ContentslistsavailableatScienceDirect
Applied
Surface
Science
j o ur na l ho me pa g e :w w w . e l s e v i e r . c o m / l o c a t e / a p s u s c
Silver
nanocluster-silica
composite
antibacterial
coatings
for
materials
to
be
used
in
mobile
telephones
Marta
Miola
a,∗,
Sergio
Perero
a,
Sara
Ferraris
a,
Alfio
Battiato
b,
Chiara
Manfredotti
b,
Ettore
Vittone
b,
Davide
Del
Vento
c,
Simona
Vada
c,
Giacomo
Fucale
d,
Monica
Ferraris
aaAppliedScienceandTechnologyDepartment,PolitecnicodiTorino,Torino,Italy bPhysicsDepartment,NISexcellencecentreandCNISM,UniversityofTurin,Torino,Italy cConceptReply,Turin,Italy
dChemical,ClinicalandMicrobiologicalAnalysesDept.,CTOMariaAdelaideHospital,Turin,Italy
a
r
t
i
c
l
e
i
n
f
o
Articlehistory:
Received5February2014
Receivedinrevisedform20May2014 Accepted23May2014
Availableonline2June2014 Keywords: Coating Sputtering Silvernanocluster Antibacterial
a
b
s
t
r
a
c
t
Antibacterialcoatingscontainingdifferentamountofmetallicsilvernanoclustersembeddedinasilica matrixhavebeendepositedbyco-sputteringtechniqueonseveraldifferentpolymersusedinmobile telephonescomponentssuchas:screens,covers,andmicrophonefelts.
Sputteringparametershavebeenvariedtoobtaindifferentcoatingthicknessandsilvercontent,in ordertomeetantibacterial,aestheticandfunctionalrequirementsforeachcomponent.Inparticular, anantibacterialfunctionalityhasbeenobtainedforscreens,coversandfeltswithoutaffectingtheir respectivetransparency,aestheticandacousticproperties.
Theoptimalparametersforeachparthavebeenusedtoobtainanantibacterialmobiletelephone suitableforpersonneloperatinginhospitalsorotherenvironmentswithpotentiallyhighbacterial con-tamination.
©2014ElsevierB.V.Allrightsreserved.
1. Introduction
Bacterialcontaminationisaproblemformedicaldevicesbut
alsoforawidenumberofeverydaylifeobjectsusedbyhundreds
ofpeople,especiallyinpublicplacesandhospitals.Forthese
rea-sons,theantibacterialfunctionalityismoreandmoreanimportant
addedvalue.
Variousantibacterial coatings have beeninvestigated in the
literature[1–11]andsomeofthemareavailableonthemarket
[12–15].Inparticularsilver-containingmaterialsarebeingwidely
usedsincesilverisknowntohaveapowerfulanti-bacterialactivity
[5,16,17]andtoinducelowbacterialresistancecomparedtothat
ofantibiotics.Thesefeaturesareofhighimportancetofightthe
worldwideplagueofbacterialincreasedresistancetoantibiotics,
inparticularinsidehospitals[18,19].
Severaltechniquesabletoprovideanantibacterialsurfaceon
differentmaterialshavebeendeveloped[1–11].
∗ Corresponding author.Present address:Presentaffiliation:Department of HealthSciences,UniversitàdelPiemonteOrientale“A.Avogadro”,Novara,Italy. Tel.:+390110904717/+393471327373;fax:+390110904624.
E-mailaddress:[email protected](M.Miola).
The drawback of most techniques is that they do not give
thermalandmechanicalstablecoatingsorthattheyconsiderably
changetheappearanceofthecoatedmaterials.
Theprocessusedinthepresentworkallowsthesynthesisby
co-sputteringtechniqueofanantibacteriallayercharacterizedby
silvernanoclustersembeddedinasilicamatrix.Theco-sputtering
techniqueisextremelyversatile:thethicknessandsilver(orother
metals) content can be tailored to fulfil different antibacterial
andaestheticrequirements.Theselayerscombinethechemical,
mechanicalandthermalstabilityofsilicawiththebroadspectrum
antibacterialactivityofsilver.
Silvernanoclusters-silicacompositeantibacteriallayerson
sil-ica,soda-limeandsomepolymershavebeenfullycharacterized
anddiscussedin[20–25].Theyaresuitableformostofsubstrates,
inparticularforpolymers[25],whicharemostlyusedformobile
telephonecomponents.
Mobiletelephonesareinthetoptenofthemostusedobjectsby
billionsofpeopleeveryday.Themobiletelephoneismanipulatedin
differentsituations(atwork,athome,inpublicspaces,etc.),stored
invariousplaces(bags,pockets,desks,cars,etc.)anditisincontact
withourbody(ear,hand,mouth,hair,etc.)withstrongpotential
tocarryhighlevelsofbacteria.
Ascientificresearch[26]systematicallystudiedbacterial
con-taminationofpublictelephonesontheearandmouthpieces.The
http://dx.doi.org/10.1016/j.apsusc.2014.05.151
Table1
Advantagesanddisadvantagesofexistingantibacterialtechnologyappliedtomobilephones.
