Brazil

A. Aleksandrov, V. Genchev2,P. Iaydjiev, A. Marinov, S. Piperov,M. Rodozov, G. Sultanov,M. Vutova

InstituteforNuclearResearchandNuclearEnergy,Sofia,Bulgaria

A. Dimitrov, I. Glushkov,R. Hadjiiska, V. Kozhuharov, L. Litov,B. Pavlov, P. Petkov

UniversityofSofia,Sofia,Bulgaria

J.G. Bian, G.M. Chen,H.S. Chen, M. Chen, T. Cheng, R. Du,C.H. Jiang, R. Plestina7,F. Romeo,J. Tao,

Z. Wang

InstituteofHighEnergyPhysics,Beijing,China

C. Asawatangtrakuldee, Y. Ban, Q. Li, S. Liu,Y. Mao, S.J. Qian, D. Wang,W. Zou

StateKeyLaboratoryofNuclearPhysicsandTechnology,PekingUniversity,Beijing,China

C. Avila,L.F. Chaparro Sierra, C. Florez, J.P. Gomez, B. Gomez Moreno,J.C. Sanabria

UniversidaddeLosAndes,Bogota,Colombia

N. Godinovic, D. Lelas, D. Polic, I. Puljak

UniversityofSplit,FacultyofElectricalEngineering,MechanicalEngineeringandNavalArchitecture,Split,Croatia

Z. Antunovic, M. Kovac

(9)

V. Brigljevic,K. Kadija, J. Luetic,D. Mekterovic, L. Sudic

InstituteRudjerBoskovic,Zagreb,Croatia

A. Attikis, G. Mavromanolakis,J. Mousa, C. Nicolaou, F. Ptochos,P.A. Razis

UniversityofCyprus,Nicosia,Cyprus

M. Bodlak,M. Finger,M. Finger Jr.8

CharlesUniversity,Prague,CzechRepublic

Y. Assran9,S. Elgammal10,M.A. Mahmoud11,A. Radi12,13

AcademyofScientificResearchandTechnologyoftheArabRepublicofEgypt,EgyptianNetworkofHighEnergyPhysics,Cairo,Egypt

M. Kadastik, M. Murumaa, M. Raidal, A. Tiko

NationalInstituteofChemicalPhysicsandBiophysics,Tallinn,Estonia

P. Eerola,G. Fedi, M. Voutilainen

DepartmentofPhysics,UniversityofHelsinki,Helsinki,Finland

J. Härkönen,V. Karimäki, R. Kinnunen, M.J. Kortelainen, T. Lampén, K. Lassila-Perini,S. Lehti, T. Lindén,

P. Luukka, T. Mäenpää,T. Peltola, E. Tuominen, J. Tuominiemi, E. Tuovinen,L. Wendland

HelsinkiInstituteofPhysics,Helsinki,Finland

J. Talvitie,T. Tuuva

LappeenrantaUniversityofTechnology,Lappeenranta,Finland

M. Besancon,F. Couderc, M. Dejardin, D. Denegri,B. Fabbro, J.L. Faure, C. Favaro, F. Ferri, S. Ganjour,

A. Givernaud, P. Gras, G. Hamel de Monchenault,P. Jarry, E. Locci, J. Malcles,J. Rander, A. Rosowsky,

M. Titov

DSM/IRFU,CEA/Saclay,Gif-sur-Yvette,France

S. Baffioni,F. Beaudette, P. Busson, C. Charlot, T. Dahms,M. Dalchenko, L. Dobrzynski, N. Filipovic,

A. Florent,R. Granier de Cassagnac, L. Mastrolorenzo, P. Miné, C. Mironov, I.N. Naranjo, M. Nguyen,

C. Ochando, P. Paganini,S. Regnard, R. Salerno,J.B. Sauvan, Y. Sirois, C. Veelken, Y. Yilmaz,A. Zabi

LaboratoireLeprince-Ringuet,EcolePolytechnique,IN2P3-CNRS,Palaiseau,France

J.-L. Agram14,J. Andrea, A. Aubin,D. Bloch, J.-M. Brom,E.C. Chabert, C. Collard,E. Conte14,

J.-C. Fontaine14,D. Gelé, U. Goerlach,C. Goetzmann, A.-C. Le Bihan, P. Van Hove

InstitutPluridisciplinaireHubertCurien,UniversitédeStrasbourg,UniversitédeHauteAlsaceMulhouse,CNRS/IN2P3,Strasbourg,France

S. Gadrat

CentredeCalculdel’InstitutNationaldePhysiqueNucleaireetdePhysiquedesParticules,CNRS/IN2P3,Villeurbanne,France

