• Non ci sono risultati.

On neutrino mixing in matter and CP and T violation effects in neutrino oscillations

N/A
N/A
Protected

Academic year: 2021

Condividi "On neutrino mixing in matter and CP and T violation effects in neutrino oscillations"

Copied!
10
0
0

Testo completo

(1)

Contents lists available atScienceDirect

Physics

Letters

B

www.elsevier.com/locate/physletb

On

neutrino

mixing

in

matter

and

CP

and

T

violation

effects

in neutrino

oscillations

S.T. Petcov

a

,

b

,

1

,

Ye-Ling Zhou

c

,

aSISSA/INFN,ViaBonomea265,34136Trieste,Italy

bKavliIPMU(WPI),TheUniversityofTokyo,Kashiwa,Chiba277-8583,Japan

cInstituteforParticlePhysicsPhenomenology,DepartmentofPhysics,DurhamUniversity,DurhamDH13LE,UnitedKingdom

a

r

t

i

c

l

e

i

n

f

o

a

b

s

t

r

a

c

t

Articlehistory: Received14July2018

Receivedinrevisedform9August2018 Accepted17August2018

Availableonline20August2018 Editor:A.Ringwald

Aspects of 3-neutrino mixing and oscillations in vacuum and in matter with constant density are investigatedworkingwitharealformoftheneutrinoHamiltonian.Wefindthe(approximate)equalities

θm

23= θ23 andδm= δ,θ23 (θ23m)andδ(δm)beingrespectivelytheatmosphericneutrinomixingangleand

the DiracCPviolation phaseinvacuum (inmatter) ofthe neutrinomixing matrix,whichare shown torepresent excellentapproximationsforthe conditionsofthe T2K(T2HK),T2HKK,NOνAand DUNE neutrinooscillationexperiments.Anewderivationoftheknownrelationsin 2θm

23sinδm=sin 2θ23sinδis

presentedanditisusedtoobtainacorrelationbetweentheshiftsofθ23andδduetothemattereffect.

AderivationoftherelationbetweentherephasinginvariantswhichdeterminethemagnitudeofCPand T violatingeffects in 3-flavourneutrino oscillations invacuum, JCP, and ofthe T violatingeffects in

matterwithconstantdensity,Jm

T≡Jm,reportedin[1] withoutaproof,ispresented.Itisshownthatthe

function

F which

appearsinthisrelation, Jm=JCPF , andwhoseexplicitformwasgivenin[1],coincides

withthefunctionF in ˜ thesimilarrelation Jm=J

CPF derived ˜ in[2],although

F and

F are ˜ expressedin

termsofdifferentsetsofneutrinomassandmixingparametersandhavecompletelydifferentforms. ©2018PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense

(http://creativecommons.org/licenses/by/4.0/).FundedbySCOAP3.

1. Introductionandpreliminaryremarks

It was shownin 1988 in ref. [1] that in the case of what is currentlyreferred toasthereference3-neutrinomixing(see,e.g., [3]),themagnitudeoftheCPandTviolating(Tviolating)effectsin neutrinooscillationsinvacuum(inmatter withconstantdensity) arecontrolledbytherephasinginvariant JCP( JmT

Jm)associated withtheDiracCPviolationphasepresentinthePontecorvo,Maki, NakagawaandSakata(PMNS)[4,5] neutrinomixingmatrix:

JCP

(

Jm

)

=

Im



Ue2(m)

 

Uμ(m3)

 

Ue3(m)





U(μm2)





,

(1)

whereUli(m),l

=

e

,

μ

,

τ

, i

=

1,2,3,arethe elements ofthePMNS matrixinvacuum(inmatter) U(m).The CPviolatingasymmetries

inthecaseofneutrinooscillationsinvacuum,forexample,

*

Correspondingauthor.

E-mailaddress:ye-ling.zhou@durham.ac.uk(Y.-L. Zhou).

1 Alsoat:InstituteofNuclearResearchandNuclearEnergy,BulgarianAcademyof Sciences,1784Sofia,Bulgaria.

A(CPvacl,l)

=

Pvac

(

ν

l

ν

l

)

Pvac

(

ν

¯

l

→ ¯

ν

l) ,

l

=

l and l

,

l

=

e

,

μ

,

τ

,

(2)

Pvac

(

ν

l

ν

l

)

andPvac

(

ν

¯

l

→ ¯

ν

l

)

beingtheprobabilitiesof respec-tively

ν

l

ν

l and

ν

¯

l

→ ¯

ν

l oscillations, were shown to be given by [1]:

A(CPvace,μ)

=

A(CPvacμ,τ)

= −

A(CPvace,τ)

=

4 JCP



vacosc

,

(3) with



vacosc

=

sin





m221L 2E



+

sin





m232L 2E



+

sin





m213L 2E



,

(4)

where



m2i j

=

m2i

m2j, i

=

j, mi, i

=

1,2,3, is the mass of the neutrino

ν

i with definite massin vacuum, E is the neutrino en-ergyandL isthedistancetravelledbytheneutrinos.In[1] similar resultswereshowntobevalidfortheT-violating asymmetriesin oscillations in vacuum (in matter), ATvac(l,l)(m)

=

Pvac(m)

(

ν

l

ν

l

)

Pvac(m)

(

ν

l

ν

l

):

https://doi.org/10.1016/j.physletb.2018.08.025

(2)

ATvac(μ,e)(m)

=

ATvac(τ,μ()m)

= −

ATvac(e,τ)(m)

=

4 JCP(m()T)



vacosc(m)

,

(5) where



mosc has the sameform as



vacosc in eq. (4) with



m2i j re-placedby masssplittinginthe matter



M2

i j

=

M2i

M2j,andMi, i

=

1,2,3,areneutrinomass-eigenvaluesinthematter.Invacuum the T violating asymmetries in antineutrino oscillations, A

¯

(Tvacl,l)

=

Pvac

(

ν

¯

l

→ ¯

ν

l

)

Pvac

(

ν

¯

l

→ ¯

ν

l

),

arerelatedtothoseinneutrino os-cillationsowingtotheCPTinvariance: A

¯

Tvac(l,l)

= −

A(Tvacl,l).Inordinary matter (Earth, Sun)2 the presence of matter causes CP and CPT violating effects in neutrino oscillations [6] and

| ¯

ATm(l,l)

|

= |

A(Tml,l)

|

. However,inordinarymatterwithconstantdensityorwithdensity profile which is symmetric relative to the middlepoint, likethe matter of theEarth, the matter effects preserve the Tsymmetry anddonotgenerateTviolatingeffectsinneutrinooscillations[1]. Thus,Tviolatingeffectsintheflavourneutrinooscillations taking place when the neutrinos traverse, e.g., the Earth mantleor the Earthcorecanbecausedinthecaseof3-neutrinomixingonlyby theDiracphaseinthePMNSmatrix.