Antibacterialtechnologyappliedto mobilephones
Antibacterialproductand(mobile phoneproducer)usingit
PROs CONs
Agdopedzeolitesorsilica microspheres
AgIonTM(Motorola) Lowcost,industrialproductsavailable, suitabletocoatlargesurfaces
Possibleunwantedinteraction betweenmatrixandzeolites Ag-dopedpolymers:Agparticles
embeddedinpolymersorsynthesis ofpolymercontainingAgions
BiomasterTM(Apple) Lowcost,industrialproductsavailable, suitabletocoatlargesurfacesandto largescaleproduction
Limitedmechanicalandthermal stabilityduetopolymersSilverions embeddedintoanadditivewhichis dispersedthroughouttheentire material,andisnotapplicableonother componentsofthemobilephonethan plasticcovers
Silverbasedionic-exchangeonglasses: Ag+/Na+orAg+/K+Ion-exchangeon glassescontainingNa+orK+
CorningTM Lowcost,industrialproductsavailable, suitabletocoatlargesurfacesandto largescaleproduction
SuitableonlyforglassescontainingK+ orNa+
NanoAg LGTM Lowcost,industrialproductsavailable,
suitabletocoatlargesurfacesandto largescaleproduction
Silverisnotembeddedinamatrix, highsilverrelease,lowdurabilityand mechanicalproperties
authorsrevealedtwelvedifferenttypologiesofbacteriaandtheir
densitywasfoundtobedangerouslyhighonthemouthcontact
zone of the telephone. Moreover a recent review reportedthe
bacterialcontaminationofmobilecommunicationdevices
demon-stratingthatabout25%ofthemarecontaminated[27].Ithasbeen
demonstratedthatbacteriacansurviveweeksonseveralsurfaces,
then come in contact withhuman skin [28,29]. Moreover,the
heatgeneratedbymobilephonescanincreasebacteria
concen-trationbyprovidingthema“comfortableenvironment”[29].The
bacteriacontaminationofmobiletelephonesisparticularly
dan-gerousinenvironmentswherethedevelopmentofinfectionscause
seriousconsequences,suchashospital,clinicsandsurgeryrooms
[29,30].Bacterialcontaminationofmobiletelephonesinthe
hospi-talenvironmentcanleadtothetransmissionofinfectiontoheath
compromisedpatients,butalsotothemedicalstaff,theirrelatives
andtoexternalpeople:infact,contaminatedtelephonesareoften
movedfromonehospitaldepartmenttoothersandalsoathome.
Thebacterialcontaminationofthesedeviceshasbeenwidely
documentedforhealthcareworkers[27–33]butalsoforpatients,
relativesandvisitors[34].Thebacterialtransferfromhandsto
tele-phonesurfaceandfromcontaminatedtelephonesurfacetoclean
handshavebeenreported[27],demonstratingthepossibilityof
infectiontransmissionthroughmobiledevices.
Despite of the numerous studies that reports these
poten-tialrisks,peopleawarenessofbacterialcontaminationofmobile
phonesisstillpoorormissing[27,30].
Antibacterialwipesare commercialized for telephone
clean-ing, but an extensive and systematic use of them is far from
beingreached,alsoinclinicalenvironment.Moreovermanymobile
phonesaresensitivetodetergentsordisinfectantsandproducers
discouragetheuseofthem;theuseofsiliconcoverstoprotectthe
telephoneandallowaneasycleaninghasbeensuggested[34],but
itdoesn’tworkonearandmicrophoneparts.
Some attempts to confer antibacterial properties to mobile
phoneshave beenreported:CorningTM [35] recentlyadvertised
aboutanantibacterialsilver-basedglassforsmartphonesandother
touchscreendevices.Anantibacterialtelephonehasbeen
commer-cializedinthepastbyMotorolaTM:itisbasedonAgion®technology
[12],i.e.Agionsintroductioninzeolitecarriersforgradualrelease.
AlsoLGTMcommercializesanantibacterialmobilephone[36]:in
thiscaseanon-specified“nano-silver”coatinghasbeenused.The
Biomaster®technologyhasalsobeenusedtoproduceacoverfor
AppleTM iPhone 4TM having antibacterial properties EcoskinTM)
[37].Thistechnologyisbasedonsilverionsembeddedintoan
addi-tivewhichisdispersedthroughouttheentirematerial,andisnot
applicableonothercomponentsofthemobilephonethanplastic
covers.
Compared to the existing solutions (Table 1), the coating
proposed here is more resistant from chemical, thermal and
mechanicalpointsofviewandcanbeappliedtovarioussubstrates
withoutparticular requirements (e.g.not only glass containing
exchangeableions,butalsoplasticsandfelts).Moreovermostofthe
claimed“antibacterial”deviceshaveactuallynon-stickingsurfaces,
insteadofatrueantibacterialproperty.
Co-sputteringtechniquehasbeenemployedinthisworkforthe
depositionofsilvernanoclusters-silicacompositelayersonseveral
differentpolymeric partsof mobile phones.Optimised
sputter-ingconditionshavebeenselectedforeachpart,obtainingseveral
antibacterialandperfectlyworkingmobilephones.
2. Materialsandmethods
Silvernanoclustersilicacompositecoatingsweredepositedon
selectedsubstratesbyRadioFrequency(RF)co-sputtering
(Micro-coatMS450).Silver(SigmaAldrich99.99%purity)andsilica(Franco
CorradiS.r.l.99.9%purity)targetswereused.Thesampleswere
pre-paredbyapplying200W(RF)toasixinchessilicatargetand1W
(PulsedDC)toaoneinchsilvertarget,byaco-depositionprocess.
Fourdifferentsetsofparameters(Table2)havebeenusedinorder
tovarysilverconcentrationandcoatingthickness.
TooptimiseAg/SiO2ratiointhecoatings,theplasmaonAg
cath-odewasswitchedonand offduringthewholedepositiontime,
(dutycycle).Thetotaldepositiontimeandtheplasmadutycycle
arereportedintheTable2.Asanexampleofdutycycle,12–1
cor-respondstoacycleduringwhichtheplasmaonAgwasswitched
on1secondonacycleof12s.