S. Beauceron,N. Beaupere, G. Boudoul2,E. Bouvier, S. Brochet,C.A. Carrillo Montoya, J. Chasserat,

R. Chierici,D. Contardo2, P. Depasse,H. El Mamouni, J. Fan, J. Fay, S. Gascon, M. Gouzevitch, B. Ille,

T. Kurca, M. Lethuillier,L. Mirabito, S. Perries,J.D. Ruiz Alvarez, D. Sabes,L. Sgandurra, V. Sordini,

M. Vander Donckt, P. Verdier,S. Viret, H. Xiao

UniversitédeLyon,UniversitéClaudeBernardLyon1,CNRS-IN2P3,InstitutdePhysiqueNucléairedeLyon,Villeurbanne,France

Z. Tsamalaidze8

(10)

C. Autermann, S. Beranek,M. Bontenackels, M. Edelhoff,L. Feld, A. Heister, O. Hindrichs, K. Klein,

A. Ostapchuk, F. Raupach, J. Sammet, S. Schael, H. Weber, B. Wittmer, V. Zhukov5

RWTHAachenUniversity,I.PhysikalischesInstitut,Aachen,Germany

M. Ata, M. Brodski,E. Dietz-Laursonn, D. Duchardt, M. Erdmann, R. Fischer,A. Güth, T. Hebbeker,

C. Heidemann,K. Hoepfner, D. Klingebiel,S. Knutzen,P. Kreuzer, M. Merschmeyer,A. Meyer, P. Millet,

M. Olschewski, K. Padeken,P. Papacz, H. Reithler,S.A. Schmitz, L. Sonnenschein, D. Teyssier,S. Thüer,

M. Weber

RWTHAachenUniversity,III.PhysikalischesInstitutA,Aachen,Germany

V. Cherepanov, Y. Erdogan,G. Flügge, H. Geenen, M. Geisler, W. Haj Ahmad, F. Hoehle, B. Kargoll,

T. Kress, Y. Kuessel,A. Künsken, J. Lingemann2, A. Nowack,I.M. Nugent,L. Perchalla, O. Pooth,A. Stahl

RWTHAachenUniversity,III.PhysikalischesInstitutB,Aachen,Germany

I. Asin, N. Bartosik, J. Behr, W. Behrenhoff,U. Behrens, A.J. Bell,M. Bergholz15, A. Bethani,K. Borras,

A. Burgmeier,A. Cakir, L. Calligaris,A. Campbell, S. Choudhury, F. Costanza, C. Diez Pardos,G. Dolinska,

S. Dooling,T. Dorland, G. Eckerlin,D. Eckstein, T. Eichhorn, G. Flucke, J. Garay Garcia, A. Geiser,

P. Gunnellini, J. Hauk, M. Hempel15, D. Horton, H. Jung,A. Kalogeropoulos, M. Kasemann,P. Katsas,

J. Kieseler, C. Kleinwort,I. Korol, D. Krücker, W. Lange,J. Leonard, K. Lipka,A. Lobanov, W. Lohmann15,

B. Lutz, R. Mankel, I. Marfin15,I.-A. Melzer-Pellmann, A.B. Meyer, G. Mittag, J. Mnich, A. Mussgiller,

S. Naumann-Emme,A. Nayak, O. Novgorodova, E. Ntomari,H. Perrey, D. Pitzl,R. Placakyte, A. Raspereza,

P.M. Ribeiro Cipriano, B. Roland,E. Ron, M.Ö. Sahin, J. Salfeld-Nebgen,P. Saxena, R. Schmidt15,