The JCP-factorin the expressions for A(l,l )

CP(T)vac,l

=

l, is anal-ogous tothe rephasing invariant associatedwiththe Diracphase in the Cabibbo–Kobayashi–Maskawa (CKM) quark mixing matrix, introduced in [7]. In the standard parametrization of the PMNS mixingmatrix(see,e.g.,[3])ithastheform:

JCP

=

1

8 cos

θ

13sin 2

θ

12sin 2

θ

23sin 2

θ

13sin

δ ,

(6)

where

θ

12,

θ

23and

θ

13arethesolar,atmosphericandreactor neu-trino mixing angles and

δ

is the Dirac CP violation phase. The expression for the JCP-factor is the same in the parametrisation ofthePMNSmatrixUPMNS

U employedin[1]:

U

=

R23

23

)

P33

(δ)

R13

13

)

R12

12

) ,

(7) where R23

23

)

=

10 cos0

θ

23 sin0

θ

23 0

sin

θ

23 cos

θ

23

⎠ ,

P33

(δ)

=

diag

(

1

,

1

,

eiδ

) ,

(8) and R13

13

)

=

cos0

θ

13 01 sin0

θ

13

sin

θ

13 0 cos

θ

13

⎠ ,

R12

12

)

=

cossin

θ

θ

1212 cossin

θ

θ

1212 00

0 0 1

⎠ .

(9)

The expressionof thePMNS matrix inthe standard parametrisa-tion Usp, is related to the expression in the parametrisation in eq. (7) asfollows:Usp

=

U P33

(δ).

Ineq. (7) thetwoCPviolation(CPV)Majoranaphasespresentin

UPMNS inthecaseofmassiveMajorananeutrinos[8] wereomitted since,aswas shownin[8,6],the probabilitiesofflavour neutrino oscillationsofinterest forthestudyperformedin[1] and forthe presentstudy, donot depend on the Majoranaphases. Thus, the resultspresentedin[1] andthenewresultsderivedinthepresent articlearevalidforbothDiracandMajorananeutrinoswith defi-nitemassesinvacuum.

2 By“ordinary”wemeanmatterwhichdoesnotcontainantiprotons,antineutrons andpositrons.

In ref. [1] the following relation between the rephasing in-variants invacuumandinmatter withconstantdensity, JCP and

JmT

Jm,hasbeenreported:

Jm

=

JCPF

12

, θ

13

,



m221

,



m231

,

A

) ,

(10) where A

=

2E

2 GFNe isthematterterm[9–11], GFandNe be-ingrespectivelytheFermiconstantandtheelectronnumber den-sityofmatter.ThefunctionF ineq. (10) wasgiveninthefollowing explicitformin[1]: F

=

F1 F2F3 D12D13D23D32

,

(11) where Di j

m2i

M2j

,

i

,

j

=

1

,

2

,

3

,

(12) F1

=

D12D13D23D32

+

A

D13D23



D32

− 

m231

|

Ue3

|

2



+

D12D32



D23

− 

m221

|

Ue2

|

2



+

A2

|

Ue1

|

2D32D23

+ |

Ue2

|

2D32D13

+ |

Ue3

|

2D12D23

,

(13) F2

= |

Ue1

|

2

(

D12

+

A

)

2D232

+ |

Ue2

|

2D212D232

+ |

Ue3

|

2D212

(

D32

+

A

)

2

A2

|

Ue1

|

2

|

Ue3

|

2

(

m231

)

2

,

(14) F3

= |

Ue1

|

2

(

D13

+

A

)

2D223

+ |

Ue3

|

2D213D223

+ |

Ue2

|

2D213

(

D23

+

A

)

2

A2

|

Ue1

|

2

|

Ue2

|

2

(

m221

)

2

.

(15) As was noticed in [1], the function F3 can formally be ob-tained from the function F2 by interchanging m22 and m23, M22 and M2

3, and

|

Ue2

|

2 and

|

Ue3

|

2. In the parametrisation (7) used in [1] and, thus in eqs. (13)–(15), Ue1, Ue2 and Ue3 are real quantities: Ue1

=

c12c13,Ue2

=

s12c13 and Ue3

=

s13, whereci j

cos

θ

i j andsi j

sin

θ

i j.Thus,

|

Uei

|

2

=

Uei2,i

=

1,2,3.The function F

12

,

θ

13

,



m221

,



m231

,

A

)

asdefinedby eqs. (11)–(15), depends, in particular,on thedifferencesbetweenthe squaresof the neu-trinomassesinvacuumandinmatter, Di j

=

m2i

M2j,i

=

j. How-ever,asitfollowsfromtheformoftheHamiltonianoftheneutrino system in matter with constant density, whose eigenvalues are

M2j

/(2E)

(seefurther),aswellasfromtheexplicitanalytic expres-sions forM2

j derived in[10], themasssquareddifferences Di j of interest arefunctionsof

θ

12,

θ

13,



m221,



m231 and A anddo not dependon

θ

23and

δ.

Asaconsequence,thefunction F ineq. (10) isindependenton

θ

23and

δ

[1]:F

=

F

12

,

θ

13

,



m221

,



m231

,

A

).

In deriving the relation (10), the following parametrisation of theneutrinomixingmatrixinmatterUm wasused:

Um

=

Q R23

23m

)

P33

m

)

R13

13m

)

R12

12m

) ,

Q

=

diag

(

1

,

eiβ2

,

e3

) ,

(16)

where

θ

23m,

θ

13m,

θ

12m,

δ

m are the neutrino mixing angles and the Dirac CPV phase in matter and the Majorana CPV phases were omitted.Thephases

β

2and

β

3 inthematrixQ areunphysicaland donotplayanyroleinthederivationofrelation(10).Theyensure that thematrixUm canbecastintheformgivenineq. (16) [12] (seealso[13]).Obviously,theparametrisationofUmineq. (16) is analogoustotheparametrisation(7) oftheneutrinomixingmatrix invacuum.

(3)

Itfollowsfromeqs. (11)–(15) that[1] inthecaseofoscillations invacuum,i.e.,forNe

=

0 ( A

=

0),onehas

F

12

, θ

13

,

m221

,



m231

,

0

)

=

1

,

(17)

andthat F issymmetricwithrespecttotheinterchangeofm2 2 and

m23,M22 andM23 andof

|

Ue2

|

2 and

|

Ue3

|

2. The relation (10) between Jm and J

CP implies, in particular, thatwecanhave Jm

=

0 onlyif JCP

=

0,i.e.,Tviolationeffectscan bepresentinneutrinooscillationstakingplaceinmatterwith con-stant densityor densitydistributed symmetricallyrelative to the middlepoint(like intheEarth) onlyifCPandTviolationeffects arepresentinneutrinooscillationstakingplaceinvacuum.Itwas shownalsoin[1] thatthepresenceofmattercan enhance some-what

|

Jm

|

withrespecttoits vacuumvalue

|

J

CP

|

: intheexample considered in [1] the enhancement was by a factor of 3. Taking thebestfitvaluesof neutrinooscillationparametersforneutrino massspectrumwithnormalordering(invertedordering)3obtained intheglobalanalysisin[14],

θ

12

=

33

.

62◦

, θ

23

=

47

.

2◦

(

48

.