Thethicknessofthecoatingshasbeendeterminedbycontact
profilometrymeasurements(KLA-TencorP15)afterdepositionon
partiallymaskedsamples,thenmeasuringthestepbetweenthe
coatedandtheuncoatedsurface.Detailsaboutthesecoatingsand
theircompletecharacterisationarein[20–25].
Threedifferentpartsofmobiletelephoneshavebeen
consid-eredfortheapplicationofanantibacteriallayer:protectivelenses
forscreen(screen,inthetext),covers(cover,inthetext),and
pro-tectivetissuefeltsforelectro–acoustictransducers(felt,inthetext).
Materialsusedforthesedifferentpartsarelistedbelow:
Protectivelensesfor screen:polycarbonate(SabicInnovative
Plastics,LexanTM).
Covers:polycarbonateyellowcoverofSamsungTMS3650(cover
A)andblendpolycarbonate-ABS(Acrylonitrilebutadienestyrene)
blackcoverofNokiaTM1616(coverB).
Protective tissue felts for electro-acoustic transducers:
polyester monofilament fibre Saatifil AcoustexTM B010 (felt
Table2
Sputteringparameters(totaldepositiontimeanddutycycle)onthesilvercathode,coatingthicknessmeasuredonscreens,coversandfelts,Ag/Siratio(rangeofobtained values)measuredbyEDS(*)and/orXPS(**).
Sputteringparameters Totaldepositiontime Plasmadutycycle(s) Thickness(nm) Ag/Si(atomic%)
Condition1 8min 12–1 25–50 0.06–0.13(**) Condition2 2h 12–1 350–450 0.05–0.06(*) 0.07–0.13(**) Condition3 8min 6–2 25–50 0.22–0.30(*) Condition4 2h 6–2 350–450 0.36–0.63(*) 0.32–0.38(**)
(felt3),SaatifilAcoustexTMB045(felt4),SaatifilAcoustexTMB090
(felt5)andSaatifilAcoustexTMB145(felt6).Allfeltsaremadeby
polyestermonofilamentfibre,theonlydifferenceamongthemis
thetexture.
Afirstevaluationoftheaestheticimpactofthecoatingonthe
mobiletelephonepartshasbeenperformedbyvisualobservation,
followedbyaquantitativestudyoftheproperties,consideringthe
mainrequirementsandstandardproceduresusedtovalidateeach
mobilephonepart.
2.1. Physical–chemicalcharacterization
Coated screens and felts have been characterised by X-ray
photoelectron spectroscopy (XPS) using a VSW TA10
non-monochromaticAlK␣(1486.6eV)X-raysourceequippedwitha
class100concentrichemisphericalanalyser.
Theroughnessofcoatedscreens,beforeandafterdeposition,
havebeeninvestigatedbynon-contactatomicforcemicroscopy
(AFM,ParkSystemsXE-100,dataanalysiswithXEI1.8.0software)
onseveralcoatedanduncoatedsamples.
2.2. Evaluationofcoatingadhesiontothesubstrate
Asemi-quantitativeanalysisofcoatingadhesionhasbeen
per-formed by cross-cut tape test, according to ASTM D3359 [38]
standard.Onlycoatedscreensandcovershavebeentested,because
feltsarenotsuitableforthiskindoftest.
2.3. Spectrophotometricanalysis
Inordertoverifytransparencyrequirementofcoatedscreens
and esthetical performance of the covers after the sputtering
process,analyseshavebeenperformedbya spectrophotometer
(XRiteTM modelSP64)andthecolorvariationshavebeen
evalu-atedusingastandardCIELabcolorspace.Thespectrophotometer
lightsourceisatungstenlamp,andthespectralregionisbetween
400and700nm;astandardilluminantD65witha10◦observerhas
beenused.Thecolorvariation(E)isthedifferenceincolorofan
objectcomparedtoastandardcolor:itincludeshue,saturationand
brightnessusingthreechromaticcoordinates(a,b,L),asdefinedin
theCIELabcolorspace.
2.4. Acousticmeasurements
ANokiaTM1616telephonehasbeenusedfortheseexperiments:
severalcoatedanduncoatedfeltshavebeenpositionedonthe
tele-phonemicrophoneandbothfrequencyresponseandsensitivityof
themicrophonesystemhavebeenmeasuredusingtheHeadAnd
TorsoSimulator(HATS)andtheartificialvoicedefinedinITU-T
rec.P50[39].Inordertotestthehands-free/musicplayback
per-formance,thesameparameters havebeenevaluatedemploying
a telephoneloudspeaker (AAC14mm×20mm,8,0.5W)in a
200cm3closedbox.Thechoseninputtestsignalwasafullband
whitenoise.TheresponsehasbeencalculatedbymeansofFFT(Fast
FourierTransform)analysis(400rows,25.5kHzspan,64Hzfand
exponentialaverageon5000samples).Finally,thereceiving
per-formancehasbeenestimatedbyusinganearsimulatortype3.3
(HATS)andartificialvoiceandthemeasurewasrunwithseveral
felts,beforeandafterthecoating.
2.5. Antibacterialtests
Inordertoevaluatetheantimicrobialpropertiesofthedifferent
partsofamobilephone(screen,cover,felt),eachonewas
individ-uallycoatedbydifferentsputteringconditions(Table2),thenthe
inhibitionhalotestwasperformedinaccordancetoNational
Com-mitteeforClinicalLaboratoryStandards(NCCLSM2-A9[40])using
astandardStaphylococcusaureusstrain(ATCC29213),whichisa
leadingcauseofinfections[41].Thesampleswereplacedin
con-tactwithanagarplateuniformlycoveredwithastandardbacterial
brothandincubatedovernightat35◦C;subsequentlytheinhibition
halowasobservedandmeasured.