T. Schoerner-Sadenius,M. Schröder, C. Seitz, S. Spannagel, A.D.R. Vargas Trevino, R. Walsh,C. Wissing

DeutschesElektronen-Synchrotron,Hamburg,Germany

M. Aldaya Martin,V. Blobel, M. Centis Vignali, A.R. Draeger, J. Erfle,E. Garutti, K. Goebel, M. Görner,

J. Haller, M. Hoffmann,R.S. Höing, H. Kirschenmann,R. Klanner, R. Kogler, J. Lange,T. Lapsien, T. Lenz,

I. Marchesini, J. Ott, T. Peiffer, A. Perieanu,N. Pietsch, J. Poehlsen,T. Poehlsen, D. Rathjens, C. Sander,

H. Schettler, P. Schleper, E. Schlieckau,A. Schmidt, M. Seidel, V. Sola, H. Stadie,G. Steinbrück,

D. Troendle,E. Usai, L. Vanelderen,A. Vanhoefer

UniversityofHamburg,Hamburg,Germany

C. Barth, C. Baus,J. Berger, C. Böser, E. Butz,T. Chwalek, W. De Boer,A. Descroix, A. Dierlamm,M. Feindt,

F. Frensch, M. Giffels,A. Gilbert, F. Hartmann2,T. Hauth2,U. Husemann, I. Katkov5, A. Kornmayer2,

E. Kuznetsova, P. Lobelle Pardo, M.U. Mozer, Th. Müller, A. Nürnberg, G. Quast, K. Rabbertz,F. Ratnikov,

S. Röcker, H.J. Simonis,F.M. Stober, R. Ulrich, J. Wagner-Kuhr, S. Wayand,T. Weiler, R. Wolf

InstitutfürExperimentelleKernphysik,Karlsruhe,Germany

G. Anagnostou, G. Daskalakis,T. Geralis,V.A. Giakoumopoulou, A. Kyriakis, D. Loukas, A. Markou,

C. Markou, A. Psallidas, I. Topsis-Giotis

InstituteofNuclearandParticlePhysics(INPP),NCSRDemokritos,AghiaParaskevi,Greece

A. Agapitos, S. Kesisoglou, A. Panagiotou, N. Saoulidou, E. Stiliaris

UniversityofAthens,Athens,Greece

X. Aslanoglou,I. Evangelou, G. Flouris, C. Foudas,P. Kokkas, N. Manthos, I. Papadopoulos, E. Paradas,

J. Strologas

UniversityofIoánnina,Ioánnina,Greece

G. Bencze,C. Hajdu, P. Hidas, D. Horvath16, F. Sikler,V. Veszpremi, G. Vesztergombi17,A.J. Zsigmond

(11)

N. Beni,S. Czellar, J. Karancsi18,J. Molnar, J. Palinkas, Z. Szillasi

InstituteofNuclearResearchATOMKI,Debrecen,Hungary

A. Makovec,P. Raics, Z.L. Trocsanyi, B. Ujvari

UniversityofDebrecen,Debrecen,Hungary

S.K. Swain

NationalInstituteofScienceEducationandResearch,Bhubaneswar,India

S.B. Beri,V. Bhatnagar, R. Gupta, U. Bhawandeep, A.K. Kalsi,M. Kaur, R. Kumar,M. Mittal, N. Nishu,

J.B. Singh

PanjabUniversity,Chandigarh,India

Ashok Kumar,Arun Kumar, S. Ahuja, A. Bhardwaj,B.C. Choudhary, A. Kumar,S. Malhotra, M. Naimuddin,

K. Ranjan,V. Sharma

UniversityofDelhi,Delhi,India

S. Banerjee, S. Bhattacharya, K. Chatterjee,S. Dutta, B. Gomber, Sa. Jain, Sh. Jain,R. Khurana,A. Modak,

S. Mukherjee,D. Roy, S. Sarkar, M. Sharan

SahaInstituteofNuclearPhysics,Kolkata,India

A. Abdulsalam,D. Dutta, S. Kailas,V. Kumar, A.K. Mohanty2,L.M. Pant, P. Shukla, A. Topkar

BhabhaAtomicResearchCentre,Mumbai,India

T. Aziz,S. Banerjee, S. Bhowmik19, R.M. Chatterjee, R.K. Dewanjee,S. Dugad, S. Ganguly, S. Ghosh,

M. Guchait,A. Gurtu20, G. Kole, S. Kumar, M. Maity19,G. Majumder, K. Mazumdar, G.B. Mohanty,

B. Parida,K. Sudhakar, N. Wickramage21

TataInstituteofFundamentalResearch,Mumbai,India

H. Bakhshiansohi,H. Behnamian,S.M. Etesami22, A. Fahim23, R. Goldouzian, M. Khakzad,

M. Mohammadi Najafabadi,M. Naseri, S. Paktinat Mehdiabadi, F. Rezaei Hosseinabadi, B. Safarzadeh24,

M. Zeinali

InstituteforResearchinFundamentalSciences(IPM),Tehran,Iran

M. Felcini,M. Grunewald

UniversityCollegeDublin,Dublin,Ireland

M. Abbresciaa,b, C. Calabriaa,b, S.S. Chhibraa,b,A. Colaleoa, D. Creanzaa,c,N. De Filippisa,c,

M. De Palmaa,b, L. Fiorea, G. Iasellia,c, G. Maggia,c, M. Maggia,S. Mya,c,S. Nuzzoa,b,A. Pompilia,b, G. Pugliesea,c,R. Radognaa,b,2,G. Selvaggia,b,A. Sharma, L. Silvestrisa,2,R. Vendittia,b

aINFNSezionediBari,Bari,Italy bUniversitàdiBari,Bari,Italy cPolitecnicodiBari,Bari,Italy

G. Abbiendia,A.C. Benvenutia, D. Bonacorsia,b, S. Braibant-Giacomellia,b,L. Brigliadoria,b, R. Campaninia,b,P. Capiluppia,b,A. Castroa,b, F.R. Cavalloa,G. Codispotia,b, M. Cuffiania,b,

