• Non ci sono risultati.

Salophen and salen oxo vanadium complexes as catalysts of sulfides oxidation with H 2O 2: Mechanistic insights

N/A
N/A
Protected

Academic year: 2021

Condividi "Salophen and salen oxo vanadium complexes as catalysts of sulfides oxidation with H 2O 2: Mechanistic insights"

Copied!
13
0
0

Testo completo

(1)

Other uses, including reproduction and distribution, or selling or

licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the

article (e.g. in Word or Tex form) to their personal website or

institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are

encouraged to visit:

(2)

ContentslistsavailableatSciVerseScienceDirect

Catalysis

Today

jo u r n al h om epa ge :w w w . e l s e v i e r . c o m / l oc a t e / c a t t o d

Salophen

and

salen

oxo

vanadium

complexes

as

catalysts

of

sulfides

oxidation

with

H

2

O

2

:

Mechanistic

insights

A.

Coletti

a

,

P.

Galloni

a

,

A.

Sartorel

b

,

V.

Conte

a,∗

,

B.

Floris

a

aDipartimentodiScienzeeTecnologieChimiche,UniversitàdiRomaTorVergata,viadellaRicercaScientificasnc,00133Roma,Italy bDipartimentodiScienzeChimiche,UniversitàdiPadova,viaMarzolo1,35131Padova,Italy

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received8November2011

Receivedinrevisedform5March2012 Accepted8March2012

Available online 26 April 2012 Keywords: Catalytcoxidation Vanadiumcomplexes Substituenteffect 51VNMR DFTcalculation

a

b

s

t

r

a

c

t

TheapplicationofV(V)catalystsinoxidationofsulfideswithperoxidesoffersanefficientprocedure,that iscompatiblewithdifferentfunctionalgroups,andleadstogoodyieldsandselectivities.However,the understandingofthefactorsaffectingthereactivityofdifferentcatalystsisstillfartobecomplete.An experimentalandtheoreticalstudyonaseriesofV(V)complexescontainingvariouslysubstitutedsalen andsalophenligandsisreportedwiththeaimtocorrelatetheactivityofthecatalystswiththeelectronic characterofthevanadiumcenter.Theresultsobtainedindicatethatstericfactorsplayamajorrolein determiningtheoutcomeofthereaction,oftenovercomingtheelectroniceffects.Theoreticalresults suggesttheinterventioninthecatalyticcycleofanhydroperoxovanadiumspecies.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Oxidationreactions,andinparticulartheircatalyticversions, oftenrepresentkey processes totransformbulk chemicalsinto valuablematerials.Millionsoftonsofsuchcompoundsareyearly producedworldwide,andfindapplicationsinallareasofchemical industries[1].

On the basis of economic and environmental reasons [2,3], oxidationprocesseswithH2O2 aresustainableprocesses:firstof

all H2O2 is, besides dioxygen, themost appealing oxidant and

theone withthe highest “atomefficiency” (47% of active oxy-gen);inaddition,aqueoushydrogenperoxideisreadilyaccessible, safetouseanduponreductiononlywaterisformed[4–7]. Cat-alytic systems based on different metals have been employed in conjunction with hydrogen peroxide for oxidation reactions

[5].Vanadiumcatalyzedoxidationswithhydrogenperoxidehave attractedinterestofseveralresearchgroupsbecauseofthe inter-estingpropertiesofthis metalinterms ofselectivity,reactivity andstereoselectivity.Inthisperspective,thesereactionsarealso interesting because of the relationship with the reactivity of vanadium-dependent haloperoxidases(VHPO) enzymes,species abletoactivatehydrogenperoxidefortheoxidationof halides, thusproducing halogenatedcompounds,and forstereoselective sulfoxidationsofappropriatesubstrates[8–10].

∗ Correspondingauthor.Tel.:+390672594014;fax:+390672594328. E-mailaddress:valeria.conte@uniroma2.it(V.Conte).

Peroxovanadium complexes, formedupon interactionof the metalionwithH2O2,dependingonthenatureoftheligands

coor-dinatedtothemetalandontheexperimentalconditions,canact eitheraselectrophilicoxygentransferreagentsorasradical oxi-dants [11]. Typical electrophilic processes are the oxidation of sulfidesand tertiaryaminesand theepoxidationofallylic alco-hol or simple alkenes [11–13]. The oxidation of alcohols and the hydroxylation of aliphatic and aromatic hydrocarbons are examples of homolyticreactivity [5,12,14]. Severalreview arti-cles have appeared recently on vanadium-catalyzed oxidations

[5,15,16].

Additionally, the oxidation of sulfur containing compounds remains an hot research topic both from a synthetic point of view [11,17–19] i.e. thepreparation of chiral sulfoxides and of sulfones, aswellas consideringmodernprocesses for desulfur-ization of fuels [20]. Theremoval of sulfur from dieseloil and gasolineisbecomingmoreandmoreimportant,notonlyto pro-tect car exhaust catalysts, but also because of the more strict environment-protecting regulations. Up-to-date, hydrodesulfur-ization is themethod of choice toremove thiols, sulfides, and disulfides, but withthis process it is not possibleto efficiently removearomaticsulfur-containingcompounds,suchas dibenzoth-iopheneand4,6-dimethyldibenzothiophene.Toachieveultra-deep desulfurizationoffuels,oxidationreactionappearstobea promis-ingprocedure[21].

Thisbackgroundpromptedustoexplorethecatalyticactivity of selectedvanadium complexes in oxidationreactionsstarting fromamodelsulfide,Ph S CH3,selectivelytothecorresponding

0920-5861/$–seefrontmatter © 2012 Elsevier B.V. All rights reserved.

(3)

Scheme1. Vanadium(V)salenandsalophencomplexes.

sulfoxide. The structure of the catalysts used in this study is reportedinScheme1,theyarealloxovanadium(V)species, lig-atedwithSchiffbases derivedfromtheappropriatesubstituted salicylaldehydes and o-phenylendiamine or 1,2-ethanediamine respectively.

Salophenandsalenderivativesareconsidered“privileged lig-ands” because their easy synthesis by condensation between aldehydesand amines, theyalso coordinates a wide variety of metals[22].Inaddition,stereogeniccentersorotherelementsof chiralitycanbealsointroduced.Moreoverafterappropriate mod-ificationheterogeneouscatalysts[23]canbeprepared.

Thevariationofthecoordinationspherewasdesignedinorder tohighlight correlation between the electronic distribution on themetalcenterwiththereactivityinoxidationreactions, sim-ilarapproach hasbeenrecentlyusedwithvanadiumcontaining stronglyrelatedsalenandsalancomplexes[24].

The catalytic activity of some of the species here studied wasalreadyrecentlyanalyzedinourlabs,intheepoxidationof cyclooctene[25].Quitesurprisingly,electronwithdrawinggroups intheperipheryofthesalophenligandsreducedthecatalytic activ-ityofthevanadiumcomplextowarddoublebonds.However,this aspectwasattributedtofasterdecompositionoftheperoxide.On theotherhand,withoxovanadiumsalophencomplexpossessing fourt-butylgroupsinthebackbone,theobservedreactivitytoward cyclooctenewasalmostzero.Inthislattercasetheprevalenceof thestericeffectovertheelectroniconeisevident,i.e.the bulki-nessoftheligandheavilyhampertheapproachofthesubstrate totheperoxocomplex.Accordingly,inthatwork[25]noclearcut correlationbetweentheobservedreactivityandthecoordination environmentofthemetalcenterwasenvisaged.

Moreover,itistobekeptinmindthatinvanadiumcatalyzed oxidationswithH2O2twocompetitivereactionsoccur:the

oxida-tionofthesubstrateandthevanadiumcatalyzeddecomposition ofhydrogenperoxide[26],forthatreasonahigheractivityofa vanadiumcomplexmaysimplyresultinafasterdecompositionof H2O2.