Coatedsamplesnotabletogiveaclearinhibitionzone were
subjectedtoa bacteriaadhesiontest(fromASTME2180andJIS
Z2801standard);thetestrequiresthepreparationofastandard
bacterialbrothcontainingapproximately5×105 colonies
form-ingunits(CFU);thecoatedsampleswereplacedinamulti-well
plateandasmallamount(1ml)ofthebacterialbrothwasspread
overthesamplesurface,theplatewasclosedwithalaboratory
clingfilm,tomaintaintheappropriatehumidityandavoidbroth
evaporation,thentheplatewasincubatedovernightat35◦C.After
incubationthesampleswereremoved,gentlywashedin
physio-logicalsolution(0.9%w/vofNaClindistilledwater)andvortexed
alwaysinacleanphysiologicalsolutionfor1minat50Hztodetach
thebacteriaeventuallyadheredonthesamplesurface.The
vor-texedsolutionwasseriallydilutedandspreadonbloodagarplates
whichwereincubatedovernightat35◦CtoallowthegrowthofCFU.
AftertheincubationtimetheCFUgrownontheplatewere
manu-allycounted,theobtainednumberwasmultipliedbythedilution
factorinordertogetthetotalamountofCFUofthestarting
vor-texedsolutionandsothetotalamountofCFUadheredonsamples
surface.Allantibacterialtestswereperformedintriplicatealsoon
uncoatedsamplesforcomparisonpurposes.
3. Resultsanddiscussion
3.1. Screens
Screens must satisfy strict aesthetical and transmittance
requirements.Fig.1reportsthevisualappearanceofthescreen
aftercoatingwithdifferentsputteringconditions(Fig.1a–d).Itis
clearthatonlycondition1canmeettransparencyrequirements:a
verythincoating(25–50nm)wasmeasuredbyprofilometryanda
lowsilvernanoclustercontent(Ag/Siratiointherangeof0.06–0.13,
measuredbyXPSanddiscussedbelow)isresponsibleofthe
trans-parencyofthiscoating.
Spectrophotometric analysis confirms this observation: only
sputtering condition1 presentsadifferenceincolorperception
closetostandard acceptability (E=1is themaximum
Fig.1. Coatedscreen(sputteringconditionsasinTable2),before(a–d)andafter(e–h)tapetest.
phoneproducers).Theresultsofthespectrophotometricanalysis
aregraphicallyrepresentedinFig.2.
Thecoatingadhesiononthesubstrate(polycarbonate)isgood
foralltheconsideredsputteringconditions.Fig.1(e–h)showsthe
appearanceofthecoatedscreenafterthetapetest.Nodamagecan
benoticedbothinsideandoutsidethegrid.Ahighadhesionofthe
coating(0%damage,5Bclassification,accordingtothestandard)
hasbeenmeasuredforalltheconsideredsamples.
EDSanalysesconfirmthepresenceofanincreasingAg/Siratio
for samples coated with sputtering condition from 1 to 4. As
expected,thesputteringconditionsinfluencethesilver
concentra-tionandthicknessofthecoating,asshowninTable2.Thesilver
concentrationismodulatedbyvaryingthedutycycleonthesilver
cathode:i.e.theplasmawasperiodicallyswitchedonandoff
dur-ingdepositiontime.Thecoatingthicknessisproportionaltothe
coatingtime.
Thepossibility to modulate theAg content and the coating
thickness is important for two main reasons: tomodulate the
antibacterialeffectwithoutoccurringintoxicityissues[42]andto
adjustthetransparencyoftheantibacteriallayer.Theadvantageof
thisapproach(optimizedsputteringconditionsforeachpartofthe
mobilephone)comparedtoothercommercialantibacterial
prod-ucts,isthattheantibacterialactivityandaestheticpropertiescanbe
modulatedaccordingtothedifferentrequirementsofthedifferent
mobilephoneparts.
Fig.3reportstheantibacterialtestsofthescreencoatedwith
differentsputteringconditions.Itcanbeobservedthatthesample
sputteredbyusingcondition1isnotabletogiveaninhibitionhalo;
nevertheless,nobacterialgrowthwasobservedunderthis
sam-ple.Sputteringconditions2and3allowaninhibitionzone≤1mm,
whilethesamplecoatedwithcondition4wasabletoproducean
inhibitionhaloofabout3–4mm(Fig.3a).Theinhibitionhalosshow
anirregularshape:probablythesilverconcentrationisnotuniform
andsomebacterialcoloniesbegintoproliferate.Asexpected,the
antibacterialeffectiscorrelatedtotheamountofsilverpresentin
thecoating,asdiscussedabove(Table2):theAg/Siratiois
simi-larforcoatingsdepositedwithsputteringcondition1and2,but
thedifferentthicknesscanexplainthedifferentbehaviorinterm
ofantibacterialactivity.
Althoughthesputteringconditions2,3and4producedalarger
inhibitionzone,thescreenscoatedwiththeseconditionshavean
unacceptabletransparencyloss.Aspreviouslydiscussed,the
trans-parencyisanessentialrequirementforscreens,sothecondition1
wasselectedtocoatscreensandafurtherantibacterialtest(the
countofCFU)wasperformedinordertoassessthecoatedscreen
abilitytoreducebacterialcontamination.