G.M. Dallavallea,F. Fabbria,A. Fanfania,b,D. Fasanellaa,b, P. Giacomellia, C. Grandia, L. Guiduccia,b, S. Marcellinia, G. Masettia,A. Montanaria,F.L. Navarriaa,b,A. Perrottaa,F. Primaveraa,b, A.M. Rossia,b, T. Rovellia,b, G.P. Sirolia,b,N. Tosia,b, R. Travaglinia,b

aINFNSezionediBologna,Bologna,Italy bUniversitàdiBologna,Bologna,Italy

(12)

S. Albergoa,b,G. Cappelloa, M. Chiorbolia,b, S. Costaa,b, F. Giordanoa,c,2, R. Potenzaa,b, A. Tricomia,b, C. Tuvea,b

aINFNSezionediCatania,Catania,Italy bUniversitàdiCatania,Catania,Italy cCSFNSM,Catania,Italy

G. Barbaglia, V. Ciullia,b,C. Civininia, R. D’Alessandroa,b,E. Focardia,b,E. Galloa,S. Gonzia,b, V. Goria,b,2,P. Lenzia,b, M. Meschinia, S. Paolettia,G. Sguazzonia,A. Tropianoa,b

aINFNSezionediFirenze,Firenze,Italy bUniversitàdiFirenze,Firenze,Italy

L. Benussi, S. Bianco, F. Fabbri,D. Piccolo

INFNLaboratoriNazionalidiFrascati,Frascati,Italy

R. Ferrettia,b, F. Ferroa, M. Lo Veterea,b, E. Robuttia,S. Tosia,b aINFNSezionediGenova,Genova,Italy

bUniversitàdiGenova,Genova,Italy

M.E. Dinardoa,b,S. Fiorendia,b, S. Gennaia,2,R. Gerosaa,b,2,A. Ghezzia,b,P. Govonia,b,M.T. Lucchinia,b,2, S. Malvezzia, R.A. Manzonia,b,A. Martellia,b,B. Marzocchia,b, D. Menascea, L. Moronia,M. Paganonia,b, D. Pedrinia,S. Ragazzia,b,N. Redaellia, T. Tabarelli de Fatisa,b

aINFNSezionediMilano-Bicocca,Milano,Italy bUniversitàdiMilano-Bicocca,Milano,Italy

S. Buontempoa, N. Cavalloa,c, S. Di Guidaa,d,2, F. Fabozzia,c,A.O.M. Iorioa,b,L. Listaa, S. Meolaa,d,2,

M. Merolaa, P. Paoluccia,2

aINFNSezionediNapoli,Napoli,Italy bUniversitàdiNapoli‘FedericoII’,Napoli,Italy cUniversitàdellaBasilicata(Potenza),Napoli,Italy dUniversitàG.Marconi(Roma),Napoli,Italy

P. Azzia,N. Bacchettaa,D. Biselloa,b,A. Brancaa,b,R. Carlina,b, P. Checchiaa,M. Dall’Ossoa,b,T. Dorigoa, U. Dossellia,M. Galantia,b,F. Gasparinia,b,U. Gasparinia,b, P. Giubilatoa,b,A. Gozzelinoa,

K. Kanishcheva,c,S. Lacapraraa,M. Margonia,b,A.T. Meneguzzoa,b, J. Pazzinia,b, N. Pozzobona,b, P. Ronchesea,b,F. Simonettoa,b, E. Torassaa,M. Tosia,b, P. Zottoa,b, A. Zucchettaa,b,G. Zumerlea,b aINFNSezionediPadova,Padova,Italy

bUniversitàdiPadova,Padova,Italy cUniversitàdiTrento(Trento),Padova,Italy

M. Gabusia,b, S.P. Rattia,b,V. Rea,C. Riccardia,b, P. Salvinia, P. Vituloa,b aINFNSezionediPavia,Pavia,Italy

bUniversitàdiPavia,Pavia,Italy

M. Biasinia,b, G.M. Bileia,D. Ciangottinia,b,L. Fanòa,b,P. Laricciaa,b, G. Mantovania,b, M. Menichellia, A. Sahaa, A. Santocchiaa,b,A. Spieziaa,b,2

aINFNSezionediPerugia,Perugia,Italy bUniversitàdiPerugia,Perugia,Italy

K. Androsova,25,P. Azzurria,G. Bagliesia,J. Bernardinia,T. Boccalia,G. Broccoloa,c,R. Castaldia,

M.A. Cioccia,25, R. Dell’Orsoa,S. Donatoa,c,F. Fioria,c,L. Foàa,c,A. Giassia, M.T. Grippoa,25, F. Ligabuea,c, T. Lomtadzea, L. Martinia,b, A. Messineoa,b,C.S. Moona,26, F. Pallaa,2, A. Rizzia,b, A. Savoy-Navarroa,27, A.T. Serbana,P. Spagnoloa,P. Squillaciotia,25,R. Tenchinia, G. Tonellia,b,A. Venturia, P.G. Verdinia, C. Vernieria,c,2

aINFNSezionediPisa,Pisa,Italy bUniversitàdiPisa,Pisa,Italy

(13)