1◦

) ,

sin2

θ

13

=

8

.

54◦

(

8

.

58◦

) ,

δ

=

234◦

(

278◦

) ,



m212

=

7

.

4

×

10−5eV2

,



m231

=

2

.

494

×

10−3eV2

(

m232

= −

2

.

465

×

10−3eV2

) ,

(18)

onealways hasfor theratio

|

Jm

/

J

CP

|

<

1.2 [15].This result per-sists even if we fix

δ

to its best fit value and vary the other neutrino oscillation parameters in their 3

σ

allowed ranges de-termined in [14]. Relaxing arbitrarily the 3

σ

experimental con-straintsontheallowedrangesof



m221and



m231,wefindthat in-deedthemaximalenhancementfactor

|

Jm

/

J

CP

|

is3.6forneutrino massspectrum with normalordering (NO) and2.9for spectrum withinvertedordering(IO). Inboth cases,themaximal enhance-ment corresponds to Jm reaching its theoretical maximal value max(

|

Jm

|)

=

1/(6

3).

In1991in [2] arelation similar tothat givenin eq. (10) was obtained:

Jm

=

JCPF

˜

.

(19)

Thefunction F was

˜

giveninthefollowingform:

˜

F

=



m 2 12



m223



m231



M2 12



M223



M312

,

(20) where



M2 i j

=

M2i

M2j.

Therelation(10) betweentherephasinginvariants Jm and J CP waspresentedin[1] withouta proof.In thepresentarticle,after discussingcertainaspectsofneutrinomixinginmatter,weprovide aderivation oftherelation(10).Further, weshow that the func-tion F ineq. (10),asdefinedineqs. (13)–(15), coincideswiththe functionF in

˜

therelation(19) obtainedin[2],

F

= ˜

F

,

(21)

i.e.,thatthefunction F is justanotherrepresentationofthe func-tionF .

˜

2. Onthe3-neutrinomixinginmatter

In[1] theanalysis was performed starting withthe following Hamiltonianof the neutrino systemin matter diagonalised with thehelpoftheneutrinomixingmatrixinmatterUm[6]:

3 Foradiscussionofthedifferentpossibletypesofneutrinomassspectrumsee, e.g.,[3]. 1 2EU

m 2 1 0 0 0 m22 0 0 0 m23

⎠ +

U

A0 0 00 0 0 0 0

U

U

=

1 2EU m

M 2 1 0 0 0 M2 2 0 0 0 M23

⎠ (

Um

)

.

(22)

It follows from the preceding equation4 that the Hamiltonian of

theneutrinosystem,

H

=

1 2E

m 2 1 0 0 0 m22 0 0 0 m23

⎠ +

1 2EU

A0 0 00 0 0 0 0

U (23)

=

1 2E

m 2 1

+

A

|

Ue1

|

2 AUe1Ue2 AUe1Ue3 AUe2Ue1 m22

+

A

|

Ue2

|

2 AUe2Ue3 AUe3Ue1 AUe3Ue2 m23

+

A

|

Ue3

|

2

(24)

is diagonalised by the matrix UUm and its eigenvalues are M2

i

/(2E),

i

=

1,2,3.Intheparametrisation(7) ofthePMNSmatrix Ue1, Ue2 and Ue3 are real quantities: Ue1

=

c12c13, Ue2

=

s12c13 and Ue3

=

s13, where ci j

cos

θ

i j and si j

sin

θ

i j. As a con-sequence, the Hamiltonian H is a real symmetric matrix.5 This

impliesthatthematrixUUm,whichdiagonalises H ,isareal or-thogonalmatrix:

UUm

=

O

,

O

=

O

,

OTO

=

O OT

=

diag

(

1

,

1

,

1

) .

(25)

Since H does not depend on

θ

23 and

δ,

O

=

UUm should not dependon

θ

23and

δ

either.ThefactthatthematrixO ineq. (25) isarealorthogonalmatriximpliesthatintheparametrisations(7) and(16) ofthePMNSmatrixinvacuumandinmatter,thematrix

˜

O

=

R13

13

)

R12

12

)

O R12T

12m

)

RT13

13m

)

=

P33

(δ)

RT23

23

)

Q R23

23m

)

P33

m

)

(26)

=



1 0 0 0 cm 23c23eiβ2+sm23s23eiβ3 sm23c23ei(β2 m)cm 23s23ei(β3 m) 0 s23cm23ei(β2−δ)c23s23mei(β3−δ) sm23s23ei(β2−δ+δ m) +cm 23c23ei(β3−δ+δ m)



,

(27)

isarealorthogonalmatrix.

The requirement of reality of the nondiagonal elements of O

˜

leadstotheconditions:

cos

θ

23sin

θ

23m sin

3

− δ) =

sin

θ

23cos

θ

23m sin

2

− δ) ,

cos

θ

23sin

θ

23m sin

2

+ δ

m

)

=

sin

θ

23cos

θ

23m sin

3

+ δ

m

) ,

(28) whichimply,inparticular:

cos

(

2

β

3

+ δ

m

− δ) =

cos

(

2

β

2

+ δ

m

− δ) .

(29) Thelastconditionhastwosolutions:

β

3

= β

2

+

k

π

,

k

=

0

,

1

,

2

, ... ,

(30)

β

2

+ β

3

= δ − δ

m

+

k

π

,

k

=

0

,

1

,

2

, ... .

(31)

4 TheCPVMajoranaphasesα

21andα31,enterintotheexpressionforthePMNS matrixinvacuumthroughthediagonalmatrix P=diag(1, eiα21/2, e31/2)[8,16]):

UPMNS=U P .Itfollowsfromtheexpressioninthelefthandsideofeq. (22) that theHamiltonianofneutrinosysteminmatter,andthusthe3-flavourneutrino os-cillationsinmatter,donotdependontheMajoranaphases[6].

5 ReplacingthematrixU withUsp=U P

33(δ)ineq. (22),itiseasytoconvince oneselfthattheHamiltonianH hastheformgivenineq. (24) alsointhestandard parametrisationofthePMNSmatrixwithUe3replacedby|Ue3|=s13.

(4)

TherequirementofrealityofthediagonalelementsofO leads

˜

to:

cos

θ

23cos

θ

23m sin

β

2

= −

sin

θ

23sin

θ

23m sin

β

3

,

cos

θ

23cos

θ

23m sin

3

− δ + δ

m

)

= −

sin

θ

23sin

θ

23m sin

2

− δ + δ

m

) .

(32) Theseconditionsalsolead,inparticular,totheconstraintgivenin eq. (29) andtothesolutions(30) and(31).Itshouldbe clearthat satisfyingtheconstraint(30) or(31) isnot enough toensurethe realityofthematrix O .

˜

Consider first the consequences of the constraint in eq. (30). Requiringinadditionthat thedeterminantof O is

˜

arealquantity implies:

2

β

2

= δ − δ

m

+

k

π

,

k

=

0

,

1

,

2

, ...