Inthispaperwepresentanexperimentalandtheoreticalstudy, concerningtheeffectsofstericandelectronicmodificationofthe ligandsonthecatalyticactivityofsalophenandsalenoxo vana-dium(V)complexesintheoxidationofPhSMewithH2O2.Thiseasy

tooxidizemodelsubstratehasbeenchosenwiththeaimtoobtain fastandcleanoxidationprocess,goodprerequisiteforanalyzing aclassofcatalystswhichhavealreadyshownambiguouskinetic behaviorasfunctionofthesubstituentspresentinthesalophenor salenscaffolds[25].

2. Procedures

2.1. Experimental

Caution:Theuncontrolledheatingoflargeamountsofperoxides mustbeavoided.Careshouldbeexercisedinordertoavoidpossible explosion.

2.1.1. Instruments

1HNMRspectrawererecordedona BrukerAvance300MHz

spectrometer,withCDCl3,CD3CNorCD3COCD3 assolvents.51V

NMRspectrawererecordedonaBrukerAvance400MHz spectrom-eter,inCD3CN.HPLCanalyseswerecarriedoutwithaShimadzu

LC-10 ADvp instrument withUV–vis SPDM10Avp detectorand a Kromasil 100 C18 (250mm×4.6mm, 5␮m) column with VV

complexesoraMetachemMetaphor50ODS-2(250mm×4.6mm, 5␮m)foroxidationreactions.UV–visiblespectrawererecordedon aSHIMADZU2450spectrometerequippedwiththeUVProbe2.34 program.

2.1.2. Materials

HPLC-purity grade MeCN was used. Methanol and dichloromethane commercial grade purity were purchased and used as such. Spectroscopic-grade solvents were used for UV–visspectra.CommerciallyavailableaqueoussolutionofH2O2

wereusedafteriodometrictitration(10.4±0.2MH2O2inwater).

2.1.3. Synthesisofligands

TheSchiffbases usedforthesynthesis ofthecatalystswere prepared by thewell known reaction between salicylaldehyde anddiamine.Slightexperimentalvariationswereintroducedwith respecttoliteraturemethods[27]andtheresultingprocedurewas successfullyappliedtoanumberofdifferentlysubstituted aldehy-des.

General procedure: Two equivalents of the appropriate sali-cylaldehyde weredissolved inthe minimumvolume of boiling methanol(generally,20ml)andaddeddropwisewithone equiva-lentofdiamine(either1,2-diaminoethaneor1,2-benzenediamine) in5mlmethanol.Thesolutionwasrefluxeduntilallthealdehyde disappeared(TLCanalysis)andthencooledtoroomtemperature, thus causing precipitation of theSchiff base,as a yellowsolid. Thefilteredsolidwaswashedwithasmallamountofmethanol, thenwithdiethyletheranddried.ThefollowingSchiffbaseswere prepared:

(4)

Salophen, [1,2-bis-(salicylideneamino)benzene]: yield 95.3%; 5,5-Cl2salophen, [1,2-bis-(5-Cl-salicylideneamino)benzene]:

yield >99%; 5,5-(t-Bu)2salophen

[1,2-bis-(5-t-Bu-salicylidene-amino)benzene]: yield 75%; 3,3-(OMe)2salophen,

[1,2-bis-(3-OMe-salicylideneamino)-benzene]: yield 77%; 5,5-(OMe)2

salophen, [1,2-bis-(5-OMe-salicylideneamino)-benzene]: yield 79%; 3,3,5,5-Cl4salophen [1,2-bis-(3,5-Cl2

salicylideneamino)-benzene]: yield 95%;3,3,5,5-(t-Bu)4salophen

[1,2-bis-(3,5-di-t-Bu-salicylideneamino)benzene]:yield75%.

Salen, [1,2-bis-(salicylideneamino)ethane]: yield 88%; 5,5 -Cl2salen, [1,2-bis-(5-Cl-salicylideneamino)ethane]: yield 67%;

5,5-(t-Bu)2salen, [1,2-bis-(5-t-Bu-salicylideneamino)ethane]:

yield 91%; 3,3-(OMe)2salen,

[1,2-bis-(3-methoxy-salicy-lideneamino)ethane]: yield 92%; 5,5-(OMe)2salen,

[1,2-bis-(5-OMe-salicylideneamino)ethane]: yield 92%;3,3,5,5-Cl4salen,

[1,2-bis-(3,5-Cl2-salicylideneamino)ethane]: yield 70%; 3,3,5,5

-(t-Bu)4salen, [1,2-bis-(3,5-(t-Bu)2-salicylideneamino)ethane]:

yield72%.

Allthecompoundsgave1HNMRandUV–visspectraconsistent

withthestructureandwithliteraturedata[25,28–30].

2.1.4. SynthesisofVIVcomplexes

Thesynthesisofthesecomplexeswasaccomplishedbya proce-dureslightlydifferentformthatreportedintheliterature[31,32]. Anumberofthevanadiumderivativesusedintheliteraturewere testedasprecursors,i.e.VO(acetylacetonate)2[31],vanadylsulfate

di-hydrate[29,33],andV(acetylacetonate)3[34].Thebestresults

wereobtainedwithVIII(acac)

3,intermsofreproducibilityofthe

reactionandsolubilityofcomplexes.

General procedure: The Schiff base was dissolved in 100ml of boiling methanol, or suspended when scarcely soluble. The equimolaramountof V(acac)3 wascompletely dissolvedin the

minimumvolumeofMeOHwiththehelpofsonicationandadded dropwisetothesolution(ortothesuspension),causing immedi-atecolorchangefromyellowtogreen.Afteranovernightstirring inanopenvesselatroomtemperature,thereactionwasstopped andtheprecipitatedsolidwascollected,washedwithdiethylether, anddried.NotraceofSchiffbasewaspresent.Eventuallyunreacted V(acac)3waswashedoffwithwarmacetone.

ThefollowingVIVOcomplexeswereprepared,theirpuritywas

checkedwithTLCandHPLCanalyses.

SalophenVIVO, yield 73%, UV–vis in MeCN [

max, nm (ε,

M−1cm−1)] 242 (40,000), 314(22,000) and 396(18,000); 5,5 -Cl2salophenVIVO, yield 78%, UV–vis in MeCN [max, nm (ε,

M−1cm−1)]305(12,000),409(10,700);5,5-(t-Bu)2salophenVIVO,

yield82%,UV–visinMeCN[max,nm(ε,M−1cm−1)]246(40,900),

318(22,700),409(15,400);3,3-(OMe)2salophenVIVO,yield79%,

UV–vis in MeCN [max, nm (ε, M−1cm−1)] 221 (42,000), 301

(24,000),313(22,000)and335(13,000);5,5-(OMe)2salophenVIVO,

yield87%,UV–visinMeCN[max,nm(ε,M−1cm−1)]216(70,000),

243(41,000),289(30,000),300(32,000),337(26,000)and 434 (9000); 3,3,5,5-Cl4SalophenVIVO: yield 78%, UV–vis in MeCN

[max, nm (ε, M−1cm−1)] 315 (9800), 412 (10,000); 3,3,5,5

-(t-Bu)4salophenVIVO,yield 87%, UV–vis in MeCN [max, nm (ε,

M−1cm−1)]250(43,300),327(25,900),416(16,100). SalenVIVO,yield89%,UV–visinMeCN[

max,nm(ε,M−1cm−1)]

242 (39,000), 277 (18,000) and 362 (7900); 5,5-Cl2salenVIVO,

yield 67% UV–vis in MeCN [max, nm] 248 (49,000), 280 sh,

370 (7400); 5,5-(t-Bu)2salenVIVO, yield 67%, UV–vis in MeCN

[max,nm(ε,M−1cm−1)]246(56,000),278(27,000),370(9200);

3,3-(OMe)2salenVIVO,yield93%, UV–visin MeCN[max,nm(ε,

M−1cm−1)] 224 (16,000), 296 (14,000) and 381 (2800); 5,5 -(OMe)2salenVIVO, yield 86%, UV–vis in MeCN [max, nm (ε,

M−1cm−1)]251(20,000),286sh(8800)and392(9000);3,3,5,5 -Cl4salenVIVO,yield70%,UV–visinMeCN:max=370nm(doesnot

dissolvecompletely);3,3,5,5-(t-Bu)4salenVIVO,yield72%,UV–vis

in CH2Cl2 [max,nm (ε, M−1cm−1)]252(41,000), 288(27,000)

and386(3600).UV–visspectraareconsistentwithliteraturedata

[35,36].