L. Baronea,b, F. Cavallaria,G. D’imperioa,b,D. Del Rea,b, M. Diemoza,C. Jordaa, E. Longoa,b, F. Margarolia,b, P. Meridiania,F. Michelia,b,2,S. Nourbakhsha,b, G. Organtinia,b,R. Paramattia, S. Rahatloua,b,C. Rovellia, F. Santanastasioa,b, L. Soffia,b,2, P. Traczyka,b

aINFNSezionediRoma,Roma,Italy bUniversitàdiRoma,Roma,Italy

N. Amapanea,b,R. Arcidiaconoa,c, S. Argiroa,b, M. Arneodoa,c,R. Bellana,b,C. Biinoa,N. Cartigliaa, S. Casassoa,b,2, M. Costaa,b,A. Deganoa,b,N. Demariaa, L. Fincoa,b, C. Mariottia, S. Masellia,

E. Migliorea,b,V. Monacoa,b, M. Musicha, M.M. Obertinoa,c,2,G. Ortonaa,b,L. Pachera,b,N. Pastronea, M. Pelliccionia, G.L. Pinna Angionia,b,A. Potenzaa,b, A. Romeroa,b,M. Ruspaa,c,R. Sacchia,b,

A. Solanoa,b,A. Staianoa, U. Tamponia

aINFNSezionediTorino,Torino,Italy bUniversitàdiTorino,Torino,Italy

cUniversitàdelPiemonteOrientale(Novara),Torino,Italy

S. Belfortea,V. Candelisea,b, M. Casarsaa,F. Cossuttia,G. Della Riccaa,b,B. Gobboa,C. La Licataa,b, M. Maronea,b, A. Schizzia,b, T. Umera,b,A. Zanettia

a

INFNSezionediTrieste,Trieste,Italy

bUniversitàdiTrieste,Trieste,Italy

S. Chang,A. Kropivnitskaya, S.K. Nam

KangwonNationalUniversity,Chunchon,RepublicofKorea

D.H. Kim,G.N. Kim, M.S. Kim, D.J. Kong, S. Lee, Y.D. Oh,H. Park, A. Sakharov,D.C. Son

KyungpookNationalUniversity,Daegu,RepublicofKorea

T.J. Kim

ChonbukNationalUniversity,Jeonju,RepublicofKorea

J.Y. Kim,S. Song

ChonnamNationalUniversity,InstituteforUniverseandElementaryParticles,Kwangju,RepublicofKorea

S. Choi, D. Gyun,B. Hong,M. Jo, H. Kim, Y. Kim,B. Lee, K.S. Lee, S.K. Park,Y. Roh

KoreaUniversity,Seoul,RepublicofKorea

M. Choi,J.H. Kim, I.C. Park, G. Ryu, M.S. Ryu

UniversityofSeoul,Seoul,RepublicofKorea

Y. Choi,Y.K. Choi,J. Goh, D. Kim, E. Kwon, J. Lee, H. Seo,I. Yu

SungkyunkwanUniversity,Suwon,RepublicofKorea

A. Juodagalvis

VilniusUniversity,Vilnius,Lithuania

J.R. Komaragiri, M.A.B. Md Ali

NationalCentreforParticlePhysics,UniversitiMalaya,KualaLumpur,Malaysia

E. Casimiro Linares, H. Castilla-Valdez,E. De La Cruz-Burelo, I. Heredia-de La Cruz28,

A. Hernandez-Almada,R. Lopez-Fernandez, A. Sanchez-Hernandez

CentrodeInvestigacionydeEstudiosAvanzadosdelIPN,MexicoCity,Mexico

S. Carrillo Moreno, F. Vazquez Valencia

(14)