(33) Theconstraintineq. (30) fork

=

0,forexample,andtheconditions ofrealityoftheelements

( ˜

O

)

23(32)and

( ˜

O

)

22(33)of O lead

˜

to:

sin

23

− θ

23m

)

sin

2

− δ) =

0

,

sin

23

− θ

23m

)

sin

2

+ δ

m

)

=

0

.

(34) cos

23

− θ

23m

)

sin

β

2

=

0

,

cos

23

− θ

23m

)

sin

2

− δ + δ

m

)

=

0

.

(35)

Asaconsequenceofeq. (33) thesecondconditionsineqs. (34) and (35) areequivalenttothefirstconditionsineqs. (34) and(35).The constraint(30) fork

=

0 andtheconditions(34) and (35) canbe simultaneouslysatisfiedifthefollowingrelationshold6:

θ

23m

= θ

23

,

0

< θ

23

, θ

23m

π

/

2

,

(36)

δ

m

= δ +

k

π

,

k

=

0

,

1

,

2

,

(37)

β

2

=

q

π

,

q

=

0

,

1

,

2

, ... .

(38)

Numericalresultsonthedependenceof

θ

23m,

δ

m,

θ

m23and

δ

monthe matterpotential A,

θ

m23 and

δ

m beingthe corresponding antineu-trinomixingangleandCPviolationphase,showthattherelations (36) and (37) cannot be exact. These relations are not the true solutions ofthereality conditions ofthe matrix O since

˜

they do not fully guaranteethe reality of O as

˜

givenin eq. (27). Only if both

θ

23

=

45◦ and

δ

= ±

π

/2 hold

invacuum, therelations (36) and(37) areexact and are not violated by theeffects of matter [17].However,they arefulfilledwithextremelyhighprecision for themixingofneutrinos(antineutrinos)inmatterinthecaseofIO (NO) neutrino mass spectrum. We find that in thiscase for any

A

/

m2

21andthebestfitvaluesoftheneutrinooscillation param-etersquotedineq. (18) wehave:





(−)

θ

m23

θ

23

1



 

0

.

0004

(

0

.

0015

) ,

(39)





(−)

δ

m

δ

1



 

0

.

0001

(

0

.

00006

) .

(40)

Forthemixingofneutrinos(antineutrinos)inmatterandspectrum with normal (inverted) ordering, eqs. (36) and (37) are fulfilled alsowithextremelyhighprecisionfor A

/

m221

<

30:

6 An alternative solution to the discussed constraints is θm

23= θ23, β2=, q=0, 1, 2, ...,

δ

=kπ,k=0, 1, 2,

δ

m= ˜kπ,k˜=0, 1, 2.ItcorrespondstoCP(T) conservingvaluesof

δ

(δm).





(−)

θ

m23

θ

23

1



 

0

.

006

(

0

.

0015

) ,

(41)





(−)

δ

m

δ

1



 

0

.

0003

(

0

.

001

) .

(42)

For7 A

/

m221



30 andmixingofneutrinos(antineutrinos)in mat-terandNO(IO)neutrinomassspectrumwehave:





(−)

θ

m23

θ

23

1



 

0

.

07

(

0

.

016

) ,

(43)





(−)

δ

m

δ

1



 

0

.

001

(

0

.

004

) .

(44)

Setting

δ

toitsbestfitvalue givenineq. (18) andvaryingthe other neutrinooscillation parameters intheir 3

σ

allowed ranges determined in[14] doesnotchangesignificantlytheresultsquoted in eqs. (40)–(44). Indeed, formixing of neutrinos(antineutrinos) inmatterinthecaseofIO(NO)neutrinomassspectrumandany

A

/

m221wefindthat

|

(−)

θ

m23

23

1

|



0.0005

(0.002)

and

|

(−)

δ

m

1

|



0.0002

(0.0002).

Inthecaseofmixingofneutrinos (antineu-trinos)inmatterandNO(IO)spectrumand A

/

m2

21

<

30 weget

|

(−)

θ

m23

23

1

|



0.013

(0.003)

and

|

(−)

δ

m

1

|



0.0013

(0.003),

whileforA

/

m221



30 weobtain

|

(−)

θ

m23

23

1

|



0.09

(0.02)

and

|

(−)

δ

m

1

|



0.01

(0.01).

TheseresultsareillustratedinFigs.1and

2

(3and

4

)wherethe ratios

θ

23m

23 and

δ

m

(the ratios

θ

m23

23 and

δ

m

/δ)

areshown as functionsof A

/

m2

21 in the case of mixingof neutrinos (an-tineutrinos)andNO(leftpanel)andIO(rightpanel)neutrinomass spectrum. We usedthe bestfit valuesof neutrinooscillation pa-rameters



m231,



m221,

θ

12 and

θ

13 from [14] and the analytic expressionsforM2

i,i

=

1,2,3,from[12].

The approximate ranges of values of A

/

m2

21 relevant for the T2K (T2HK) [19], T2HKK [20], NO

ν

A [21] and DUNE [22] long baseline neutrino oscillation experiments read, respectively:

[

0.266,2.66

]

,

[

0.306,3.06

]

,

[

2.90,8.70

]

and

[

3.02,12.10

]

. In ob-taining theseranges we usedthe bestfit value of



m2

21

=

7.4

×

10−5 eV2 andtook intoaccount i) that A

=

7.56

×

10−5 eV2

(

ρ

/

g/cm3

)

(

E

/GeV),

where

ρ

isthematterdensity,ii)thatthemean Earth density along the trajectories of the neutrinos in the T2K (T2HK), T2HKK, NO

ν

A and DUNE long baseline neutrino oscilla-tion experiments respectively is 2.60, 3.00, 2.84and 2.96 g/cm3, andiii) that intheseexperiments beamsofneutrinos with ener-gies

∼ (

0.1–1.0) GeV(T2K, T2HK, T2HKK),

∼ (

1–3) GeV (NO

ν

A) and

∼ (

1–4)GeV(DUNE)arebeing,orplannedtobe,used.Atthe peak neutrino energies at T2K (T2HK), T2HKK, NO

ν

A andDUNE experimentsofrespectively0.6 GeV,0.6 GeV,2.0 GeVand2.6 GeV we have A

/

m2

21

=

1.59, 1.84, 5.80 and 7.86. Taking a wider neutrino energy interval for, e.g., NO

ν

A and DUNE experiments of

[

1.0,8.0

]

GeV, we get for the corresponding A

/

m221 ranges:

[

2.90,23.21

]

and

[

3.02,24.20

]

. For all the intervals of values of

A

/

m2

21 quoted above, which are relevant for the T2K (T2HK), T2HKK,NO

ν

AandDUNEexperiments,theequalities(36) and(37) areexcellentapproximations.

Considernexttheimplicationsofthesecondcondition(31) re-lated to the requirement of reality of the matrix O .

˜

As can be easilyshown,thisconditionalonei) ensurestherealityofdet( ˜O

),

(5)

Fig. 1. Theratio

θ

m

2323asafunctionofA/m221inthecaseofmixingofneutrinosandNO(leftpanel)andIO(rightpanel)neutrinomassspectrum.Seetextforfurther details.