Fig.3breportstheresultsofCFUcountonthescreencoated
bycondition1:thesameprocedurewasusedforbothcoatedand
uncoated(control)samples,thusobtainingacomparisononthis
testsuitabilitytomeasuretheadheredbacteriainpresenceand
absenceofthecoating.ThenumberofCFUadheredontothecoated
screendecreased.ofabouttwoordersofmagnituderespecttothe
uncoatedone.Accordingtothistest,alsothesputteringcondition1
isabletoreducethebacterialcontaminationonthecoatedscreen.
Inordertobettercharacterizethecompositionofthecoating,
XPSanalyseshavebeendoneoncoatedscreen withsputtering
condition1;thesurveyspectrumand thechemicalcomposition
obtainedareshowninFig.4.Surfacechargeeffectsleadtoa7–8eV
shiftofrelevantpeaks[43],thusenergyscalecalibrationhasbeen
performedusingtheC1scoremainpeakasareference,locating
itat285eVandthenfollowingthestandardprocedurereportedin
literatureforinsulatingsamples[43].Theanalysesofthecoated
screensallowedidentifyingmainpeaksofAg(Ag3d),O(O1s),Si
(Si2p)(andC,C1spresentasasurfacecontaminant).
Fig.3.(a)InhibitionhalotestoncoatedscreensputteredwithdifferentconditionsasinTable2;(b)countofadheredCFUonscreensputteredwithcondition1withimages ofagarplatefortheCFUevaluation.
Fig.4reportsalsotheobtainedconcentration(atomic%)ofthe
identifiedelements,togetherwithAg/SiandO/Siratio.Siwasused
asreferenceduetothehighandnotuniformpresenceofcarbon.
TheAg/Siconcentrationiscloseto0.1,forsputteringcondition1,
whileO/SirateisclosetothestoichiometricvalueforSiO2,the
matrixofthecompositecoatings.
Twotypicalatomic forcemicroscopymapsfor uncoatedand
coatedscreen(condition1)arereportedinFig.5asanexampleof
theobtainedresults.Ascanbeclearlyseenfrom3Dimages,the
antibacterialcoatingisnanostructuredandfollowsthe
topogra-phyofthepolymersurface.Theroughnessanalysisoftheobtained
mapsforboth uncoatedandcoatedscreenrevealedanegligible
increaseinallsurfaceroughnessparameters:therootmeansquare
roughness(RMS)ofthecoatedscreenisbelow5nm,whileforthe
uncoatedsampleiscloseto3nm.
3.2. Covers
Asdiscussedforscreens,thebestaestheticalresultwasgivenby
sputteringcondition1,butthisconditionshowedalower
antibac-terialprotectionthantheotherones,asevidencedbytheinhibition
halotest.On theotherside,sputtering condition3 gavehigher
antibacterialprotection,butthecoatedscreensshowedalow,not
acceptabletransmission.Inthecaseofcovers,sputteringcondition
3isabletoguaranteeahigherantibacterialprotection,suitablefor
mobilephoneswithayellowordarkercoverwheretheperceived
yellowisheffectofthecoatingcouldbenegligibleandwasthus
cho-senforthefollowinganalyses.Condition4,whichgavethelarger
inhibitionhalo,definitelygaveatoodarkcolortothesubstrate.
Visualinspectionand spectrophotometricanalysishavebeen
Fig.4. XPSsurveyspectrumforcoatedscreen,sputteringcondition1,showingmain contributionsfromO,Ag,CandSiandsurfacestoichiometry.
(coverA)andtheblackcover ofaNokia 1616(coverB)coated
bysputteringcondition3.Fig.6showstheappearanceof cover
Aandcover Baftercoatingprocess(Fig.6a andc,respectively)
withthecorrespondentspectrophotometricresults(Fig.6bandd,
respectively).
Thevisualinspectionofcover Aand thespectrophotometric
analysis demonstrated a significant color variation: the color
perceivedisdarkerand thereisaE≈10thatis tentimesthe
maximumacceptablevalue(E=1),asspecifiedintheCIELabcolor
spacestandard.
Cover B showed a yellowish effect, confirmed by
spectro-photometric results that showed a E≈4, but the perceived
estheticalresultlooksacceptable.
TapeadhesiontestoncoatedcoverAandBsputteredby
condi-tion3(Fig.7candd)indicatestheunsuitabilityofthecoatinginthe
caseofcoverA,asevidencedaftertaperemoval.Onthecontrary,
nodamagecanbeobservedonthecoatedcoverB(0%damage,5B
classificationaccordingtothestandard)aftertapetest:thereason
ofthisdifferenceinadhesionofthesamecoatingontwodifferent
substratesisunknown.Itmaybeduetoasurfacetreatmentdoneby
thesupplieronthepristinecovers,butneverofficiallyconfirmed.
InhibitionhalotestofcoversAandBsputteredbycondition3
isreportedinFig.8aandb:bothcoatedcoversareabletocreatea
smallinhibitionzone(thinnerthan1mm)buteffectivetolimitthe
bacteriaadhesionandproliferation.
Inorder toinvestigatetheability ofthesputtered coversto
reducetheadhesionofbacteria,thecountofCFUwasperformed
also in this case, but only for the black cover for the reasons
previouslydiscussed. Asitcanbeobserved (Fig.8c)thecoated
coverBdecreasedthebacterianumberby2–3ordersofmagnitude
ifcomparedtotheasreceivedcontrolcover.
3.3. Felts
Sinceacousticfeltsareblacktissueshiddeninsmallholesofthe
telephone,noaestheticalrequirementmustbesatisfied.Onthe
otherhand,theriskofbacterialcontaminationhereishigherthan
fortheothercomponents,sincetheseelementsarecontinuously
exposedtomouthandbreathandtheyareconfinedinsmallareas
difficulttoclean.