I. Pedraza, H.A. Salazar Ibarguen

BenemeritaUniversidadAutonomadePuebla,Puebla,Mexico

A. Morelos Pineda

UniversidadAutónomadeSanLuisPotosí,SanLuisPotosí,Mexico

D. Krofcheck

UniversityofAuckland,Auckland,NewZealand

P.H. Butler,S. Reucroft

UniversityofCanterbury,Christchurch,NewZealand

A. Ahmad, M. Ahmad, Q. Hassan,H.R. Hoorani, W.A. Khan, T. Khurshid,M. Shoaib

NationalCentreforPhysics,Quaid-I-AzamUniversity,Islamabad,Pakistan

H. Bialkowska, M. Bluj,B. Boimska, T. Frueboes,M. Górski, M. Kazana, K. Nawrocki,

K. Romanowska-Rybinska, M. Szleper,P. Zalewski

NationalCentreforNuclearResearch,Swierk,Poland

G. Brona, K. Bunkowski, M. Cwiok,W. Dominik, K. Doroba, A. Kalinowski, M. Konecki,J. Krolikowski,

M. Misiura, M. Olszewski, W. Wolszczak

InstituteofExperimentalPhysics,FacultyofPhysics,UniversityofWarsaw,Warsaw,Poland

P. Bargassa,C. Beirão Da Cruz E Silva, P. Faccioli, P.G. Ferreira Parracho, M. Gallinaro,L. Lloret Iglesias,

F. Nguyen, J. Rodrigues Antunes, J. Seixas,J. Varela, P. Vischia

LaboratóriodeInstrumentaçãoeFísicaExperimentaldePartículas,Lisboa,Portugal

P. Bunin,M. Gavrilenko, I. Golutvin, I. Gorbunov, V. Karjavin, V. Konoplyanikov, A. Lanev, A. Malakhov,

V. Matveev29,P. Moisenz, V. Palichik, V. Perelygin, M. Savina, S. Shmatov, S. Shulha,N. Skatchkov,

V. Smirnov, A. Zarubin

JointInstituteforNuclearResearch,Dubna,Russia

V. Golovtsov, Y. Ivanov,V. Kim30, P. Levchenko, V. Murzin,V. Oreshkin, I. Smirnov, V. Sulimov, L. Uvarov,

S. Vavilov, A. Vorobyev,An. Vorobyev

PetersburgNuclearPhysicsInstitute,Gatchina(St.Petersburg),Russia

Yu. Andreev,A. Dermenev, S. Gninenko, N. Golubev, M. Kirsanov,N. Krasnikov, A. Pashenkov, D. Tlisov,

A. Toropin

InstituteforNuclearResearch,Moscow,Russia

V. Epshteyn, V. Gavrilov, N. Lychkovskaya,V. Popov, I. Pozdnyakov, G. Safronov, S. Semenov,

A. Spiridonov, V. Stolin, E. Vlasov, A. Zhokin

InstituteforTheoreticalandExperimentalPhysics,Moscow,Russia

V. Andreev,M. Azarkin, I. Dremin, M. Kirakosyan, A. Leonidov, G. Mesyats, S.V. Rusakov,A. Vinogradov

P.N.LebedevPhysicalInstitute,Moscow,Russia

A. Belyaev,E. Boos, V. Bunichev, M. Dubinin31, L. Dudko,A. Ershov, V. Klyukhin, O. Kodolova,I. Lokhtin,

S. Obraztsov,M. Perfilov, S. Petrushanko, V. Savrin

(15)

I. Azhgirey,I. Bayshev,S. Bitioukov, V. Kachanov, A. Kalinin, D. Konstantinov,V. Krychkine, V. Petrov,

R. Ryutin, A. Sobol,L. Tourtchanovitch, S. Troshin, N. Tyurin, A. Uzunian,A. Volkov

StateResearchCenterofRussianFederation,InstituteforHighEnergyPhysics,Protvino,Russia

P. Adzic32,M. Ekmedzic, J. Milosevic,V. Rekovic

UniversityofBelgrade,FacultyofPhysicsandVincaInstituteofNuclearSciences,Belgrade,Serbia

J. Alcaraz Maestre,C. Battilana, E. Calvo,M. Cerrada, M. Chamizo Llatas, N. Colino, B. De La Cruz,

A. Delgado Peris,D. Domínguez Vázquez, A. Escalante Del Valle, C. Fernandez Bedoya,

J.P. Fernández Ramos,J. Flix, M.C. Fouz, P. Garcia-Abia,O. Gonzalez Lopez, S. Goy Lopez, J.M. Hernandez,

M.I. Josa,E. Navarro De Martino, A. Pérez-Calero Yzquierdo,J. Puerta Pelayo, A. Quintario Olmeda,

I. Redondo, L. Romero,M.S. Soares

CentrodeInvestigacionesEnergéticasMedioambientalesyTecnológicas(CIEMAT),Madrid,Spain

C. Albajar, J.F. de Trocóniz,M. Missiroli, D. Moran

UniversidadAutónomadeMadrid,Madrid,Spain

H. Brun, J. Cuevas,J. Fernandez Menendez, S. Folgueras, I. Gonzalez Caballero

UniversidaddeOviedo,Oviedo,Spain

J.A. Brochero Cifuentes,I.J. Cabrillo, A. Calderon, J. Duarte Campderros, M. Fernandez, G. Gomez,