2.1.5. SynthesisofVVcomplexes

Thesynthesisofthesecomplexeswasaccomplishedbya proce-dureslightlydifferentformthatreportedintheliterature[34].For allcompounds1HNMRspectraareinagreementwiththestructure

(inCD3CN,aromaticprotonsresonate intherange 7.1–7.8ppm,

CH Nprotons intherange8.2–8.9ppm,and CH2 protons of

salencomplexesarearound4.4ppm).Bycomparisonwith authen-ticsamples,TLCandHPLCanalysesexcludedthepresenceofVIV

species.

Generalprocedure:200mgofVIVOcomplexweredissolvedin

30ml CH2Cl2 under stirring. Dioxygen wasbubbled 5min into

thesolutionkeptat0◦CandO2 atmospherewasensuredwitha

latexreservoir.1.2Equivalentstrifluoromethanesulfonicacidwere rapidlyadded,causingdarkeningofthesolutionandprecipitation ofasolid.Thereactionmixturewasallowedtoreachroom tem-peratureandstirreduntildisappearanceofVIVspecies(5÷20h).

FinepowderofVVcomplexwasisolatedaftercentrifugationofthe

reactionmixture(6000r.p.m.)anddecantationofthesupernatant solution.

ThefollowingVVOcomplexeswereprepared.

[salophenVVO]CF

3SO3,yield95%UV–visin MeCN[max,nm

(ε,M−1cm−1)]242(40,000),304(26,000)and393(10,000);[5,5 -Cl2salophenVVO]CF3SO3,yield98%,UV–visinMeCN[max,nm(ε,

M−1cm−1)]303(21,300),408(11,200);[5,5-(t-Bu)2salophenVVO]

CF3SO3,yield35%,UV–visinMeCN[max,nm(ε,M−1cm−1)]245

(42,700), 320(24,300),407(14,400); [3,3-(OMe)2salophenVVO]

CF3SO3,yield75%,UV–visinMeCN[max,nm(ε,M−1cm−1)]220

(64,000),251(37,000),302(45,000),310(42,000),340(24,000)and 437(7200);[5,5-(OMe)2salophenVVO]CF3SO3,yield82%,UV–vis

in MeCN [max,nm (ε, M−1cm−1)]215 (68,000), 242(41,000),

292(46000),300(45000),341(29000)and435(4900);[3,3,5,5 -Cl4SalophenVVO]CF3SO3,yield35%,[max,nm(ε,M−1cm−1)]313

(19200),410(13,700);[3,3,5,5-(t-Bu)4salophenVVO]CF3SO3,yield

87%,[max,nm(ε,M−1cm−1)]244(30,700),326(35,300),416sh

(9300).

[salenVVO]CF

3SO3,yield89%,UV–visinMeCN[max,nm(ε,

M−1cm−1)] 230 (30,000), 296 (14,000) and 347 (7400); [5,5 -Cl2salenVVO] CF3SO3, yield67%, UV–vis in MeCN[max,nm (ε,

M−1cm−1)]230(30,000),248(24,000),and 285(17,000); [5,5 -(t-Bu)2salenVVO] CF3SO3, yield 5%,UV–vis in MeCN [max, nm

(ε, M−1cm−1)] 230 (33,400), 250 (27,500) 290 (19,000) and 348(7500);[3,3-(OMe)2salenVVO]CF3SO3,yield58%,UV–visin

MeCN[max,nm(ε, M−1cm−1)]281(12,000),308(10,000)and

359 (4200); [5,5-(OMe)2salenVVO] CF3SO3, yield 89%, UV–vis

in MeCN [max, nm (ε, M−1cm−1)] 288 (12,000) and 391 sh

(3000);[3,3,5,5-Cl4salenVVO]CF3SO3,yield66%,UV–visinMeCN

[max, nm (ε, M−1cm−1)] 293 sh (1300) and 345 sh (710);

3,3,5,5-(t-Bu)4salenVVO,yield80%.UV–vis inCH2Cl2 [max,nm

(ε,M−1cm−1)]263(8000),307(5600)and367sh(2900). Cyclicvoltammetry(CV)characterizationreportedelsewhere

[37]confirmedtheelectroniceffectofthesubstituentsonthe vana-diumcentersinthesesalenVIVOandsalophenVIVOcomplexes.The

higherredoxpotentialsofthesalophencomplexeswithrespectto thesalenonesindicatethatthearomaticringconferstovanadium astrongerLewisacidity.

2.1.6. OxidationofphenylmethylsulfidewithH2O2,catalyzedby

VVcomplexes

Thecatalyticactivityofallthecomplexeswastestedinaprobe reaction,i.e. oxidationof PhSMewithH2O2 in MeCN.The

(5)

reactantspecies,at25◦Cinathermostatedvessel.Productanalysis wasobtainedbyHPLC,toavoidthermaldecompositionof prod-ucts,addingaknownamountoftolueneasinternalstandardand usingtheresponsefactorsobtainedbycalibrationstraightlines. StocksolutionsofsulfideandtolueneinMeCNwereused.The lat-terwasperiodicallycheckedforthepresenceofoxidationproduct thatwerealwaysabsent.SolutionsofH2O2andthecatalystwere

preparedimmediatelybeforeuse.

0.5ml of PhSMe 0.151M in MeCN and 0.15ml of catalyst 2.2×10−3Minthesamesolventwereaddedto5mlMeCN.0.5mlof theresultingsolutionweretakenanddilutedto5mlina volumet-ricflaskcontaining2mlofPhMe1.2×10−3MinMeCN,tomeasure initialsulfideconcentration.Thereactionstartedafteradditionof 0.18mlfreshlypreparedH2O20.145MinMeCN(obtaineddiluting

to5ml70␮l10.4±0.2MH2O2inwater).Samplesweretakenat

selectedreactiontimes(2,5,15,and40min)andanalyzedatthe HPLC.

2.2. Calculations

PseudopotentialLACVPwasusedfortheenergyoptimization withoutsymmetry constraints.Gaussian 03 program wasused for geometryoptimizations withthe continuumsolvent model

[38].GeometryoptimizationswereperformedwithDensity Func-tionalTheory(DFT)calculationsusingtheB3LYPfunctionalwith the6-31G*basis set[39,40]. Geometrieswereoptimizedatthe B3LYP/LANL2DZlevel,includingsolventeffectswiththeIEF-PCM method(MeCN).

Alltheinvacuumquantum-mechanicalcalculationswere car-riedoutbyusingSpartan’08[41].

3. Resultsanddiscussion

3.1. Experimental

3.1.1. Reactivity

ThecomplexespreparedandusedinthisworkcontainedSchiff baseligandspossessingvarioussubstituentsintheperipheryofthe aromaticscaffold,seeScheme1.

All salophen and salen molecules have been prepared following literature procedures [27] starting from the appro-priately substitutedsalicylaldehydes and o-phenylendiamine or 1,2-ethanediaminerespectively. The various ligands have been subsequentlyusedtosynthesizeallVIVandVVcomplexesinvery

goodyields(seeSection2),followingslightlymodifiedliterature procedures[27,31,32,34]andthespeciesobtainedhavebeen iden-tifiedbycomparisonoftheirpropertieswithliteraturedata.

Forcomparisonpurposes,theVIVspecies,obtainedinthefirst

stepofthesynthesisofvanadatesderivatives,werealsotestedas catalystsintheoxidationreactions,andthecollecteddatawere comparabletothoseobserved(anddiscussedbelow)withVV

com-plexes.However,thepossible incursionof radicalreactions, an expectedeventwhenVIVderivativesareusedascatalystsin

reac-tionswithhydrogenperoxide[11],promptedustoexaminethe reactivityinoxidationreactionwithhydrogenperoxideonlywith thecatalystsintheirhighestoxidationstate.Insuchaway, mini-mizationofthevanadiumcatalyzeddecompositionofH2O2should

occur.