Fig. 2. Theratio

δ

masafunctionofA/m2

21inthecaseofmixingofneutrinosandNO(leftpanel)andIO(rightpanel)neutrinomassspectrum.Seetextforfurther details.

Fig. 3. The same as in Fig.1but for the ratioθm

2323. See text for further details.

andii)makesidenticalthetwoconditionsineq. (28) andthetwo conditionsin eq. (32). Thus, after using condition (31) there are stilltwo independent conditionstobe satisfiedto ensurethe re-ality of the matrix O .

˜

We will derive next a condition that can substituteone ofthe requiredtwo conditions.The second condi-tionthencanbe eitherthecondition ineq. (28) or thecondition ineq. (32) (aftereq. (31) hasbeenused).

Thecondition of orthogonalityof O ,

˜

O

˜

( ˜

O

)

T

=

diag(1,1,1), as canbeshown,leadstothefollowingadditionalconstraints:

(

cm23

)

2sin

(

2

β

2

− δ) + (

sm23

)

2sin

(

2

β

2

− δ +

2

δ

m

)

= −

cm23sm23

c23s23

cos 2

θ

23sin

δ

m

,

(45)

sin 2

θ

23sin 2

θ

23m sin

δ

sin

δ

m

+ (

cm23

)

2cos

(

2

β

2

)

+ (

sm23

)

2cos

(

2

β

2

+

2

δ

m

)

=

1

2 s223sin

δ

[(

cm23

)

2sin

(

2

β

2

− δ)

(6)

Fig. 4. The same as Fig.2but for the ratioδm. See text for further details.

Fig. 5. Theratiosin 2θm

23sinδm/(sin 2θ23sinδ),eq. (49),formixingofneutrinosasafunctionofA/m221inthecasesofNO(leftpanel)andIO(rightpanel)neutrinomass spectra.Seetextforfurtherdetails.

sin 2

θ

23sin 2

θ

23m cos

δ

sin

δ

m

+ (

cm23

)

2sin

(

2

β

2

)

+ (

sm23

)

2sin

(

2

β

2

+

2

δ

m

)

=

2 s223cos

δ

[(

cm23

)

2sin

(

2

β

2

− δ)

+ (

sm23

)

2sin

(

2

β

2

− δ +

2

δ

m

)

] ,

(47) where we have used the relation in eq. (31). Conditions (45), (46) and (47) follow from the requirements

( ˜

O

( ˜

O

)

T

)

23(32)

=

0,

Re(( ˜O

( ˜

O

)

T

)

22

)

=

1 andIm(( ˜O

( ˜

O

)

T

)

22

)

=

0,respectively.Replacing

(

cm23

)

2sin(2β2

− δ)

+ (

sm23

)

2sin(2β2

− δ +

m

)

ineqs. (46) and(47) withthe righthand side ofeq. (45), after certain simplealgebra leadstotheequality:

sin 2

θ

23m sin

δ

m

=

sin 2

θ

23sin

δ .

(48)

Thisresultwas derived in [23] (seealso [13])usingthe parame-terisations (7) and(16) introducedin[1] butemployingadifferent method.8 The equality(48) implies that theproduct sin 2θ23sin

δ

does not depend on the matter potential, i.e., is the same for neutrino oscillations takingplace in vacuum andin matter with constant density.It is validforneutrino andantineutrino mixing

8 The method employed in [23] is based on the observation [24] that the parametrisation(7) allowstofactor outthe part R2323)P33(δ)intheneutrino mixing matrix in matter. In this case one works with the Hamiltonian Hˆ = P33(δ)RT

2323)U H UR2323)P33,whichisalsoarealsymmetricmatrix,whereH isgivenineq. (24).

inmatterindependentlyofthetype ofspectrum neutrinomasses obey – withNO or IO. From eq. (10) using the parametrisations definedineqs. (7) and(16) wefind:

sin 2

θ

23msin

δ

m sin 2

θ

23sin

δ

=

F cos

θ

13sin 2

θ

12sin 2

θ

13 cos

θ

13m sin 2

θ

12m sin 2

θ

13m

=

F

Ue1Ue2Ue3

Ume1Ume2Ume3

.

(49)

Fromthisresultandeq. (48) weobtainyetanotherequivalent rep-resentationofthefunction F

12

,

θ

13

,



m221

,



m231

,

A

):

F

=

U

m e1Ue2mUme3

Ue1Ue2Ue3

.

(50)

The ratio given in eq. (49) is shown graphically in Fig. 5 for mixingofneutrinosasafunctionofA

/

m221forthebestfitvalues ofneutrinooscillationparameters



m2

31,



m221,

θ

12 and

θ

13from [14] andtheanalyticexpressionsforMi2,i

=

1,2,3,from[12].The numericalresultpresentedinFig.5,aswehaveverifiedandcould be expected, is validnot only for best fit values of the relevant neutrinooscillationparameters,butindeedholdsforanyvaluesof these parameters, varied intheir respectivephysical regions. The sameresultisvalidformixingofantineutrinos.Thus,theequality (48) isexact.It holdsalsointhestandardparametrisationsofthe PMNS matrix (see footnote 4). In thiscase the ratio Ue3

/

Ume3 in eqs. (49) and(50) hastobereplacedby

|

Ue3

|/|

Ume3

|

.

It followsfromeq. (48) thatforthevaluesofsin 2θ23

=

1 and

δ

=

3

π

/2,

whichare perfectlycompatiblewith theexisting data,

(7)

wehavesin 2θ23m sin

δ

m

= −

1.Thisinturnimpliessin 2θ23m

=

1 and sin

δ

m

= −

1,i.e., thevacuum valuesof

θ

23

=

π

/4 and

δ

=

3

π

/2

arenotmodifiedbythepresenceofmatter[17].

Giventhefactthat,aswehaveseen,thecorrectionsof

θ

23and

δ

dueto thematter effects are small, therelation (48) allows to relatethemattercorrectionto

θ

23,

23

(

A

/

m221

),

withthematter correctionto

δ,

δ

(

A

/

m2

21

).

Working toleading orderin

23

1 and

δ

1 weget fromeq. (48) using

θ

23m

= θ

23

+

23 and

δ

m

=

δ

+

δ:

δ

(

A

/

m221

)

cos

δ ∼

= −

2

23

(

A

/

m221

)

cos 2

θ

23

sin 2

θ

23

sin

δ .

(51)

Thus, for

θ

23

=

π

/4 and

δ

=

3

π

/2,

π

/2,

the leading order mat-tercorrection to

δ

vanishes, whilefor

δ

=

3

π

/2 (

π

/2)

and

θ

23

=

π

/4,

the leading order matter correction to

θ

23 vanishes. For

δ

=

q

π

/2,

q

=

0,1,2,3,4, and

θ

23

=

π

/4 the

signof

δ

coincides with (is opposite to) the sign of

23 provided cos 2θ23cot

δ <

0 (cos 2θ23cotδ >0).