The applicability of the antibacterial layer to acoustic felts
dependsespeciallyontheeffectthatthecoatingcanhaveonthe
acousticperformanceofthematerial.
Differencesin theresponse signal have been grouped, with
respecttofrequency,consideringthedepositionconditionofeach
felt: Fig.9reports theworst casefor themicrophone response
(highersensitivitydifferencesaftercoating,coatingwithsputtering
condition2).Measurementsonthefeltscoatedbyother
deposi-tionconditionsresultedinanegligiblevariationofthemicrophone
response.Itcanbeobservedthatreadableeffectscanberevealed
onlyforhighacousticimpedanceonfelt5andfelt6,andfor
fre-quenciescloseto3kHz.Itcanbeconcludedthatthecoatingeffect
onthesendingperformanceisnegligible,becauseitoccursatthe
verytopofthetelephonefrequencybandwheretheresponseis
alreadyattenuatedbyinternalcircuitryfiltering.Theeffectsonthe
receivingperformance(earpieceandloudspeaker)havebeen
eval-uatedbylookingatfrequencyresponseandharmonicdistortion.
Bothforfrequencyresponseandharmonicdistortionnosignificant
alterationhasbeendetected.
Theinhibitionhaloofallcoatedfeltswiththesputtering
con-ditions2,3and4wasevaluated(condition1wasavoideddueto
thelowthicknessandlowAg/Siratio,notsuitableforfelts).Felts
coatedwithcondition2didnotproduceauniforminhibitionhalo,
probablyduetothelowAg/Siratio;thesameunclearresultwas
obtainedforfeltscoatedwithcondition3,probablyduetothelow
thicknessofthecoating;condition4gaveareproducibleinhibition
zoneofabout3–4mm(Fig.10).Sinceforthiskindofapplication
theriskofbacterialcontaminationisveryhigh,thetransparency
isnotanissueandtheacousticperformancesaremaintained,the
condition4(Table2)wasselectedtocoatfelts.
Fig.11reportsasexampletheXPSsurveyspectrumofcoated
felt3,sputteredbycondition4.Resultsobtainedonsputteredfelts
1,2,4,5and6aresimilar;thecompletechemicalcompositionof
allthefeltsdepositedwiththecondition4isreportedinTable3.
Theenergyscalecalibrationhasbeenperformedusingthesame
Fig.6. YellowcoverofSamsungS3650(coverA)andblackcoverofNokia1616(coverB)aftersputteringcondition3(Table2)andthecorrespondentcolorvariation(E) measuredaftersputteringprocess.
procedureusedforscreens.Alsointhiscase,theanalysesofall
coatedfeltsallowedidentifyingthemainpeaksofAg(Ag3d),O
(O1s),Si(Si2p)andC(C1s,presentasasurfacecontaminant)and
tocalculatethesurfacecomposition(atomic%)oftheantibacterial
layer(Table3).
Fig.7.CoatedcoverAandcoverB(sputteringcondition3asinTable2),before(a andb)andafter(candd)tapetest.
Fig.8. (a)and(b)InhibitionhaloofcoverBcoverArespectively,coatedwith sput-teringcondition3(asinTable2);(c)countofadheredCFUoncoverB(controland coated)withsputteringcondition3(asinTable2)andimagesofagarplateforthe CFUevaluation.
Table3
SurfacestoichiometrycalculatedbyXPSonsputteredsilvernanoclustersilicacoated felts,sputteringcondition4.
Ag(at%) Si(at%) O(at%) C(at%) Ag/Si O/Si
Felt1 1.6 22.0 45.1 31.3 0.07 2.05 Felt2 7.7 19.9 42.6 29.8 0.38 2.14 Felt3 3.2 24.3 53.9 18.6 0.13 2.22 Felt4 2.6 27.2 51.7 18.5 0.10 1.91 Felt5 6.3 19.6 38.3 35.8 0.32 1.95 Felt6 6.1 17.0 42.2 34.7 0.36 2.48
Table4
Summaryoftheactivity,resultsoverviewandchoiceofthemostsuitablesputteringconditionforeachpartofthemobilephone.
Telephonepart Sputteringconditiontested Antibacterialactivity Opticalproperties/appearance Sputteringconditionselected
COVER 3 Discrete Semi-opaque 3
Felt 2 Discrete n.a. 4
3 Limited n.a.
4 Optimal n.a.
SCREEN 1 Limited Almosttransparent 1
2 Discrete Opaque
3 Discrete Semi-opaque
4 Optimal Dark
Fig.9.Sensitivitydifference(delta)insendingvoicesignal(dBV/Pa)fordifferent coatedfelts.
Fig.10. Inhibitionhaloofallcoatedfeltsusingsputteringcondition4(asinTable2).
Asfor coatedscreens,the O/Sirateis closeto 2(asfor the
expectedstoichiometryofSiO2).
SomediscrepanciesintheAgcontentcanbeattributedtothe
evidentirregulartextureoffelts.
Insummary(Table4),sputteringcondition1,with25–50nm
thicklayerandAg/Siratioof0.06–0.13wasselectedtocoatscreens
inordertohavebothantibacterialactivityandtransparency;
con-dition3with25–50nmthicklayerandAg/Siratioof0.22–0.30was
selectedtocoatcoversinordertoguaranteebothantibacterialand
aestheticissues;tocoatfelts,wheretransparencyandaesthetical
concernsarenotconsidered,condition4with350–450nmthick
layerandthehighestAg/Siratiogavethebestresults.