Thevarioussubstituentsintroducedinthescaffoldofthe com-plexes were chosen with the scope to modify the electronic character of the VV ion. Furthermore, a consistent

compari-son between the salophen and salen structure should help in dividetheelectronic fromthe structural effects, beingthe for-mer species forced intoa simil-planar configuration,while the latter can experience a fluctional behavior [22]. Accordingly,

broadersignalsweredetectedin1HNMRspectrawithsalen

com-plexes:i.e.signalfor CH Nat9.23ppm showsa ␯½=7Hzfor

[3,3,5,5-(t-Bu)4salophenVVO]CF3SO3 whileforthe

correspond-ing[3,3,5,5-(t-Bu)4salenVVO]CF3SO3derivativethesameCH N

signalat8.86ppmshowsa␯½=22Hz.

ThemodelreactionhasbeentheoxidationwithH2O2ofPhSMe

tothecorrespondingsulfoxide,inMeCNatroomtemperature,the ratioH2O2: Catwasca.50:1.Atwo-foldexcessofthesubstrate

withrespecttotheoxidantwasusedinordertoensure selectiv-ity towardthe sulfoxideand alsoto keeproughly constant the concentration ofthe substrate, atleast at thebeginning of the reaction.

The sulfide consumption and the sulfoxide formation were determinedwithquantitativeHPLCanalysisofthereaction mix-ture,seeSection2fordetails.Sulfideconsumptionandsulfoxide yield, at selected reaction time, were taken as parameters to compare the reactivity of thevarious catalysts, thetwo values (see Tables) are equal withinthe experimental error ±5%. The data concerning the results with salophen complexes are col-lected in Table 1 whilst those related to salen species are in

Table2.

TheTables alsocontainthe␴[42] whichis the arithmeti-calsumofthevaluesforthesubstituentsintroducedintothe salophenandsalenscaffolds.Thesevaluesaregiventosketchout theelectroniceffectdictatedbytheirpresence.Forthecomplexes used,itcanbenotedthat,spanningfroma␴ofabout+1,dueto thepresenceoffourchlorineatoms,toavalueofabout−0.8,when fourt-butylgroupsarepresent,alargevariationoftheelectronic characterofthemetalion,i.e.itsLewisacidity,shouldbeobtained. Lookingatthedatacollectedinthetwo tablessomegeneral commentscanbedone:thecatalyticeffectofthesalophenand salenoxovanadium(V)complexesisquitegood;thereactiontimes areshort,mostoftheoxidationsarecompletein15minatroom temperature.Thislastobservationindicatesthatthevanadium cat-alyzeddecompositionofH2O2 isnotcompetingwiththeoxygen

transferreaction.

However (see Fig.1),nosimple correlationcan bedetected betweenthe␴andthesulfoxideyieldsinbothsalophenandsalen series;additionally,nosimplecomparisoncanbemadeinequally substitutedcouplesofsalophenandsalenderivatives;thisbehavior beingindeedexpectedonthebasisofourpreviousstudies[25].

Therefore,adeeperinsightoftheresultsisnecessaryinorderto highlight,foreachcatalyst,ifelectronicorstericeffectsareplaying themajorroleindeterminingthereactivity.

Interestingly,thecatalyticactivityofsubstitutedsalophen com-plexes,measuredassulfoxideyieldataspecificreactiontime(left graph),roughlyfollowsthetrendofthe␴valueswiththe excep-tionofthe3,3-(OMe)2derivative,thisdeviationfromtheexpected

resultwillbediscussedbelow.Theobservedtendencyapparently indicatesthatthereactivitysomewhatfollowstheLewisacidity characterofvanadium,␴+0.9for3,3,5,5-Cl4-salophen.

On theother hand,with substitutedsalen derivatives(right graph)nosimplecorrelationcanbeestablishedbetweenthe sul-foxideyieldsand the␴values;noteworthy,alsointhis series the3,3-(OMe)2derivativeshowsthehighestreactivity.Inaddition,

withinthiscatalystsserieshighreactivityisobservedwith5,5 sub-stitutedligandsindependentlyfromtheirinductiveeffect,whereas for3,3,5,5-tetrasubstitutedspeciesthereactivityappearstotrack theelectrondensityaroundvanadium.

Atthispointofthediscussion,abetterunderstandingofthe resultsobtainedinthereactivity studiescanbelikely obtained lookingalsoattheclassicalreactionmechanism[3–6,11]proposed formetalcatalyzedsulfidesoxidationwithperoxides.

Theacceptedreactionmechanismforvanadiumcatalyzed oxi-dationprocesseswithhydrogenperoxiderequirestheformation ofaperoxidevanadiumcomplexuponcoordinationofH2O2tothe

(6)

Table1

V-salophen(0.00056mmol)catalyzedoxidationofphenylmethylsulfide(0.059mmol)withH2O2(0.026mmol)inCH3CN(5.33ml)atroomtemperature.

S S O H2O2 cat. MeCN, 25°C 0.059 mmol 0.026 mmol 5.6 x 10-4 mmol

+

Catalyst Substituent t,min %Sulfideconsumed %Sulfoxideformeda ␴b

N N O V O O Cl Cl Cl CF3SO3 Cl 2 93 94 3,3,5,5-Cl4 5 93 96 0.908 15 94 94 N N O V O O Cl Cl CF3SO3 2 87 92 5,5-Cl2 5 91 94 0.454 15 94 92 N N O O V O CF3SO3 2 54 56 H 5 90 98 0.000 15 95 100 N N O V O O CF3SO3 2 12 1.2 5,5-(t-Bu)2 5 14 4.5 −0.394 15 54 53 N N O O O O V O CF3SO3 2 54 48 3,3-(OMe)2 5 89 88 −0.536 15 97 96 O N N O V O O O CF3SO3 2 27 9 5,5-(OMe)2 5 40 26 −0.536 15 70 62

(7)

Table1(Continued)

Catalyst Substituent t,min %Sulfideconsumed %Sulfoxideformeda ␴b

N N O V O O CF3SO3 2 18 0 3,3,5,5-(t-Bu)4 5 24 1.5 −0.788 15 20 6

aSulfideconsumptionandsulfoxideformationcorrespondswithintheexperimentalerror. b␴isthearithmeticalsumofallthevalues[42].

Scheme2.ProposedcatalyticcycleforsulfidesoxidationwithH2O2.Lstandsfor

salenorsalophenderivatives.

metalcenter,suchintermediateisthenthebonafideoxidantof thesubstrate.Forthesakeofsimplicity,weanticipateherethat thisactivespecieslikelyisanhydroperoxoone.Thecoordination oftheoxidanttotheLewisacidmetalcenteractivatestheoxygen towardthenucleophilicattackofanelectronrichsubstrate,such asthephenylmethylsulfoxide.Inthetransitionstateofthe oxi-dationstep,coordinationofthesecondperoxidicoxygenatomto vanadiumhelpstheoxygentransfertothesubstrate,subsequent eliminationofthesulfoxideandawatermoleculeregeneratesthe catalystprecursor(Scheme2).

With salophen and salenspecies formation of theperoxidic intermediatecanbestrongly influencedbythestructure ofthe precursor.Inordertoconsiderthisstructuralaspect,energy mini-mizationoftheperoxidicspecies,formedfromsalophenandsalen VVO precursors hasbeen carried out and the outcome for the

unsubstitutedhydroperoxooxovanadiumcomplexes(the plausi-bleactiveoxidantspecies)isshowninFig.2.

Forexample,salophenligandsforcetheprecursorandthe pos-sibleperoxo complexesina planarconformation,i.e. theligand residesontheplaneofasimil-tetrahedricalshape(seeFig.2a).On theotherhandwithsalenligands,togetherwiththeplanar confor-mation(Fig.2b)alsoabentonecanbeadopted,inwhichoneofthe nitrogenoftheligandistranstotheoxogroup(seeFig.2c).Itis interestingtonotethatfromtheoreticalcalculation(seefollowing paragraphs),thislatterconformationappearstobefavorite.Thegas phaseoptimizedsalenVV(O)(OOH)andsalophenVV(O)(OOH)

struc-turesshowthatthehydroperoxogrouphasadifferentapproachto themetaldependingontheconformationoftheligand.In partic-ular,whentheligandhasaplanarconformation,likeinthecase ofsalophenVV(O)(OOH),theperoxogroupalmostadoptthe

side-onconfigurationaround themetal,thus facilitatingthe oxygen

transfertothesubstrate.Onthecontrary,whentheligandhasabent conformation,likeinthecaseofsalenVV(O)(OOH)(seeFig.2c)the

approachofthesecondoxygentothemetalishamperedasshown bythelongerdistanceinthecalculatedstructure,thuspreventing thestabilizationofthetransitionstate.