A. Graziano,A. Lopez Virto, J. Marco, R. Marco,C. Martinez Rivero, F. Matorras,F.J. Munoz Sanchez,

J. Piedra Gomez,T. Rodrigo, A.Y. Rodríguez-Marrero,A. Ruiz-Jimeno, L. Scodellaro, I. Vila,

R. Vilar Cortabitarte

InstitutodeFísicadeCantabria(IFCA),CSIC-UniversidaddeCantabria,Santander,Spain

D. Abbaneo, E. Auffray, G. Auzinger, M. Bachtis,P. Baillon, A.H. Ball, D. Barney, A. Benaglia,J. Bendavid,

L. Benhabib,J.F. Benitez, C. Bernet7, P. Bloch, A. Bocci, A. Bonato, O. Bondu,C. Botta, H. Breuker,

T. Camporesi, G. Cerminara, S. Colafranceschi33,M. D’Alfonso, D. d’Enterria, A. Dabrowski,A. David,

F. De Guio,A. De Roeck, S. De Visscher, E. Di Marco,M. Dobson, M. Dordevic, B. Dorney,

N. Dupont-Sagorin,A. Elliott-Peisert, J. Eugster,G. Franzoni, W. Funk, D. Gigi,K. Gill, D. Giordano,

M. Girone,F. Glege, R. Guida, S. Gundacker, M. Guthoff, J. Hammer, M. Hansen,P. Harris, J. Hegeman,

V. Innocente, P. Janot, K. Kousouris,K. Krajczar,P. Lecoq, C. Lourenço,N. Magini, L. Malgeri, M. Mannelli,

J. Marrouche,L. Masetti, F. Meijers, S. Mersi, E. Meschi,F. Moortgat, S. Morovic, M. Mulders, P. Musella,

L. Orsini,L. Pape, E. Perez, L. Perrozzi,A. Petrilli, G. Petrucciani,A. Pfeiffer, M. Pierini,M. Pimiä,

D. Piparo, M. Plagge,A. Racz, G. Rolandi34, M. Rovere, H. Sakulin, C. Schäfer, C. Schwick,A. Sharma,

P. Siegrist,P. Silva, M. Simon, P. Sphicas35, D. Spiga,J. Steggemann,B. Stieger, M. Stoye, Y. Takahashi,

D. Treille, A. Tsirou,G.I. Veres17, N. Wardle,H.K. Wöhri, H. Wollny, W.D. Zeuner

CERN,EuropeanOrganizationforNuclearResearch,Geneva,Switzerland

W. Bertl,K. Deiters,W. Erdmann, R. Horisberger, Q. Ingram,H.C. Kaestli, D. Kotlinski, U. Langenegger,

D. Renker, T. Rohe

PaulScherrerInstitut,Villigen,Switzerland

F. Bachmair, L. Bäni, L. Bianchini, M.A. Buchmann,B. Casal, N. Chanon, G. Dissertori, M. Dittmar,

M. Donegà, M. Dünser, P. Eller,C. Grab, D. Hits,J. Hoss, W. Lustermann, B. Mangano,A.C. Marini,

P. Martinez Ruiz del Arbol,M. Masciovecchio, D. Meister, N. Mohr,C. Nägeli36, F. Nessi-Tedaldi,

F. Pandolfi,F. Pauss, M. Peruzzi,M. Quittnat, L. Rebane, M. Rossini,A. Starodumov37, M. Takahashi,

K. Theofilatos,R. Wallny, H.A. Weber

(16)

C. Amsler38, M.F. Canelli,V. Chiochia,A. De Cosa, A. Hinzmann, T. Hreus, B. Kilminster, C. Lange,

B. Millan Mejias, J. Ngadiuba,P. Robmann, F.J. Ronga, S. Taroni, M. Verzetti, Y. Yang

UniversitätZürich,Zurich,Switzerland

M. Cardaci, K.H. Chen,C. Ferro, C.M. Kuo, W. Lin, Y.J. Lu, R. Volpe,S.S. Yu

NationalCentralUniversity,Chung-Li,Taiwan

P. Chang, Y.H. Chang,Y.W. Chang,Y. Chao, K.F. Chen, P.H. Chen, C. Dietz,U. Grundler, W.-S. Hou,K.Y. Kao,

Y.J. Lei, Y.F. Liu, R.-S. Lu,D. Majumder, E. Petrakou, Y.M. Tzeng,R. Wilken

NationalTaiwanUniversity(NTU),Taipei,Taiwan

B. Asavapibhop, G. Singh, N. Srimanobhas,N. Suwonjandee

ChulalongkornUniversity,FacultyofScience,DepartmentofPhysics,Bangkok,Thailand

A. Adiguzel, M.N. Bakirci39, S. Cerci40,C. Dozen, I. Dumanoglu, E. Eskut, S. Girgis, G. Gokbulut,

E. Gurpinar,I. Hos, E.E. Kangal, A. Kayis Topaksu,G. Onengut41,K. Ozdemir, S. Ozturk39, A. Polatoz,

D. Sunar Cerci40,B. Tali40, H. Topakli39,M. Vergili

CukurovaUniversity,Adana,Turkey

I.V. Akin, B. Bilin,S. Bilmis, H. Gamsizkan42,B. Isildak43,G. Karapinar44,K. Ocalan45, S. Sekmen,