3. Therelationbetween Jmand JCP Equation(22) canbecastintheform:

m 2 1 0 0 0 m2 2 0 0 0 m23

⎠ +

U

A0 0 00 0 0 0 0

U

⎦ (

UUm

)

= (

UUm

)

M 2 1 0 0 0 M2 2 0 0 0 M23

⎠ .

(52)

One possible relatively simple way to derive the relation be-tween Jmand J

CPgivenineq. (19) andreportedin[1] istoexploit thefactthatthecolumnmatrices

((

UUm

)

1i

(

UUm

)

2i

(

UUm

)

3i

)

T areeigenvectors ofthe Hamiltonian H definedineq. (24), corre-spondingtotheeigenvalues M2

i

/(2E),

i

=

1,2,3.Usingthis obser-vationitispossibletoderivefromeq. (52) explicitexpressionsfor the elements of the neutrinomixing matrix in matter Um. They read: Ulim

=

1 Di

NiUli

A Uei



DjiUekUlk

+

DkiUejUlj



,

l

=

e

,

μ

,

τ

,

(53) where Ni

=

DjiDki

+

A



Dji

|

Uek

|

2

+

Dki

|

Uej

|

2



,

(54) D2i

=

Ni2

+

A2

|

Uei

|

2



D2ji

|

Uek

|

2

+

D2ki

|

Uej

|

2



,

(55)

withi

,

j

,

k

=

1,2,3,buti

=

j

=

k

=

i.Forthe elements ofUm of interest,Ume2,Ue3m,Uμm2 andUmμ3 wegetfromeqs. (53)–(55):

Ume2

=

1 D2 Ue2D12D32

,

(56) Ume3

=

1 D3 Ue3D13D23

,

(57) Umμ2

=

1 D2



N22

A Ue2



D12Ue3Uμ3

+

D32Ue11



,

(58) and Umμ3

=

1 D3



N33

A Ue3



D13Ue2Uμ2

+

D23Ue1Uμ1



.

(59)

Thefunction D22,which,asitfollowsfromeqs. (1) and(56)–(59), entersintotheexpressionfor Jm,isgivenby:

D22

=

N22

+

A2

|

Ue2

|

2



D212

|

Ue3

|

2

+

D232

|

Ue1

|

2



=

D212D232

+

2 A D12D32



D12

|

Ue3

|

2

+

D32

|

Ue1

|

2



+

A2

D212

|

Ue3

|

2



|

Ue3

|

2

+ |

Ue2

|

2



+

D232

|

Ue1

|

2



|

Ue1

|

2

+ |

Ue2

|

2



+

2 D12D32

|

Ue1

|

2

|

Ue3

|

2

=

D212D232

+

2 A D12D32



D12

|

Ue3

|

2

+

D32

|

Ue1

|

2



+

A2

D212

|

Ue3

|

2

+

D232

|

Ue1

|

2

− (

D32

D12

)

2

|

Ue1

|

2

|

Ue3

|

2

.

(60)

It iseasy tocheck thatexpression (60) for thefunction D2 2 coin-cideswithexpression(14) forthefunction F2,i.e.,thatwehave

D22

=

F2

.

(61)

OnecanshowinasimilarwaythatthefunctionD23 coincideswith thefunctionF3 givenineq. (15),i.e.,that

D23

=

F3

.

(62)

The calculation of the rephasing invariant in matter Jm in-volves,inparticular,theproductUmμ3

(

Uμm2

)

(

Ue3m

)

Ume2ofelements ofUm.Fromeqs. (56)–(59) wehave:

R

D 2 2D23 D13D23D12D32 Im



(

Umμ2

)

Uμm3

(

Ume3

)

Ume2



Im



Uμ2Ue2Uμ3Ue3



(63)

=

1 Im



Uμ2Ue2Uμ3Ue3



Im



N2Uμ2Ue2

A

|

Ue2

|

2



D12Ue3Uμ∗3

+

D32Ue1Uμ∗1



×



N33Ue3

A

|

Ue3

|

2



D13Ue22

+

D23Ue11

 

.

(64)

Usingthefactthat

JCP

=

Im

(

Uμ2Ue2Uμ3Ue3

)

=

Im

(

Uμ3Ue3Uμ1Ue1

)

= −

Im

(

Uμ2Ue2Uμ1Ue1

) ,

(65)

the function R in eq. (64),after some algebra,can bebrought to theform: R

=

D13D23D12D32

+

A



D13D23



D32

− |

Ue3

|

2

(

D32

D12

)



+

D12D32



D23

− |

Ue2

|

2

(

D23

D13

)



+

A2



D23D32

|

Ue1

|

2

+

D13D32

|

Ue2

|

2

+

D12D23

|

Ue3

|

2



.

(66)

Equations(11),(10),(63) andtheequalities F2

=

D22 and F3

=

D23 provenabove,togetherwiththeequalities D32

D12

= 

m231and

D23

D13

= 

m221,implythat R

=

F1.Thiscompletestheproofof theresultreportedin[1] andgivenineqs. (10) and(11).

Twocommentsareinorder.First,thefunctionF

12

,

θ

13

,



m221

,



m2

(8)

Fig. 6. ThefunctionsF (bluesolidline), F (red˜ dashedline)andthedifferenceF− ˜F (greenline)versusA/m2

21 forNO(leftpanel)andIO(rightpanel)neutrinomass spectrum.Seetextforfurtherdetails.(Forinterpretationofthecoloursinthefigure(s),thereaderisreferredtothewebversionofthisarticle.)

fromeqs. (61) and(62) thatthefunctions F2 andF3 arepositive. ForA

=

0,wehavealsoF1D12D13D23D32

>

0.Onecanshowthat thisinequalityholdsalsoforA

=

0,whichleadstoF

>

0.This im-pliesthat therephasing invariants invacuumand inmatter, JCP and Jm,havethesamesign:

sgn



Jm



=

sgn



JCP



.

(67)

This result is valid both for neutrino mass spectra with normal ordering(m231

>

0)andwithinvertedordering(m231

<

0).

Second,thefunction F

12

,

θ

13

,



m212

,



m231

,

A

)

ineq. (10) has differentequivalentrepresentations.Thisshouldbe clearfromthe factthat JCP

(

Jm

)

=

Im



U(μm2)



U(e2m)Uμ(m3)



U(e3m)





=

Im



U(μm3)



U(e3m)Uμ(m1)



Ue1(m)





=

Im



U(μm2)



U(e2m)





Uμ(m1)



Ue1(m)



= ... ,

(68)

andthederivationpresentedabove.Indeed,wecanusethesecond or the third form of JCP ( Jm) in eq. (68) to obtain the relation givenineq. (10). Thefunction F thus derived willdifferin form from,butwillbeequalto,thefunction F definedineqs. (11)–(15).