Finally,thedifferentcomponents(screen,cover andacoustic
felts)ofacommercialmobiletelephoneweresputteredwiththe
selectedconditions.The operationalperformance ofthemobile
phoneisnotinfluencedbyaddedantibacterialcoating:the
antibac-terialmobilephoneinFig.12isperfectlyworking.
Fig.11.XPSsurveyspectrumforcoatedfelt3,sputteringcondition4,showingmain contributionsfromO,Ag,CandSi.
Fig.12.Antibacterialmobiletelephone.
4. Conclusion
Silver nanoclusters-silica antibacterial layers have been
depositedondifferentpartsofmobiletelephones(screens,covers
andacousticfelts)byRFco-sputtering.
Depositionparametershavebeenoptimisedinordertotailor
thesilvercontentandthecoatingthicknesstomeetantibacterial
andaestheticrequirementsofeachpart.
Screens covered with condition 1 (duty cycle 12–1, 8min,
25–50nm)exhibita goodantibacterialaction maintainingtheir
transparency; antibacterial covers with acceptable aesthetic
appearance have been achieved with condition 3 (duty cycle
6–2,8min,25–50nm)andantibacterialfeltswithnosignificant
alterationoftheiracousticpropertieshave beenobtainedusing
Inconclusion,theco-sputteringprocesscanbeappliedto
differ-entmobiletelephonepartstobethenassembledinordertoobtain
aneffectiveandfunctioningantibacterialmobiletelephone.
Due to the reproducibility of the sputtering process, these
coatingsare suitable for mass production in the mobilephone
industryandforseveralotherpolymerbasedproducts.
Acknowledgments
This project was funded by Regione Piemonte, Italy, with
“NABLA—NanostructuredAntibacterialLayers”(2008-11).
References
[1]C.Durucan,B.Akkopru,Effectofcalcinationonmicrostructureand antibacte-rialactivityofsilver-containingsilicacoatings,J.Biomed.Mater.Res.B:Appl. Biomater.93(2)(2010)448–458.
[2]M.Kawashita,S.Tsuneyama,F.Miyaji,T.Kokubo,H.Kozuka,K.Yamamoto, Antibacterialsilver-containingsilicaglasspreparedbysol–gelmethod, Bioma-terials21(4)(2000)393–398.
[3]S.Tarimala,N.Kothari,N.Abidi,E.Hequet,J.Fralick,L-L.Dai,Newapproachto antibacterialtreatmentofcottonfabricwithsilvernanoparticle-dopedsilica usingsol–gelprocess,J.Appl.Polym.Sci.101(2006)2938–2943.
[4]J.X.Wang,L.X.Wen,Z.H.Wang,J.F.Chen,Immobilizationofsilveronhollow silicananospheresandnanotubesandtheirantibacterialeffects,Mater.Chem. Phys.96(1)(2006)90–97.
[5]Y.H.Kim,D.K.Lee,H.G.Cha,C.W.Kimand,Y.S.Kang,Synthesisand character-izationofantibacterialAg–SiO2nanocomposite,J.Phys.Chem.C111(2007)
3629–3635.
[6]E.Verne,S.DiNunzio,M.Borsetti,P.Appendino,C.VitaleBrovarone,G.Maina, M.Cannas,Surfacecharacterizationofsilver-dopedbioactiveglass, Biomateri-als26(2005)5111–5119.
[7]L.Baia,D.Muresan,M.Baia,J.Popp,S.Simon,Structuralpropertiesof sil-vernanoclusters–phosphateglasscomposites,Vib.Spectrosc.43(2)(2007) 313–318.
[8]D.W.Sheel,L.A.Brook,I.B.Ditta,P.Evans,H.A.Foster,A.Steele,H.M.Yates, Reviewarticle:biocidalsilverandsilver/titaniacompositefilmsgrownby chemicalvapourdeposition,Int.J.Photoenergy2008(2008)1–11.
[9]L.A.Brook,P.Evans,H.A.Foster,M.E.Pemblec,D.W.Sheela,A.Steeleb,H.M. Yates,Novelmultifunctionalfilms,Surf.Coat.Technol.201(22–23)(2007) 9373–9377.
[10]H.B.Wang,Q.F.Wei,J.Y.Wang,J.H.Hong,X.Y.Zhao,Sputterdepositionof nano-structuredantibacterialsilveronpolypropylenenon-wovens,Surf.Eng.24(1) (2008)70–74.
[11]S.B.Sant,K.S.Gill,R.E.Burrell,Nanostructure,dissolutionandmorphology char-acteristicsofmicrocidalsilverfilmsdepositedbymagnetronsputtering,Acta Biomater.3(2007)341–350. [12]http://www.agion-tech.com. [13]http://www.navia.com.pl/EN/. [14]http://www.agc-flatglass.sg/product/interior/AntiBacterial/AntiBacteriala. htm. [15]http://www.yourglass.com/agc-glass-europe/gb/en/ antimicrobialglass/antibacterialglass/branddescription.html.
[16]C.Marambio-Jones,E.M.V.Hoek,Areviewoftheantibacterialeffectsofsilver nanomaterialsandpotentialimplicationsforhumanhealthandthe environ-ment,J.Nanopart.Res.12(5)(2010)1531–1551.
[17]W.K.Jung,H.C.Koo,K.W.Kim,S.Shin,S.H.Kim,Y.H.Park,Antibacterial activ-ityandmechanismofactionofthesilverioninStaphylococcusaureusand Escherichiacoli,Am.Soc.Microbiol.Appl.Environ.Microbiol.74(7)(2008) 2171–2178.
[18]T.M.Barbosa,S.B.Levy,Theimpactofantibioticuseonresistancedevelopment andpersistence,DrugResist.Updates3(2000)303–311.