Summarizing, theoretical calculations suggest that salophen ligandsforcethehydroperoxovanadiumcomplexinaplanar con-formationthat allowsthestabilizationofthetransitionstateof theoxidationstep,resultinginahigherreactivitywithrespectto salencomplexes,wherethemorestablebentconformationcanbe adopted.

Returningtotheexperimentaldata,thehigherreactivityofthe salophenderivatives,togetherwiththeobservedrelationshipof thesulfoxideyieldswiththeLewisacidcharacterofthevanadium center,appearstoberelatedtotheplanararrangementofsuch specieswhichinturnisdictatedbythestructureoftheligands. Ontheotherhand,withsalenderivatives,whichcanadoptseveral differentconformationsbecauseofthemobilityoftheligand,the sterichindranceofthesubstituentscombines,inanunpredictable way,withtheelectroniccharacterofthecatalyst.

The 3,3 dimethoxy substituted salophen and salen oxo-vanadium complexes deserve a specific discussion. In fact, the catalytic activity of [3,3-(OMe)2salophenVVO]CF3SO3 and [3,3

-(OMe)2salenVVO]CF3SO3ismuchhigherthanthatofalltheother

derivativesinthecorrespondingseries(seeFig.1).Thisbehavior maysuggestaneasierformationofthemetalperoxidespecies.In thatrespect,asindicatedinFig.3,thepresenceof3,3-(OMe)2

sub-stituents maystabilizetheapproach ofa H2O2 moleculetothe

metalcenter,throughtheinterventionofanhydrogenbond.

3.1.2. 51VNMRstudies

Itiswellknownthatthenumberandthenatureofthe perox-ometalspeciesstronglydependsonthereactionconditions,suchas thepHvalue,theligandandthesolvent.Sinceitisnotalways pos-sibletoobtainperoxovanadiumcomplexesinthesolidstate,and oftentheirsolutionstructureisdifferent,theirstructureisoften investigatedbymeansofseveraltechniques.Forexample,51VNMR

andelectrosprayionizationmassspectrometry(ESI-MS)or theo-reticalcalculationshavebeenrecentlyusedinordertounderstand theirbehaviorincatalyticcycles[43].

Themostcommonstructuresof monoperoxovanadium com-plexes are the side-on cyclic peroxo species, in which both the oxygenatoms are coordinated to vanadium atom, and the hydroperoxospecies,inwhichonlyoneoxygeniscovalentlylinked tothemetalcenter. Inthisworkwehavetried toobtain infor-mation on the formation in solution of theperoxo derivatives fromsalophenand/orsalenV(V)species,inthepresenceof dif-ferentexcessesofhydrogenperoxide.51VNMRspectrahavebeen

acquiredforsomeofthevanadium(V)precursorsinacetonitrile and,inallcases,singlepeaksappearedaround−600ppm.Tonote,

(8)

Table2

V-salen(0.00056mmol)catalyzedoxidationofphenylmethylsulfide(0.059mmol)withH2O2(0.026mmol)inCH3CN(5.33ml)atroomtemperature.

S S O H2O2 cat. MeCN, 25°C 0.059 mmol 0.026 mmol 5.6 x 10-4 mmol

+

Catalyst Substituents t,min %Sulfideconsumed %Sulfoxideformeda ␴b

N N O V O O Cl Cl Cl CF3SO3 Cl 2 12 9 3,3,5,5-Cl4 5 18 12 0.908 15 37 35 N N O V O O Cl Cl CF3SO3 2 76 76 5,5-Cl2 5 98 99 0.454 15 96 98 N N O V O O CF3SO3 2 8 1 H 5 10 4 0.000 15 18 15 N N O V O O CF3SO3 2 92 94 5,5-(t-Bu)2 5 88 98 −0.394 15 92 96 N N O O O O V O CF3SO3 2 >99 >99 3,3-(OMe)2 5 >99 >99 −0.536 15 >99 >99 O N N O V O O O CF3SO3 2 34 34 5,5-(OMe)2 5 62 64 −0.536 15 – 93 N N O V O O CF3SO3 2 92 94 3,3,5,5-(t-Bu)4 5 88 98 −0.788 15 92 96

aSulfideconsumptionandsulfoxideformationcorrespondswithintheexperimentalerror. b ␴isthearithmeticalsumofallthevalues[42].

(9)

Fig.1.PhSOMeyieldsvs.␴ oftheligands.Left:V-salophencatalyzedoxidationofPhSMewithH2O2inCH3CNatroomtemperatureat2min(experimentalconditions

reportedinTable1).Right:V-salencatalyzedoxidationofPhSMewithH2O2inCH3CNatroomtemperatureat15min(experimentalconditionsreportedinTable2).

Fig.2. Gasphaseoptimizedstructures ofLVV(O)(OOH)complexes(L=salenorsalophen).(a)PlanarconformationofsalenVV(O)(OOH).(b)Planar conformationof

salophenVV(O)(OOH).(c)BentconformationofsalenVV(O)(OOH).

thechemicalshiftsforsalenandsalophenspeciesareverysimilar, despiteofthepresenceofdifferentsubstituentsonthearomatic scaffold.

UponadditionofincreasingamountsofH2O2toasolutionof

[salophenVVO]CF

3SO3or[salenVVO]CF3SO3,thesignalofthe

pre-cursordecreasesand,forbothcomplexes,nosignalsappearhaving referencetovanadiumfreeligandspecies;ingeneral,noother51V

signalswerepresent in NMR spectradifferentfromthat ofthe

Fig.3.PlausibleformationofanhydrogenbondbetweenanapproachingH2O2

moleculeandthemethoxyoxygensin[3,3-(OMe)2salophenVVO]CF

3SO3complex.

catalyst precursor, over a wide range of chemical shift (as an example,seeFig.4for[salenVVO]CF

3SO3).Peroxovanadiumspecies

usuallygivesignalsathighfields[44];inthiscase,theabsenceof anysignalmaybeduetothelowsolubilityofperoxometalspecies atroomtemperature.Infact,theformationofayellowprecipitate wasobserveduponadditionofalargeexcessofH2O2toasolution

ofsalenVO+inacetonitrile.

Fig.4. 51VNMRspectraof[SalenVVO]CF

3SO3inacetonitrile(1mM).(a)Initial

solu-tion(b)afteradditionof2equivalentsofH2O2totheprevioussolution;(c)after

(10)

Table3

51VNMRchemicalshiftsfordifferent(V)complexesinCH

3CN. Catalyst ␦51VNMR(ppm) [salenVVO]CF 3SO3 −597 [5,5-(Cl)2salenVVO]CF 3SO3 −596

[5,5-(t-Bu)2salenVVO]CF

3SO3 −584

[salophenVVO]CF

3SO3 −604

[3,3,5,5-(t-Bu)4salophenVVO]CF

3SO3 −595

TheIRspectrumoftheyellowprecipitateshowednosignals intherangeof918–954cm−1weretheO Ostretchingisusually presentforside-onmonoperoxovanadiumcomplexes[12],thus supportingthehypothesisthatsalenandsalophenoxovanadium complexesformanend-onhydroperoxidicspeciesinthepresence ofH2O2(seeSection3below).

WhensalenVVOBrwasusedasprecursor,51VNMRspectrain

thepresenceofincreasingamountofhydrogenperoxideshowed disappearanceofthesignalat−595ppm,alreadyaftertheaddition oftenequivalentsofH2O2.Inthisconditionsnoformationofthe

yellowprecipitatewasobserved.Thissuggeststhattheformation oftheperoxovanadium speciesismorefavorablewhentheless tightlycoordinatedBr−isthecounterioninplaceofCF3SO3−.In

agreementwithsuchobservation,whensalenVVOBrwastestedas

catalyst,afasterdecompositionofhydrogenperoxideisobserved

[5,26].