Itfollowsfromeqs. (10) and(19) that

Jm JCP

=

F

12

, θ

13

,



m221

,

m231

,

A

)

= ˜

F

=



m2 12



m223



m231



M122



M223



M231

,

(69)

i.e.,thatthefunctionF

12

,

θ

13

,



m212

,



m231

,

A

)

foundin[1] is an-otherrepresentationofthefunction F found

˜

in[2].Thefunctions

F and F have

˜

very differentforms.Nevertheless,aswe have ver-ified,they coincidenumerically.ThisisillustratedinFig. 6where weshowthefunctionsF (eq. (11)),F (eq. (

˜

20))andthedifference

(

F

− ˜

F

)

versus A

/

m221.WeusedtheanalyticexpressionsforM2i,

i

=

1,2,3,in termsofm2

1, A andthe neutrinooscillation param-eters



m231,



m221,

θ

12 and

θ

13 derived in[12].Itshouldbe clear fromeq. (22) that,aswehavealreadydiscussed,inthe parametri-sation(7) employed in[1] themassparametersM2

i,i

=

1,2,3,do notdependon

θ

23and

δ.

InFig.6,theneutrinooscillation parame-tersonwhichthefunctionsF andF depend

˜

weresettotheirbest fit valuesfound in the globalanalysisof the neutrinooscillation datain[14] inthecasesofNOandIOneutrinomassspectra.

As issuggestedbyFig.6 andwe havecommentedearlier,our numericalresultsshowthatthefunction F ispositive.

The function F in eq. (10), aswe haveremarked earlier,does notdependon

θ

23and

δ.

Thisimpliesthattheratio

Jm

sin 2

θ

23sin

δ

=

F JCP

sin 2

θ

23sin

δ

=

1

8F cos

θ

13sin 2

θ

12sin 2

θ

13

,

(70)

doesnotdependon

θ

23and

δ.

Fromeqs. (11),(61),(62) and(50),usingUme1

=

Ue1D21D31

/

D1 wefindanewexpressionforthefunction F1 aswell:

F1

=

D2D3

D1

D21D31

.

(71)

4. Thecaseofantineutrinomixinginmatter

In the preceding Sections we have focused primarily on the mixingandoscillationsinmatterofflavourneutrinos.Inthis Sec-tion wewilldiscussbriefly thecaseofmixingandoscillationsin matterofflavourantineutrinos.

In ordinary matter (of, e.g., theEarth, the Sun) the mixingof antineutrinos in matter differs from the mixing of neutrinos in matter asa consequence of the fact that ordinary matter is not charge conjugation invariant: it contains protons, neutrons and electrons, butdoesnot containtheir antiparticles.Thiscauses CP andCPTviolatingeffectsinthe mixingandoscillationsof neutri-nosinmatter[6].Asaconsequence,theneutrinoandantineutrino mixingangles,aswellthemassesoftherespectiveneutrino mass-eigenstates, in matterdiffer. The expressions forthe antineutrino mixinganglesinmatter,

θ

i j,theneutrinomassesinthiscase, Mk, and the corresponding J -factor, Jm, can be obtainedfrom those corresponding toneutrinomixinginmatter,asiswell known,by replacingthepotential A with

(

A

).

Since the derivations ofthe resultsgiven ineqs. (69)–(71) do not depend on the sign of the matter term A, these results are validalsoformixingofantineutrinosinmatterandforoscillations ofantineutrinos

ν

l inmatterwithconstantdensity.Thus,wehave:

Jm

=

JCPF

12

, θ

13

,



m221

,



m231

,

A

) ,

(72)

F

12

, θ

13

,



m212

,



m231

,

A

)

=

F

12

, θ

13

,



m221

,



m231

,

A

) ,

(9)

Jm

=

Im



Ume2

 

Umμ3

 

Ume3





Umμ2





=

1 8 cos

θ

m

13sin 2

θ

m12sin 2

θ

m23sin 2

θ

m13sin

δ

m

,

(74) whereUmlj arethe elementsofthe antineutrinomixingmatrixin matter Um,

δ

m is theDiracphase presentin Um, and

θ

mi j arethe antineutrinomixinganglesinmatter.Wealsohave:

sin 2

θ

m23sin

δ

m

=

sin 2

θ

23sin

δ ,

(75)

F

=

U m e1Ume2Ume3 Ue1Ue2Ue3

=



m212



m223



m231



M212



M223



M231

,

(76)

with M2i j

=

M2i

M2j. From the exactrelations (48) and(75) we get

sin 2

θ

23m sin

δ

m

=

sin 2

θ

23m sin

δ

m

=

sin 2

θ

23sin

δ ,

(77) whileeqs. (69) and(76) imply:

F

=

F



M

2

12



M223



M231



M212



M223



M231

.

(78)

Finally,asintheneutrinomixinginmattercase,theequalities

θ

m23

= θ

23

,

0

< θ

23

, θ

m23

π

/

2

,

(79)

δ

m

= δ ,

(80)

although not exact, represent excellent approximations for the rangesofvaluesof A

/

m2

21 relevant fortheT2K (T2HK),T2HKK, NO

ν

AandDUNEneutrinooscillationexperiments.

5. Summary

Inthe presentarticle we have analysed aspects of 3-neutrino mixinginmatter andofCPandTviolationin 3-flavourneutrino oscillations in vacuum andin matter withconstant density. The analyseshavebeenperformedintheparametrisationofthePMNS neutrinomixingmatrix UPMNS

U specifiedineq. (7) and intro-ducedin[1].However, aswe haveshown, theresultsobtainedin ourstudyarevalid(insome caseswithtrivialmodifications)also inthestandardparametrisationofthePMNSmatrix(see,e.g.,[3]). Investigatingthecaseof3-neutrinomixinginmatterwith con-stant density we have derived first the relations

θ

23m

= θ

23 and

δ

m

= δ

,

θ

23 (θ23m) and

δ

m) being respectively the atmospheric neutrinomixingangleandtheDiracCPviolationphaseinvacuum (inmatter)presentinthePMNSneutrinomixingmatrix. Perform-ing a detailed numerical analysis we have shown that although theseequalitiesarenotexact,theyrepresentexcellent approxima-tions for the ranges of values of A

/

m221

<

30 relevant for the T2K(T2HK),T2HKK,NO

ν

AandDUNEneutrinooscillation experi-ments,thedeviationsfromeachofthetworelationsnotexceeding respectively1.3

×

10−2and1.3

×

10−3(Figs.1and

2

)).Similar con-clusionisvalidforthecorrespondingparameters

θ

m23and

δ

minthe caseofmixingofantineutrinos(Figs.3and

4

)).

Wehavederivednexttherelationsin 2θ23msin

δ

m

=

sin 2θ23sin

δ,

andhave shownnumericallythatit isexact(Fig. 5). Therelation iswell knownintheliterature(see[23,13]).Wehavepresenteda newderivationofthisresult. Usingtheindicatedrelationandthe factthat thedeviations of

θ

23m from

θ

23,

23

(

A

/

m221

),

andof

δ

m from

δ,

δ

(

A

/

m2

21

),

are small,

|

23

|,

|

δ

|

1,we havederived a

relationbetween

23and

δ

workinginleadingorderinthesetwo parameters (eq. (51)). It follows from this relation, in particular, that for

θ

23

=

π

/4 and

δ

=

3

π

/2,

π

/2,

the leading order matter correctionto

δ

vanishes,whilefor

δ

=

3

π

/2 (

π

/2)

and

θ

23

=

π

/4,

theleadingordermattercorrectionto

θ

23vanishes.