[19]B.Chudasama,A.K.Vala,N.Andhariya,R.V.Mehta,R.V.Upadhyay,Highly bac-terialresistantsilvernanoparticles:synthesisandantibacterialactivities,J. Nanopart.Res.12(5)(2010)1677–1685.
[20]M.Ferraris,D.Chiaretta,M.Fokine,M.Miola,E.Vernè,PatentApplication num-berTO2008A000098(2008).
[21]M. Ferraris, S. Perero, M. Miola, S.Ferraris, E. Vernè, J. Morgiel, Silver nanocluster–silicacompositecoatingswithantibacterialproperties,Mater. Chem.Phys.120(2010)123–126.
[22]M. Ferraris, S. Perero, M. Miola, S. Ferraris, G. Gautier, G. Maina, G. Fucale,E.Verne’,Chemical,mechanical,andantibacterialpropertiesofsilver nanocluster–silicacompositecoatingsobtainedbysputtering,Adv.Eng.Mater. 12(2010)B276–B282.
[23]M.Ferraris,S.Ferraris,M.Miola,S.Perero,C.Balagna,E.Vernè,G.Gautier,C. Manfredotti,A.Battiato,E.Vittone,G.Speranza,I.Bogdanovic,Effectof ther-maltreatmentsonsputteredsilvernanocluster/silicacompositecoatingson soda-limeglasses:ionicexchangeandantibacterialactivity,J.Nanopart.Res. 14(2012)1287–1305.
[24]S.Ferraris,S.Perero,E.Vernè,E.Battistella,L.Rimondini,M.Ferraris, Sur-facefunctionalizationofAg-nanoclusters–silicacompositefilmsforbiosensing, Mater.Chem.Phys.130(2011)1307–1316.
[25]C.Balagna,S.Perero,S.Ferraris,M.Miola,G.Fucale,C.Manfredotti,A.Battiato, D.Santella,E.Vernè,E.Vittone,M.Ferraris,Antibacterialcoatingonpolymer forspaceapplication,Mater.Chem.Phys.135(2–3)(2012)714–722.
[26]K.Tunc,U. Olgun,Microbiologyofpublic telephones,J.Infect.53(2006) 140–143.
[27]R.R.W.Brady,J.Verran,N.N.Damani,A.P.Gibb,Reviewofmobile communica-tiondevicesaspotentialreservoirsofnosocomialpathogens,J.Hosp.Infect.71 (2009)295–300.
[28]A.Al-Hamad,S.Maxwell,Howcleanisclean?Proposedmethodsforhospital cleaningassessment,J.Hosp.Infect.70(2008)328–334.
[29]A.Singh,B.Purohit,Mobilephonesinhospitalsettings:aseriousthreatto infectioncontrolpractices,Occup.HealthSaf.81(2012)42–45.
[30]H.C.Jeske,W.Tiefenthaler,M.Hohlrieder,G.Hinterberger,A.Benzer, Bacte-rialcontaminationofanaesthetists’handsbypersonalmobilephoneandfixed phoneuseintheoperatingtheatre,Anaesthesia62(2007)904–906.
[31]C.Rowe,J.Leach,Bacterialcontaminationofcomputersandtelephonesina universityhospitalinTurkey,J.Hosp.Infect.62(2)(2006)247–248.
[32]C.Hill,T.King,R.Day,Yourphonebugged?Theincidenceofbacteriaknown tocausenosocomialinfectiononhealthcareworkers’mobilephones,J.Hosp. Infect.62(1)(2006)123–125.
[33]P.Srikanth,R.Ezhil,S.Suchitra,I.Anandhi,U.Maheswari,J.Kalyani,Themobile phoneinaTropicalsetting-emergingthreatforinfectioncontrol13th Interna-tionalCongressonInfectiousDiseases,10,2008,pp.973.
[34]M.S.Tekerekoglu,Y.Duman,A.Serindag,S.S.Cuglan,H.Kaysadu,E.Tunc, Y.Yakupogullari, Domobilephonesof patients,companionsand visitors carrymultidrug-resistanthospitalpathogens?Am.J.Infect.Control39(2011) 379–381.
[35]N.F.Borrelli,D.Lathrop,W.Senaratne,F.Verrier,Y.Wei,PatentApplication Number:US2012/0034435Coated,Antimicrobial,ChemicallyStrengthened GlassandMethodofMaking,2012.
[36]http://www.nanotechproject.org/inventories/consumer/browse/products/ lg antibacterialmobilephone.
[37] http://www.ethical-junction.org/blogs/2010/09/13/anokimobi-launches-ecoskin%E2%84%A2-iphone-4-cover-with-antibacterial-protection/. [38]ASTMD3359-97“Standardtestmethodsformeasuringadhesionbytapetest”. [39]ITU-TRec.P.58,IEC60959andANSIS3.36-1985,ITU-TP.57andIEC60711and
RecommendationITU-TP.50standards.
[40]NCCLS,NCCLS:performancestandardsforantimicrobialdisksusceptibility tests,in:ApprovedStandardM2-A9,ninthed.,NCCLS,Villanova,PA,USA,2003.
[41]G.T.Ray,J.A.Suaya,R.Baxter,Microbiologyofskinandsofttissueinfections intheageofcommunity-acquiredmethicillin-resistantStaphylococcusaureus, Diagn.Microbiol.Infect.Dis.76(1)(2013)24–30.
[42]C.Beer,R.Foldbjerg,Y.Hayashi,D.S.Sutherland,H.Autrup,Toxicityofsilver nanoparticles—nanoparticleorsilverion?Toxicol.Lett.208(3)(2012)286–292.