3.1.3. Theoreticalstudies

The unclear results obtained with the NMR spectroscopy promptedustoapplyDFTtheoreticalcalculations(seeSection2.1

fordetails)inordertoshedmorelightonthestructureofthe reac-tiveperoxocomplexesformedinsolution,whensalophenandsalen vanadium(V)precursorsareused.

Therefore,calculationonrelevantspecies wereperformedat B3LYP/lanl2dzlevel, includingsolvent effectswiththeIEF-PCM method (acetonitrile). These include vanadium hydroperoxides and2peroxides,indifferentprotonationforms,andinthe

pres-enceofaresidualoxoorhydroxoligand(Scheme3).Frequency calculationswereperformedinordertoconfirmthatthe equilib-riumstructureswereactualminimumenergyspecies(Table3).

Optimized distances between the vanadium center and the coordinated oxygen of the peroxide moiety fall in the range 1.82–2.05 ˚A,whileoxygen–oxygendistancesoftheperoxidegroup arefoundbetween1.46–1.51 ˚A;bothareingoodagreementwith literaturevalues[45,46].Ingeneral,adecreaseoftheV O(O) dis-tance is observed increasing thepositive charge of thespecies

[45,46].Whentheperoxideisprotonated(vanadium hydroperox-ides),theprotonatedoxygenisnotlocatedatbindingdistancefrom thevanadiumcenter,confirmingamonodentatemodeof coordina-tionoftheO Ogrouptothemetal;differently,whentheperoxide moietyisnotprotonatedbothoxygenatomsarecoordinatedto vanadium,ina2mode[47].

AsillustratedinFig.2,onlyplanarconformationswere consid-eredforsalophencomplexes,whilebentandplanarconformations wereexploredfor all thesalenVV species. To note,as reported

in Table4,some ofthe salenVV derivatives aremore stable in

thebent conformation,and inparticular theV(O)(OOH)peroxo complex,which isthereasonable activespecies responsiblefor oxygentransfer(videinfra).

Theacceptedmechanism,alreadyproposedintheliterature,for theformationofperoxidicspeciesresultingfromthereactionof vanadiumspecieswithhydrogenperoxide[43,45,46]hasbeenused asthebasetoanalyzetheenergeticpathleadingtotheformation oftheperoxospeciespossiblyresponsibleforoxygentransfer,see

Scheme4.

Table4

EnergeticallypreferredconformationsforsalenVVcomplexesasderivedbyDFT

calculations.

salenVVcomplex Bent Planar Ga(kcalmol−1)

[salenVV(OH)(OOH)]+ × 2.3

[salenVVO(OOH)] × 6.7

[salenVV(OO)(OH)] × 1.0

[salenVVO(OO)]× 14.6

aFreeenergydifferencebetweenmostandlessstableconformationsforeach

species.

Insuchschemetheoriginalstateofthecatalystwas consid-eredtobeaLVVO+species(Lstandsforsalenorsalophenligand)

originatedfromdissociationofLVVOCF

3SO3insolution;addition

ofH2O2toLVVO+toformLVV(OH)(OOH)+specieswerefoundto

beendothermicprocesses,withG=+18.1and+21.4kcalmol−1 forL=salenandsalophen,respectively.Forthisreason,and con-sideringalsothesterichindranceoftheligandsaroundthemetal, onlytheformationofmonoperoxospecieswastakenintoaccount. Moreover,thefactthatadditionofH2O2areendoergonicprocesses,

suggestthatonlysmallamountsofvanadiumperoxocomplexes forminsolution;thisresultisconsistentwith51VNMRspectra,

wherenosignalsdifferentfromtheoneoftheprecursorhavebeen detected.

Subsequentcalculationswereaimedatestablishingthe reactiv-ityoftheLVV(OH)(OOH)+species.Acrucialobservationisthatsuch

intermediatesbehaveasstrongacids,byreleasingaprotonfrom thehydroxogrouptoformLVV(O)(OOH)derivatives

(deprotona-tionstepinScheme4).ThisresultedbycalculationofthepKaofthe species,bycomparisonwithareferenceacid/basecoupleaccording toWangetal.[48].ThisprocedureavoidsdirectcalculationonH3O+

species,thataresubjecttorelevantsolventeffects,difficultto eval-uateemployingacontinuumapproximation.Inthisparticularcase, thepyridinium/pyridinecouple(pKa=5.25)waschosenasthe ref-erence,inordertomaintainthesametotalchargeoftheacid/base coupleunderinvestigation,LVV(OH)(OOH)+/LVV(O)(OOH).

Calculated pKa for theLVV(OH)(OOH)+/LVV(O)(OOH) couples

were found −6.9 and −4.6 for salen and salophen derivatives, respectively, thusconfirminghighacidbehaviorofthehydroxo groupcoordinatedtothevanadiumcenter.

The LVV(O)(OOH) species were confirmed to be the most

probable ones,since possibleisomers were observed at higher energy. Indeed, LVV(OH)(OO) species are higher in energy by

12.5 and 4.1kcalmol−1 for salen and salophen, respectively, while a H-LVV(O)(OO) derivative (where the proton is located

attheoxygenatomoftheLligand)is2.2–8.7kcalmol−1 higher when L=salophen (the same structure with L=salen failed to converge).Protonationoftheperoxidespecies,withno involve-ment of the oxo group, was recently demonstrated by XANES spectroscopy for a [HheidaV(O)(OO)]− complex (heida N-(2-hydroxyethyl)iminodiaceticacid)tobethekeysteptoactivatethe speciesforoxygentransfercatalysis[49].

Analternativepathway(notrepresentedinScheme4),where water eliminationfromtheLVV(OH)(OOH)+ leadstothe

forma-tion of a LVV(OO)+ species was found to be endothermic by

5.4kcalmol−1 inthecaseofL=salen,confirmingthatvanadium complexeswithoutoxoorhydroxomoietiesarenotstable[12]:

Therefore, calculations suggest that a vanadium oxo-hydroperoxo species, LVV(O)(OOH), is the most plausible

intermediate formed upon H2O2 addition to vanadium Salen

(11)

Scheme3.RepresentationofrelevantspeciesconsideredinDFTcalculations,withoptimizedinteratomicdistancesindicatedinblackandredforsalenandsalophenspecies, respectively.Thesalenorsalophenligandisrepresentedas“L”forclarityreasons.

Scheme4. EnergiesfortheformationpathwaysofvariousvanadiumbasedperoxocomplexeswithL=salen(blackvalues)orsalophen(redvalues).Theenergyofthe reactionsinvolvingH+ionswerenotdirectlycalculated,butdeterminedindirectlyfromthecalculationofthepKaofthecompetentspecies.(Forinterpretationofthe

referencestocolorinthisfigurelegend,thereaderisreferredtothewebversionofthearticle.)

potential,seconddeprotonationofLVV(O)(OOH)togiveananionic

LVV(O)(OO)specieswasalsoconsidered;inthesecasescalculated

pKaare4.1and7.8forL=salenandsalophen,respectively(inthis caseaceticacid/acetatehasbeenusedasthereferenceacid/base couple, in order to preserve the charges of the species in the equilibriumprocess).Itisinterestingtonoticethatthecalculated pKacomparereasonablywiththevaluesof5.4–5.9observedfor thevanadium-dependenthaloperoxidasesenzymes[50,51]. Nev-ertheless,deprotonatedperoxidessuchasLVV(O)(OO)areknown

tobepoorlyactiveinoxygentransfer[45,46,49],therefore,even iftheycouldactuallybeformedinsolutionaccordingtothepKa valuesdiscussedabove,theyarenotthereasonablecatalytically activespeciesinthepresentsystem.