U.E. Surat,M. Yalvac, M. Zeyrek

MiddleEastTechnicalUniversity,PhysicsDepartment,Ankara,Turkey

E.A. Albayrak46,E. Gülmez,M. Kaya47, O. Kaya48,T. Yetkin49

BogaziciUniversity,Istanbul,Turkey

K. Cankocak, F.I. Vardarlı

IstanbulTechnicalUniversity,Istanbul,Turkey

L. Levchuk,P. Sorokin

NationalScientificCenter,KharkovInstituteofPhysicsandTechnology,Kharkov,Ukraine

J.J. Brooke,E. Clement, D. Cussans, H. Flacher,J. Goldstein, M. Grimes, G.P. Heath, H.F. Heath,J. Jacob,

L. Kreczko, C. Lucas,Z. Meng, D.M. Newbold50, S. Paramesvaran,A. Poll, T. Sakuma,S. Senkin, V.J. Smith,

T. Williams

UniversityofBristol,Bristol,UnitedKingdom

K.W. Bell, A. Belyaev51, C. Brew, R.M. Brown, D.J.A. Cockerill, J.A. Coughlan, K. Harder, S. Harper,

E. Olaiya,D. Petyt, C.H. Shepherd-Themistocleous, A. Thea, I.R. Tomalin, W.J. Womersley, S.D. Worm

RutherfordAppletonLaboratory,Didcot,UnitedKingdom

M. Baber, R. Bainbridge,O. Buchmuller, D. Burton,D. Colling, N. Cripps, M. Cutajar,P. Dauncey,

G. Davies, M. Della Negra, P. Dunne,W. Ferguson, J. Fulcher, D. Futyan, G. Hall,G. Iles, M. Jarvis,

G. Karapostoli,M. Kenzie, R. Lane, R. Lucas50,L. Lyons, A.-M. Magnan,S. Malik, B. Mathias, J. Nash,

A. Nikitenko37,J. Pela, M. Pesaresi, K. Petridis, D.M. Raymond, S. Rogerson,A. Rose, C. Seez,P. Sharp†,

A. Tapper,M. Vazquez Acosta, T. Virdee, S.C. Zenz

ImperialCollege,London,UnitedKingdom

J.E. Cole, P.R. Hobson, A. Khan,P. Kyberd, D. Leggat,D. Leslie, W. Martin,I.D. Reid, P. Symonds,

L. Teodorescu,M. Turner

Figura

Fig. 1. Normalized χ dijet distributions for 19 . 7 fb − 1 of integrated luminosity at
Fig. 3. Observed (solid lines) and expected (dashed lines) 95% CL lower limits for the CI scales   for different compositeness models (NLO), for the ADD model scale with GRW parameterization   T and for the ADD model scale with HLZ  parameteri-zation M S
Fig. A.4. Electroweak correction factors versus χ dijet for each M j j range, derived by the authors of Ref

Riferimenti

Documenti correlati

However, the differ- ences in the EI as related to the different paste humidi- ty content showed the tendency to decrease during malaxation (from about 20% to about 5%); in fact

Ritengo inoltre che nel terzo quarto del secolo i camaldolesi abbiano imposto in tutti i loro castelli della zona dei diritti signorili a livello territoriale, consistenti

Lo scopo di questo lavoro è la descrizione del modello di riabilitazione multispecialistica sviluppato ed implementato presso l’AORN Santobono Pausilipon, composto da un team

We follow a partial shock approach in which the shock of interest for which we employ valid external instruments is the real economic activity shock and analyze whether

riduce la portata di vapore primario gv, (e quindi le spese di impianto ed esercizio della sezione vapore), mentre il costo impianto relativo alla sezione di concentrazione,

Edizioni di Comunità, 1993.. raggiunto grandi dimensioni non attraverso la crescita interna ma dando vita a gruppi di imprese o aggregazioni formali 85. Indagini empiriche

Una volta effettuate le misurazioni dei linfonodi iliaci mediali destro e sinistro (altezza, lunghezza, spessore), del diametro del lume dell’aorta e calcolate