We have discussed further the relation between the rephas-ing invariants, associated with the Dirac phase in the neutrino mixing matrix, which determine the magnitude of CP and T vi-olating effects in 3-flavour neutrino oscillations in vacuum, JCP, and of the T violating effects in matter with constant density,

JmT

Jm, obtained in [1]: Jm

=

J

CPF . F is a function whose explicit form in terms of the squared masses in vacuum and in matter of the mass-eigenstate neutrinos, of the solar and reac-tor neutrino mixing angles and of the neutrino matter poten-tial (eq. (11)) was given in [1]. The quoted relation between

Jm and JCP was reported in [1] without a proof. We have pre-sented a derivation of this relation. We have shown also that the function F

=

F

12

,

θ

13

,



m212

,



m231

,

A

)

i) is positive, F

>

0, which implies that Jm and JCP have the same sign, sgn(Jm

)

=

sgn(JCP

),

and that ii) it can have different forms. We have proven also that the function F as given in [1] is another rep-resentation ofthe so-called called“Naumov factor” (Fig. 6): F

=



m212



m223



m231

(

M212



M232



M231

)

−1, where



m2 i j

=

m 2 i

m 2 j,



M2i j

=

M2i

M2j,mi andMi,i

=

1,2,3,beingthemassesofthe threemass-eigenstateneutrinosinvacuumandinmatter.

Finally,wehaveconsideredbrieflythecaseofantineutrino mix-inginmatterandhaveshownthatresultssimilartothosederived forthemixingofneutrinosinmatterarevalidalsointhiscase.

Theresultsofthepresentstudycontributetotheunderstanding oftheneutrinomixinginmatterandflavour neutrinooscillations inmatter withconstant density,widelyexplored intheliterature on the subject. Theycould be useful for the studies of neutrino oscillations inlong baseline neutrinooscillation experimentsT2K (T2HK),T2HKK,NO

ν

AandDUNE.

Acknowledgements

This work was supported in part by the INFN program on Theoretical Astroparticle Physics (TASP), by the European Union Horizon 2020 research and innovation programme under the MarieSklodowska-Curiegrants674896 and690575,by theWorld Premier International Research Center Initiative (WPI Initiative, MEXT),Japan(S.T.P.),aswellasbytheEuropean ResearchCouncil underERCgrant“NuMass”FP7-IDEAS-ERCERC-CG617143(Y.L.Z.).

References

[1]P.I.Krastev,S.T.Petcov,Phys.Lett.B205(1988)84. [2]V.A.Naumov,Int.J.Mod.Phys.D1(1992)379.

[3]K.Nakamura,S.T.Petcov,inS.Patrignanietal.(ParticleDataGroup),Chin.Phys. C40(2016)100001and2017update.

[4]B.Pontecorvo,Zh.Eksp.Teor.Fiz.33(1957)549,Zh.Eksp.Teor.Fiz.34(1958) 247,Zh.Eksp.Teor.Fiz.53(1967)1717.

[5]Z.Maki,M.Nakagawa,S.Sakata,Prog.Theor.Phys.28(1962)870. [6]P.Langacker,etal.,Nucl.Phys.B282(1987)589.

[7]C.Jarlskog,Z.Phys.C29(1985)491.

[8]S.M.Bilenky,J.Hosek,S.T.Petcov,Phys.Lett.B94(1980)495. [9]L.Wolfenstein,Phys.Rev.D17(1978)2369.

[10]V.Barger,etal.,Phys.Rev.D22(1980)2718.

[11]P.Langacker,J.P.Leveille,J.Sheiman,Phys.Rev.D27(1983)1228. [12]H.W.Zaglauer,K.H.Schwarzer,Z.Phys.C40(1988)273. [13]M.Freund,Phys.Rev.D64(2001)053003,arXiv:hep-ph/0103300.

[14]I.Esteban,etal.,J.HighEnergyPhys.1701(2017)087,arXiv:1611.01514 [hep -ph].

[15]Z.z.Xing,S.Zhou,Y.L.Zhou,J.HighEnergyPhys.1805(2018)015,arXiv:1802. 00990 [hep-ph].

[16]S.M.Bilenky,S.T.Petcov,Rev.Mod.Phys.59(1987)671.

[17]Z.z.Xing,Y.L.Zhou,Phys.Lett.B693(2010)584,arXiv:1008.4906 [hep-ph]. [18]A.Ioannisian,S.Pokorski,Phys.Lett.B782(2018)641,arXiv:1801.10488 [hep

-ph].

[19]K. Abe,etal.,T2KCollaboration,PTEP2015(2015)043C01,arXiv:1409.7469 [hep-ex];

K.Abe,etal.,T2KCollaboration,Phys.Rev.Lett.118(2017)151801,arXiv:1609. 04111 [hep-ex];

M.Wascko,talkat“TheXXVIIIInternationalConferenceonNeutrinoPhysics andAstrophysics”(Neutrino2018),Heidelberg,Germany,4–9June,2018.

(10)

[20]K.Abe,etal.,Hyper-KamiokandeProto-Collab.,arXiv:1611.06118;

K.Abe,etal.,Hyper-KamiokandeProto-Collab.,Prog.Theor.Exp.Phys.5(2015) 053C02,arXiv:1502.05199.

[21]P.Adamson,etal.,NOvACollaboration,Phys.Rev.D93(2016)051104; P.Adamson,etal.,NOνACollab.,Phys.Rev.Lett.118(2017)231801;

M.Sanchez,talkat“TheXXVIIIInternationalConferenceonNeutrinoPhysics andAstrophysics”(Neutrino2018),in:Heidelberg,Germany,4–9June,2018. [22]R.Acciarri,etal.,DUNECollaboration,arXiv:1601.05471,arXiv:1601.02984. [23]S.Toshev,Mod.Phys.Lett.A6(1991)455.

Riferimenti

Documenti correlati

The synchronization mechanism studied in this paper is quite particular, since it implies a complete collapse of the distance between the master and the slave. The strong

(2003) Activation of a glycine transporter on spinal cord neurons causes enhanced glutamate release in a mouse model of amyotrophic lateral sclerosis.. Raiteri L., Stigliani

Furthermore, in a multiple logistic regression model of the Aggressiveness Index score categories, there were significant differences in several liver parameter terciles amongst

ritenevano che tale responsabilità dovesse configurarsi come extracontrattuale in virtù del fatto che il contratto di lavoro non prevedeva esplicitamente nessun

La maggior parte delle donne anche alla prima seduta, praticavano attività fisica, non continuativamente, ma almeno una o due volte a settimana riuscivano a fare

The Ageing Confessor and the Young Villain: Shadowy Encounters of a Mirrored Self in Julian Barnes’s The Sense of an

be considered as two distinct locations threatened by site modifications, which are inducing variations of the local water regime. In the Sila mountain range, the major

OSFE is considered a predictable technique that makes it possible to achieve an increase in bone height and successful results similar to those of conventional implants.[ 25 ]