Therefore,thepresenceoftheLVV(O)(OOH)peroxocomplexes

insolutionisthemostreliablescenario.Thisisinagreementwith resultsfoundintheliteratureforsimilarvanadiumcomplexeswith modelsalanligands[52],wheretheoxohydroperoxovanadium derivativesappearstobethemostfavorableactivespeciesinalkene epoxidationprocesses.Insuchpaper,thesalanligandis coordi-natedtoVatominabentconformation,inwhichtwoOandone Noccupytheequatorialpositions,whiletheremainingOisinthe axialone;thisconformationisconsistentwiththebent arrange-mentoftheligandaroundthevanadiumatomthatwefoundfor salenVOperoxocomplexes.

In the caseof salenV(O)(OOH) peroxocomplex, the energies forthebentand planarconformationsofallthe5,5-substituted derivativeswerecalculatedin thegasphasein orderto under-stand whether the presence of substituents could affect their conformations.Thecomparisonbetweenthetwoconformations, representedby theirenergy differences,is reported in Table5. Interestingly,inallcasesthemostfavorablestructureisthebent one. For the unsubstituted salen complex, energies in acetoni-trileasthemodelsolventwereevaluated,obtainingcomparable results.

Afinalargumentconcernsthepossibleoxygentransferactivity oftheseLV(O)(OOH)peroxides,namelyiftheycanbetheactual speciesresponsibleforsulfideoxidation.

Asdiscussedabove,theoptimizedgeometriesofLV(O)(OOH) peroxidesstronglysuggestamonodentatebindingofthe perox-idetothevanadiumcenter,anditoccurswiththenonprotonated peroxidicoxygen,whiletheprotonatedoxygenisnotlocatedat bindingdistancefromthevanadium(V O(H)=2.962 ˚Aand2.520 ˚A for L=salenand salophen,respectively).Thisdiffersfromother vanadiumhydroperoxospeciesreportedintheliterature,where thecalculatedV O(H)distanceismuchshorter[45,46]andcanbe relatedtothehighersterichindranceofsalenandsalophenligands. Asa result,two differentscenario canbeenvisaged:(a)the LV(O)(OOH) are the actual species for oxygen transfer; indeed the O O ␴* orbitals, usually recognized as the one giving the mostimportantcontributionintheelectrophilicoxidative activ-ity of metalperoxides [53–55],are foundat reasonableenergy levelsforbothspecies(Fig.5);(b)theLV(O)(OOH)speciesarein equilibriumwithotherforms,wherealsothesecondprotonated oxygeniscoordinatedtovanadium,andtheselatterspeciesare responsibleforoxygentransfer:

Table5

Differencesofenergiesforplanarandbentconformationsofdifferentlysubstituted salenV(O)(OOH)species.

salenV(O)(OOH)complex E(bent-planar)(kcalmol−1) [5,5-(t-Bu)2salenVVO(OOH)] −7.71

[5,5-(MeO)2salenVVO(OOH)] −8.79

[salenVVO(OOH)] −7.46(−6.7inCH3CN)

(12)

Fig.5.RepresentationoftheO O␴*orbitalforSalenV(O)(OOH)(LUMO+6)and SalophenV(O)(OOH)(LUMO+10)species.

Equilibriaofthistypehavealreadybeenconsideredforother V(V)species,wherethe2coordinationofthehydroperoxidewas

necessarytoobserveoxygentransferactivityandthefreeenergy ofthereactionwasinfluencedbythepresenceofLewisbasesas coligands[56].Equilibriaofthistypearecurrentlyunderevaluation forsalenandsalophenderivatives.However,beingthedistance oftheprotonatedoxygenshorterinthesalophencomplexes,they maylikely establishmoreeasilysuchequilibrium.On thisbasis thehigher activityof salophencomplexes withrespecttosalen onescouldbeexplained,furthersupporttothisisgivenbytheir observedhigherLewisacidityasmeasuredwithCVexperiments

[37].

Fullmechanisticstudy,includingevaluationoftransitionstates, isinprogressandwillbereportedinaseparatecommunication.

4. Conclusions

Theexperimentalandtheoreticalresultsobtained,eventhough donotallowtodrawadecisivepictureofthemechanism,letto emphasizethatstericfactorsplayamajorroleindeterminingthe outcomeofthereaction,oftenovercomingtheelectroniceffects. Theoreticalresultssuggesttheinterventioninthecatalyticcycleof anhydroperoxovanadiumspecies.

Acknowledgements

Research carried out in theframework of COST D40 Action “InnovativeCatalysis–NewProcessesandSelectivities”. Experi-mentalworkofS.UmmarinoandG.DiCarmineisacknowledged.

AppendixA. Supplementarydata

Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/ j.cattod.2012.03.032.

References

[1]T. Punniyamurthy, S. Velusamy, J. Ikbal, Chemical Reviews 105 (2005) 2329–2363.

[2]P.T.Anastas,J.T.Warner,GreenChemistryTheoryandPractice,Oxford Univer-sityPress,1998.

[3]R.A.Sheldon,I.Arends,U.Hanefeld,GreenChemistryandCatalysis,Wiley-VCH, Weinheim,Germany,2007.

[4]G.Strukul,CatalyticOxidationwithHydrogenPeroxideasOxidant,Kluwer AcademicPublisher,Netherlands,1992.

[5]V.Conte,B.Floris,InorganicaChimicaActa363(2010)1935–1946,and refer-encestherein.

[6]V.Conte,A.Coletti,B.Floris,G.Licini,C.Zonta,CoordinationChemistryReviews 255(2011)2165–2177,andreferencestherein.

[7]G.Licini,V.Conte,A.Coletti,M.Mba,C.Zonta,CoordinationChemistryReviews 255(2011)2345–2357,andreferencestherein.

[8]A.Butler,CoordinationChemistryReviews187(1999)17–35,andrefs.cited therein.

[9] V.M.Dembitsky,Tetrahedron59(2003)4701–4720.

[10] A.G.J.Ligtenbarg,R.Hage,B.L.Feringa,CoordinationChemistryReviews237 (2003)89–101.

[11]V.Conte,O.Bortolini,in:Z.Rappoport(Ed.),TheChemistryofPeroxides– TransitionMetalPeroxidesSynthesisandRoleinOxidationReactions,Wiley Interscience,2006,pp.1053–1128.

[12]V.Conte,B.Floris,DaltonTransactions40(2011)1419–1436,andreferences therein.

[13]M.L. Ramos, L.L.G. Justino, H.D. Burrows, Dalton Transactions 40 (2011) 4374–4383,andreferencestherein.

[14] SeeasanexampleM.V.Kirillova,M.L.Kuznetsov,V.B.Romakh,L.S.Shul’pina, J.J.R.FráustodaSilva,A.J.L.Pombeiro,G.B.Shul’pin.,JournalofCatalysis267 (2009)140–167.

[15]D.C.Crans,J.J.Smee,E.Gaidamauskas,L.Yang,ChemicalReviews104(2004) 849–902.

[16]J.A.L.daSilva,J.J.R.FraustodaSilva,A.J.L.Pombeiro,CoordinationChemistry Reviews255(2011)2232–2248.

[17]C.Bolm,CoordinationChemistryReviews237(2003)245–256. [18] E.Wojaczyska,J.Wojaczyski,ChemicalReviews110(2010)4303–4356. [19]J.Gätjens,B.Meier,Y.Adach,H.Sakurai,D.Rehder,EuropeanJournalof

Inor-ganicChemistry(2006)3575–3585. [20]C.Song,CatalysisToday86(2003)211–263.

[21] P.S.Kulkarni,C.A.M.Afonso,GreemChemistry12(2010)1139–1149. [22] P.G.Cozzi,ChemicalSocietyReviews33(2004)410–421.

[23]A. Zulauf, M.Mellah, X.Hong, E.Schulz, Dalton Transactions39 (2010) 6911–6935.

[24]P.Adão,M.R.Maurya,U.Kumar,F.Avecilla,R.T.Henriques,M.L.Kusnetsov,J. CostaPessoa,I.Correia,PureandAppliedChemistry81(2009)1279–1296. [25]V.Conte,F.Fabbianesi,B.Floris,P.Galloni,D.Sordi,I.W.C.E.Arends,M.Bonchio,

D.Rehder,D.Bogdal,PureandAppliedChemistry81(2009)1265–1277. [26]M.Bonchio,V.Conte,F.DiFuria,G.Modena,S.Moro,J.O.Edwards,Inorganic

Chemistry33(1994)1631–1637.

[27]C.P.Horwitz,P.J.Winslow,J.T.Warden,C.A.Lisek,InorganicChemistry32 (1993)82–88.

[28] N.F.Choudhary,N.G.Connelly,P.B.Hitchcock,G.J.Leigh,JournaloftheChemical Society,DaltonTransactions(1999)4437–4446.

[29]M.P.WebereskiJr.,C.C.McLauchlan,C.G.Hamaker,Polyhedron25(2006) 119–123.

[30] A.L.Singer,D.A.Atwood,InorganicaChimicaActa277(1998)157–162. [31]C.J.Chang,J.A.Labinger,H.B.Gray,InorganicChemistry36(1997)5927–5930. [32]J.A.Bonadies,C.J.Carrano,JournaloftheAmericanChemicalSociety108(1986)

4088–4095.

[33] M.Salavati-Niasari,A.Badiei,K.Saberyan,ChemicalEngineeringJournal173 (2011)651–658.

[34]E.Tsuchida,K.Yamamoto,K.Oyaizu,N.Iwasaki,F.C.Anson,InorganicChemistry 33(1994)1056–1063.

[35] T.Ben,I.Zid,A.Keheder,Ghorbel,ReactionKineticsMechanisms100(2010) 131–143.

[36]J.Zhao,W.Wang,Y.Zhang,JournalofInorganicandOrganometallicPolymers 18(2008)441–447.

[37] A. Coletti, C.J. Whiteoak, V. Conte, A.W. Kleij, ChemCatChem 4 (2012),

http://dx.doi.org/10.1002/cctc.201100398.

[38]M.J.Frisch,G.W.Trucks,H.B.Schlegel,G.E.Scuseria,M.A.Rob,J.R.Cheeseman, J.A.MontgomeryJr.,T.Vreven,K.N.Kudin,J.C.Burant,J.M.Millam,S.S.Iyengar, J.Tomasi,V.Barone,B.Mennucci,M.Cossi,G.Scalmani,N.Rega,G.A. Peters-son,H.Nakatsuji,M.Hada,M.Ehara,K.Toyota,R.Fukuda,J.Hasegawa,M. Ishida,T.Nakajima,Y.Honda,O.Kitao,H.Nakai,M.Klene,X.Li,J.E.Knox,H.P. Hratchian,J.B.Cross,V.Bakken,C.Adamo,J.Jaramillo,R.Gomperts,R.E. Strat-mann,O.Yazyev,A.J.Austin,R.Cammi,C.Pomelli,J.W.Ochterski,P.Y.Ayala,K. Morokuma,G.A.Voth,P.Salvador,J.J.Dannenberg,V.G.Zakrzewski,S.Dapprich, A.D.Daniels,M.C.Strain,O.Farkas,D.K.Malick,A.D.Rabuck,K.Raghavachari, J.B.Foresman,J.V.Ortiz,Q.Cui,A.G.Baboul,S.Clifford,J.Cioslowski,B.B. Ste-fanov,G.Liu,A.Liashenko,P.Piskorz,I.Komaromi,R.L.Martin,D.J.Fox,T.Keith, M.A.Al-Laham,C.Y.Peng,A.Nanayakkara,M.Challacombe,P.M.W.Gill,B. John-son,W.Chen,M.W.Wong,C.Gonzalez,J.A.Pople,Gaussian03,Gaussian,Inc., Wallingford,CT,2003.

[39] A.D.Becke,JournalofChemicalPhysics98(1993)5648–5652.

[40]C.Lee,W.Yang,R.G.Parr,PhysicalReviewB-CondensedMatterMaterialPhysics 37(1988)785–789.

[41]Spartan’08Wavefunction,Inc.Irvine,CA.

[42]L.P.Hammett,PhysicalOrganicChemistry,2nded.,McGraw-Hill,NewYork, 1970,p.367.

Useof arithmetical␴to measureelectronic effects,when twoormore substituentsarepresent,isastandardprocedureforevaluationoffreeenergy rela-tionships.

[43]O.Bortolini,V.Conte,JournalofInorganicBiochemistry99(2005)1549–1557. [44]M. ˇCasn ´y, D.Rehder,DaltonTransactions(2004) 839–846,andrefs.cited

therein.

[45]G.Zampella,P.Fantucci,V.L.Pecoraro,L.DeGioia,JournaloftheAmerican ChemicalSociety127(2005)953–960.

[46]C.J.Schneider,G.Zampella,C.Greco,V.L.Pecoraro,L.DeGioia,EuropeanJournal ofInorganicChemistry(2007)515–523.

[47]InRef.[43],trigonalbipyramidvanadiumcomplexesarestudiedwherethe protonatedoxygenisfoundatbindingdistancesof2.03–2.08 ˚Afromthe vana-diumcentre.Thedifferentresultsobtainedforsalophenandsalensystems, wherethatoxygenislocatedatlargerdistances,maybeascribedtothetheir octahedralstructure,whichhampersthebindingofafurthercoordinating atom.

(13)

[49]C.J.Schneider,J.E.Penner-Hahn,V.L.Pecoraro,JournaloftheAmericanChemical Society130(2008)2712–2713.

[50]R.R.Everett,J.R.Kanofsky,A.Butler,JournalofBiologicalChemistry265(1990) 4908–4914.

[51]J.W.P.M.VanSchijndel,P.Barnett,J.Roelse,E.G.M.Vollenbroek,R.Wever, Euro-peanJournalofBiochemistry225(1994)151–157.

[52]P. Adão, J. Costa Pessoa, R.T. Henriques, M.L. Kuznetsov, F. Avecilla, M.R. Maurya, U. Kumar, I. Correia, Inorganic Chemistry 48 (2009) 3542–3561.

[53]I.V.Yudanov,P.Gisdakis,C.DiValentin,N.Rösch,EuropeanJournalofInorganic Chemistry(1999)2135–2145.

[54]E.Kühn,A.M.Santos,R.W.Rocksy,E.Herdweck,W.Scherer,P.Gisdakis,I.V. Yudanov,C.DiValentin,N.Rösch,Chemistry-AEuropeanJournal5(1999) 3603–3615.

[55]F.C.DiValentin,P.Gisdakis,I.V.Yudanov,N.Rösch,JournalofOrganicChemistry 65(2000)2996–3004.

[56] S.Lovat,M.Mba,H.C.Abbenhuis,D.Vogt,C.Zonta,G.Licini,InorganicChemistry 48(2009)4724–4728.

Figura

Fig. 3. Plausible formation of an hydrogen bond between an approaching H 2 O 2
Fig. 5. Representation of the O O ␴* orbital for SalenV(O)(OOH) (LUMO + 6) and SalophenV(O)(OOH) (LUMO + 10) species.

Riferimenti

Documenti correlati

La piazza, la strada, il mercato sono i punti gravitazionali attorno ai quali i gruppi di migranti esprimono e manifestano la loro presenza, a volte anche modi- ficandone le

A differenza delle altre sostanze sin qui trattate la cannabis può essere prodotta in ogni paese del mondo senza necessità di avere grandi spazi o attrezzature

Per quanto riguarda le opere conservate a Lucca le fonti ricordano la grande tavola d’altare col Martirio di Sant’Andrea per la chiesa di Sant’Andrea di Compito, la Madonna

An excellent noise figure and high linearity, K-band p-HEMT LNA MMIC, that incorporates single-bias configuration and negative feedback circuit, has be en developed for LMDS

1 Clinica di Oncoematologia Pediatrica, Dipartimento di Salute della Donna e del Bambino, Università di Padova, Padova, 2 Ospedale Pediatrico Microcitemico, Cagliari;

La privacy, essendo un diritto fondamentale ma non assoluto, deve essere opportunamente bilanciato con quello del datore di accertare il corretto utilizzo delle strumentazioni fornite

LMC-SPF ICD details interface requirements (as regards configuration and setup, states and modes, sub-element control, fault reporting, diagnostics, alarms and

(1) University of Vienna, Department of Geography and Regional Research, Vienna, Austria (martin.mergili@univie.ac.at), (2) University of Natural Resources and Life Sciences